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Abstract: The use of flexible polyurethane foam (FPUF) is severely limited due to its flammability
and dripping, which can easily cause major fire hazards. Therefore, choosing an appropriate flame
retardant to solve this problem is an urgent need. A coating was prepared on the FPUF surface by
dipping with phytic acid (PA), Fe2(SO4)3·xH2O, and laponite (LAP). The influence of PA-Fe/LAP
coating on FPUF flame-retardant performance was explored by thermal stability, flame retardancy,
combustion behavior, and smoke density analysis. FPUF/PA-Fe/LAP has a good performance in
the small fire test, which can pass the UL-94 V-0 rating and the limiting oxygen index reaches 24.5%.
Meanwhile, the peak heat release rate values and maximum smoke density of FPUF/PA-Fe/LAP are
reduced by 38.7% and 38.5% compared with those of neat FPUF. After applying PA-Fe/LAP coating,
the value of fire growth rate index decreases from 10.5 kW/(m2·s) to 5.1 kW/(m2·s), dramatically
reducing the fire risk. Encouragingly, the effect of PA-Fe/LAP coating on cyclic compression and
permanent deformation is small, which is close to that of neat FPUF. This work provides an effective
strategy for making a flame-retardant FPUF with antidripping and keeping mechanical properties.

Keywords: flexible polyurethane foam; phytic acid-iron/laponite; flame retardancy; antidripping;
mechanical properties

1. Introduction

Flexible polyurethane foam (FPUF), as a kind of 3D open cell material, is widely used
in furniture, vehicles, aircraft cushion, and decorative materials, owing to its excellent
resilience, permeability, and low density [1–4]. FPUF plays an indispensable role in modern
life [5]. However, due to its composition and structure, FPUF is flammable, with a limiting
oxygen index (LOI) of only 18–19% [6]. FPUF quickly releases heat and smoke and starts
dripping during the burning process, which can easily cause secondary fire hazards [7–9].
Thus, it is urgent to give FPUF flame retardant and antidripping properties.

There are currently two main methods to treat FPUF with flame retardancy: adding
flame retardant additives and surface treatment [10–13]. Nevertheless, adding flame
retardant additives in the foaming process inevitably affects the buffering performance,
resilience, antideformation, and other mechanical properties of foams, and even leads to
unsuccessful foaming [3]. Fortunately, the process of surface treatment is simple and has
little impact on the material. Through this method, flame-retardant FPUFs with excellent
mechanical properties can be easily and quickly obtained by selecting appropriate flame
retardants [14,15]. This method has received extensive attention in recent years.

Halogen flame retardants can effectively inhibit the spread of flames, but halogenated
hydrocarbons are produced in the process of combustion, which increases the toxicity of
gases and has adverse effects on human health and natural environment [16–22]. The
emphasis on sustainable development has promoted the vigorous development of safe,
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green, and renewable biomass flame retardants [23–25]. In recent years, phytic acid
(PA), as a promising biomass flame retardant, has shown outstanding flame-retardant
properties [26–28]. Meanwhile, PA has a wide range of sources and exists in various
plant tissues, such as beans, cereals, and oilseeds [29,30]. When PA is used as a flame
retardant, it can act as an acid source to form a complete intumescent flame-retardant
system with other carbon sources, and can also cooperate with metals, nitrogen-containing
compounds, and other flame retardants [31–33]. Recently, PA and sodium lignosulfonate
(SLS) have been used to create bio-based coating via dip-coating on polyurethane (PU)
sponge [34]. PA1/SLS0.5@PU improves the flame retardancy of PU, preventing melt drip-
ping, self-extinguishing, and reducing peak heat release rate (PHRR) of PU by 32% at
a loading level of 60 wt.%. However, the total smoke release (TSR) is not reduced, but
increases slightly. Fortunately, both metal ions and inorganic particles can reduce smoke
release [35–38]. Yang et al. [38] use tannic acid (TA)-FeIII MPNs to reduce the total smoke
production (TSP) of FPUF to 59.2%. Nonetheless, the TA-FeIII MPNs coated FPUFs cannot
achieve self-extinguishing fleetly, and continue to burn for 40 s and remained only very
thin char residues after removing the butane igniter. In addition, Nabipour et al. [35]
prepared an organic-inorganic hybrid coating with LAP, branched polyethyleneimine,
sodium alginate, and chitosan. The coating has a good flame-retardant effect, as the smoke
production rate (SPR) value is 61.5% lower than that of neat FPUF, and the coated FPUF
self-extinguishes quickly.

In summary, this work aims to prepare a coating with PA, iron (III) sulfate hydrate
(Fe2(SO4)3·xH2O), and LAP on FPUF towards improving the flame retardancy and an-
tidripping while maintaining its mechanical properties.

2. Results and Discussion
2.1. Microstructure and Air Permeability of FPUFs

The scanning electron microscope with an energy dispersive X-ray analyzer (SEM-
EDX) was used to investigate the surface morphology and main element distribution of
neat FPUF and flame-retardant FPUFs, as presented in Figure 1a–e. The original cellular
structure of FPUF is not changed after flame retardant treatment, which is a major advantage
of dip-coating. The coating can be realized without changing the structure. Neat FPUF
surface is very smooth at higher magnification, while flame-retardant FPUFs surface
is rough, confirming the existence of the coating. Then, the distribution of elements
was analyzed by EDX. Mg, P, and N elements are attributed to LAP, PA-Fe, and FPUF,
respectively. The elements such as N, Mg, and P are evenly and uniformly distributed as
presented in the EDX mapping images of FPUF/PA-Fe/LAP, indicating that PA-Fe and
LAP are completely and evenly coated on the FPUF surface.

In addition, except for FPUF/LAP, the air permeability of other flame-retardant FPUFs
is close to that of neat FPUF, indicating that the flame retardancy coating does not damage
the air permeability of FPUF, as shown in Figure 1f.
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Figure 1. SEM images of neat FPUF (a), FPUF/PA (b), FPUF/LAP (c), and FPUF/PA-Fe/LAP (d), EDX 
mapping images of FPUF/PA-Fe/LAP (e), and air permeability of FPUFs (f). 

2.2. Thermal Stabilities 
2.2.1. Thermal Stabilities in N2 
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degradation process of neat FPUF under N2 is divided into two stages: the rupture of the 
polyurethane bond at 246–316 °C and the degradation of the polyol hydrocarbon chain at 
325–429 °C [39–41]. Flame-retardant FPUFs show a similar thermal degradation process. 
FPUF/PA degrades in advance, as evidenced by the movement of onset degradation tem-
perature (T5%) and maximum degradation temperature (Tmax) towards a lower tempera-
ture compared with those of neat FPUF. This is mainly due to the low thermal stability of 
PA, which degrades into phosphoric acid and polyphosphoric acid to promote matrix 
degradation and char layers formation [29,42]. The existence of protective layers greatly 
reduces the maximum degradation rate (Rmax) of FPUF/PA compared with neat FPUF, and 
Rmax1 is reduced from 6.4%/min to 2.6%/min, and Rmax2 is reduced from 14.3%/min to 
9.1%/min. LAP, as an inorganic particle, covers the FPUF surface to form a physical bar-
rier, which effectively slows down the degradation rate. PA-Fe/LAP coating not only pro-
motes the formation of char residues due to the degradation of PA to phosphoric acid and 
polyphosphoric acid, but also owing to LAP, which acts as a physical barrier to hinder the 
exchange of heat, combustible gases, and oxygen. The Fe ions of PA-Fe/LAP coating can 
catalyze the formation of more stable char residues [43]. PA-Fe/LAP coating can improve 

Figure 1. SEM images of neat FPUF (a), FPUF/PA (b), FPUF/LAP (c), and FPUF/PA-Fe/LAP (d),
EDX mapping images of FPUF/PA-Fe/LAP (e), and air permeability of FPUFs (f).

2.2. Thermal Stabilities
2.2.1. Thermal Stabilities in N2

The information related to TG and DTG is shown in Figure 2 and Table 1. The thermal
degradation process of neat FPUF under N2 is divided into two stages: the rupture of the
polyurethane bond at 246–316 ◦C and the degradation of the polyol hydrocarbon chain
at 325–429 ◦C [39–41]. Flame-retardant FPUFs show a similar thermal degradation pro-
cess. FPUF/PA degrades in advance, as evidenced by the movement of onset degradation
temperature (T5%) and maximum degradation temperature (Tmax) towards a lower temper-
ature compared with those of neat FPUF. This is mainly due to the low thermal stability
of PA, which degrades into phosphoric acid and polyphosphoric acid to promote matrix
degradation and char layers formation [29,42]. The existence of protective layers greatly
reduces the maximum degradation rate (Rmax) of FPUF/PA compared with neat FPUF,
and Rmax1 is reduced from 6.4%/min to 2.6%/min, and Rmax2 is reduced from 14.3%/min
to 9.1%/min. LAP, as an inorganic particle, covers the FPUF surface to form a physical
barrier, which effectively slows down the degradation rate. PA-Fe/LAP coating not only
promotes the formation of char residues due to the degradation of PA to phosphoric acid
and polyphosphoric acid, but also owing to LAP, which acts as a physical barrier to hinder
the exchange of heat, combustible gases, and oxygen. The Fe ions of PA-Fe/LAP coating
can catalyze the formation of more stable char residues [43]. PA-Fe/LAP coating can
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improve the poorer stability of FPUF/PA in the lower-temperature zone, and the T5% value
of FPUF/PA-Fe/LAP increases from 169 ◦C (FPUF/LAP) to 226 ◦C. The char residues of
FPUF/PA-Fe/LAP at 800 ◦C are 99.0% higher than that of neat FPUF.
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Figure 2. TG (a) and DTG (b) curves of neat FPUF, FPUF/PA, FPUF/LAP, and FPUF/PA-Fe/LAP in N2.

Table 1. Summary of TG data for neat FPUF, FPUF/PA, FPUF/LAP, and FPUF/PA-Fe/LAP in N2.

Sample T5% (◦C) Tmax1 (◦C) Rmax1 (%/min) Tmax2 (◦C) Rmax2 (%/min) Residues at 800 ◦C (%)

Neat FPUF 258 291 6.4 374 14.3 9.7
FPUF/PA 169 264 2.6 325 9.1 29.9

FPUF/LAP 260 289 4.1 371 8.3 33.3
FPUF/PA-Fe/LAP 226 286 4.4 380 10.2 19.3

To better compare the thermal degradation of neat FPUF and flame-retardant FPUFs,
the degradation volatiles of these were determined. The 3D FTIR spectra and FTIR spectra
of characteristic substances produced are shown in Figures 3 and 4. The degradation
products of neat FPUF and flame-retardant FPUFs are mainly hydrocarbons (2976 cm−1),
CO2 (2360 cm−1), -NCO containing compounds (2276 cm−1), CO (2180 cm−1), carbonyl
compounds (1744 cm−1), and ethers (1112 cm−1) [43,44]. The characteristic peaks of neat
FPUF are -CH, -NCO, C=O, and C-O-C. Similarly, for flame-retardant FPUFs, the peaks
also appear at the same position, only changing the intensities of the peaks. It shows that
the flame-retardant coatings do not change the thermal degradation process of FPUF, but
only inhibit the transport of volatile products to the air, leaving more substances in the
condensed phase.

As presented in Figure 4, the degradation products of FPUF/PA are released earlier
than other samples, which may be caused by the catalysis of phosphoric acid or polyphos-
phate produced by PA thermal degradation. Nevertheless, FPUF/PA-Fe/LAP does not
release volatile products earlier, owing to the physical barrier effect of LAP. The absorption
peak intensities of hydrocarbons, carbonyl compounds, and ethers decrease significantly
(Figure 4a,e,f), indicating that the released fuels are greatly reduced. In addition, FPUF/PA
and FPUF/PA-Fe/LAP release a large amount of CO2 in the early stage of thermal degrada-
tion; especially FPUF/PA-Fe/LAP begins to release CO2 in the first 300 s during the thermal
degradation (Figure 4b). The release of CO2 is beneficial to dilute the fuels and oxygen
concentration. The generation of toxic gases during pyrolysis is also a troublesome problem.
However, after flame retardant treatment, the intensities of -NCO and CO absorption peaks
decrease relatively (Figure 4c,d), indicating that flame retardant coatings also have a certain
effect on reducing the release of pyrolysis toxic volatiles.
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2.2.2. Thermal-Oxidation Stabilities in Air

Since the presence or absence of O2 may affect the pyrolysis process of materials, the
thermal-oxidative degradation process of neat FPUF and flame-retardant FPUFs is also
studied as shown in Figure 5 and Table 2. The changing trend of T5% of flame-retardant
FPUFs is consistent with that in N2. It is worth noting that FPUF/LAP and FPUF/PA-
Fe/LAP have only one pyrolysis stage, which can be owing to the presence of LAP as an
inorganic clay and its better physical barrier function [35]. It delays the first decomposition
stage, resulting in the coexistence of the two degradation stages on the TG curves. Moreover,
the amount of char residues increases significantly at 800 ◦C after flame retardant treatment.
The amount of char residues of FPUF/PA, FPUF/LAP, and FPUF/PA-Fe/LAP increases
by 144%, 198%, and 102%, respectively, compared with neat FPUF. It indicates that the
coatings improve the char formation of FPUF at high temperatures. It is worth noting
that FPUF/PA-Fe/LAP has more char residues in air than in N2, probably because iron is
present as Fe3O4 during thermal degradation process in N2, which can be further oxidized
to Fe2O3 in air [45].
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Table 2. Summary of TG data for neat FPUF, FPUF/PA, FPUF/LAP, and FPUF/PA-Fe/LAP in air.

Sample T5% (◦C) Tmax1 (◦C) Rmax1 (%/min) Tmax2 (◦C) Rmax2 (%/min) Residues at 800 ◦C (%)

Neat FPUF 251 276 11.4 330 11.2 11.1
FPUF/PA 196 256 3 320 11.8 27.1

FPUF/LAP 256 297 13.5 - - 33.1
FPUF/PA-Fe/LAP 231 300 13.7 - - 22.4

2.3. Fire Safety
2.3.1. Flame Retardancy

The vertical flame test (UL-94) and LOI are commonly used to evaluate the flamma-
bility of materials [46–49]. As shown in Figure 6 and Table 3, neat FPUF is a flammable
material that burns rapidly upon ignition, and has a low LOI value of only 17.0%. When
it is in contact with a flame, neat FPUF spreads rapidly, burns violently, and produces
dripping. After flame retardant treatment, the dripping phenomenon has been significantly
inhibited to reduce the risk of a secondary fire. LAP coating cannot inhibit the flame spread,
while PA-Fe coating can effectively slow down the flame spread. This may be caused by the
fact that LAP can only form loose char residues, while phosphoric acid or polyphosphate
and metal ions can promote the formation of dense char residues and hinder the transfer
of fuels, oxygen, and heat, to slow down the spread of a flame [47]. FPUF/PA can realize
self-extinguishing quickly, but PA cannot inhibit the melting of FPUF. There are only small
spherical char residues on the FPUF/PA surface, and it is also blackened in the upper part
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of the sample, which does not have a UL-94 rating. Fortunately, FPUF/PA-Fe/LAP can
pass the UL-94 V-0 rating, and the LOI value increase to 24.5%. This could be due to the
cooperation between PA-Fe and LAP. PA-Fe has the ability of catalytic char formation and
LAP has the ability of physical barrier, which is consistent with the study of Yang [50]. In
conclusion, PA-Fe/LAP coating can greatly reduce the flammability of FPUF.
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Figure 6. Digital images of neat FPUF, FPUF/PA, FPUF/LAP, FPUF/PA-Fe, and FPUF/PA-Fe/LAP
during UL-94.

Table 3. The detailed data of UL-94 and LOI.

Weight Gain
(wt.%) t1 (s) t2 (s) Burning to

the Fixture Dripping UL-94 LOI (%)

Neat FPUF 0.0 ± 0.0 >30 - Yes Yes N.R. 17.0
FPUF/PA 43.8 ± 1.6 1 ± 1 3 ± 1 Yes No N.R. 29.9

FPUF/LAP 37.3 ± 0.2 >30 - Yes No N.R. 19.6
FPUF/PA-Fe 40.2 ± 0.9 >30 - Yes No N.R. 20.7

FPUF/PA-Fe/LAP 41.9 ± 0.7 0 ± 0 1 ± 1 No No V-0 24.5

2.3.2. Burning Behavior

The burning behavior of neat FPUF and flame-retardant FPUFs in a fire is simulated
by cone calorimeter test (CCT), as summarized in Figure 7 and Table 4. The PHRR and total
heat release (THR) values of neat FPUF reach 419 kW/m2 and 19 MJ/m2. The PHRR values
of FPUF/PA and FPUF/LAP are reduced by 69.9% and 54.7%, while the THR values of
FPUF/PA and FPUF/LAP are decreased by 31.6% and 26.3%. Unfortunately, after coated
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with PA-Fe/LAP, the PHRR and THR values are only decreased by 38.7% and 10.5%. This is
in contradiction with previous studies that metal compounds are used as flame retardants
to produce metal oxides to absorb a lot of heat and reduce heat release [32]. This might be
due to the metal ions further promoting the degradation of unstable char residues, which
reduce the amount of char residues and cannot effectively prevent heat transfer [51]. This
is confirmed by the fact that the amount of char residues for FPUF/PA-Fe/LAP is less than
those of FPUF/PA and FPUF/LAP. In addition, the time to ignition (TTI) value and TPHRR
of FPUF/PA-Fe/LAP are delayed, indicating that it takes longer to be ignited and it can
leave more time for people to escape. The ratio of PHRR to TPHRR is equal to the fire growth
rate index (FIGRA), which is generally proportional to the fire hazard [42,52]. Notably, the
FIGRA values of FPUF/PA (5.0 kW/(m2·s)) and FPUF/PA-Fe/LAP (5.1 kW/(m2·s)) are
drastically reduced, compared with that of neat FPUF (10.5 kW/(m2·s)). This indicates that
these two coatings reduce the fire hazard.
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Table 4. The detailed data from CCT.

Sample TTI
(s)

PHRR
(kW/m2)

TPHRR
(s)

THR
(MJ/m2)

FIGRA
kW/(m2·s)

PSPR
(m2/s)

TSP
(m2)

PSEA
(m2/kg) CO/CO2

Residues
(wt.%)

Neat FPUF 3 419 40 19 10.5 0.05 4.5 4385 0.0134 17.2
FPUF/PA 5 126 25 13 5.0 0.03 2.7 4012 0.0581 32.7

FPUF/LAP 6 190 20 14 9.5 0.02 1.5 3321 0.0923 42.1
FPUF/PA-Fe/LAP 5 257 50 17 5.1 0.03 3.0 3371 0.0171 23.1

Smoke is another major factor threatening people’s safety in a fire. The TSP value
and peak SPR (PSPR) value of neat FPUF are 4.5 m2 and 0.05 m2/s. Compared with neat
FPUF, the TSP values of FPUF/PA, FPUF/LAP, and FPUF/PA-Fe/LAP are decreased by
40.0%, 66.7%, and 33.3%, respectively. Additionally, the SPR value of FPUF/PA-Fe/LAP
increases sharply after 40 s of burning and reaches the PSPR after 50 s, meaning that the
risk of suffocation is reduced and people have more time to escape. Moreover, the peak
specific extinction area (PSEA) of flame-retardant FPUFs is also reduced, and this indicates
that the flame-retardant coatings reduce the production of flammable volatiles. The CO2
emission of flame-retardant FPUFs is greatly reduced, leaving more char in the condensed
phase. Moreover, the release of CO from flame-retardant FPUFs is relatively lower than
that of neat FPUF; especially, the peak CO production rate (PCOP) value of FPUF/LAP
is decreased by 62.7%, and the PCOP value of FPUF/PA-Fe/LAP is decreased by 60.0%,
which reduce the risk of a fire. The value of the CO/CO2 ratio is applied to assess the level
of complete burning. The lower the value is, the more complete the burning is. After the
flame-retardant treatment, the value of the CO/CO2 ratio increases significantly, and this
shows that the smoke toxicity increases. Fortunately, the synergistic effect between PA-Fe
and LAP can effectively inhibit smoke toxicity. The CO/CO2 ratio values of FPUF/PA and
FPUF/LAP increase to 0.0581 and 0.0923, respectively, while that of FPUF/PA-Fe/LAP is
only 0.0171.

Figure 8 presents the information of char residues after CCT. Neat FPUF only leaves a
thin layer of char. In the SEM images, there are many cracks on the char residues surface,
and the char residues are loose with a large number of holes. Flame-retardant FPUFs can
form dense char residues which can effectively protect the matrix. However, PA cannot
inhibit the melting of FPUF, and the original cell structure disappears completely. LAP and
PA-Fe/LAP can inhibit melting and avoid liquid pool fire.
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In a word, the flame-retardant coating can form dense char residues, protect the lower
substrate, obviously reduce heat and smoke release, and improve people’s survival rate in
a fire.
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2.3.3. Smoke Density

The smoke density test (SDT) was used to further study the smoke suppression
performance of the flame-retardant coating, and the results are shown in Figure 9. After
neat FPUF was ignited, the smoke was released rapidly, and the visibility is reduced sharply.
At 81 s, the light transmission of neat FPUF is reduced to 36.5% and the smoke density (Ds)
is 57.8. Flame-retardant FPUFs can inhibit smoke release and improve the chance of escape
in a fire. It is worth noting that the maximum smoke density (Ds,max) of FPUF/LAP is 84.1%
lower than that of neat FPUF, which can be attributed to the covering effect of inorganic
particle LAP. LAP breaks down into highly inorganic thermal stable compounds and silica,
which in turn convert to glass on the FPUF surface, preventing volatiles from leaving the
condensed phase [53]. However, the smoke suppression effect of FPUF/PA is poor. When
LAP and PA-Fe act together, they still have good smoke suppression performance. The
Ds,max of FPUF/PA-Fe/LAP is decreased by 38.5% in contrast to neat FPUF.
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2.4. Mechanical Properties

The mechanical properties are also one of important parameters in the application
of materials, especially the tensile properties, resilience, and compression resistance to
permanent deformation. Therefore, the results are shown in Figure 10a–f. After flame
retardant treatment, the elongation at break is decreased, especially the elongation at break
of FPUF/PA-Fe/LAP is deteriorated by 30.6% compared with neat FPUF (Figure 10a). This
may be due to the existence of PA-Fe/LAP coating limiting the movement of molecular
segments in FPUF. Similarly, the tensile strength of flame-retardant FPUF is also deterio-
rated (Figure 10b), which may be attributed to the excessive acidity of PA damaging FPUF
or the stress concentration of agglomerated LAP [54]. However, after coating LAP and
PA-Fe/LAP, the Young’s modulus is increased, which can be due to the rigid film formed
by the coating on the surface of FPUF.

After 20 cyclic compressing-releasing test at 50% compression strain, both neat FPUF
and flame-retardant FPUFs can return to the original shape, and the height loss of flame-
retardant FPUFs is smaller (FPUF/PA loses 10.44%, FPUF/LAP loses 8.26%, and FPUF/PA-
Fe/LAP loses 7.53%) (Figure 10d,e), showing good cyclic compression. Interestingly, when
PA-Fe and LAP are combined, the height loss is less than that of LAP or PA alone.
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Moreover, 50% compression resistance to permanent deformation of FPUF was also
measured (Figure 10f). The deformation of neat FPUF is only 4.66%, while the deformation
of FPUF/PA increases sharply. Besides, the deformation of FPUF/LAP (11.45%) also
increases, which may be due to the rigid material of LAP coating and hinders the rebound
of FPUF/LAP. Fortunately, when the flame-retardant coating contains PA-Fe and LAP, the
deformation can be significantly reduced, and the deformation is only 5.43%, which is
similar to that of neat FPUF.
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Overall, FPUF/PA with the best effect of heat suppression has significantly deterio-
rated the mechanical properties. However, the elongation at break of FPUF/PA-Fe/LAP
deteriorated slightly, and the effects of other mechanical properties were within an accept-
able range. Therefore, PA-Fe/LAP coating is more suitable as the flame retardant and
antidripping coating for FPUF.

3. Materials and Methods
3.1. Materials

PA (50 wt.% aqueous solution) was supplied by Shanghai Macklin Biochemical
Co., Ltd. (Shanghai, China). Fe2(SO4)3·xH2O was produced by Sinopharm Chemical
Reagent Co., Ltd. (Shanghai, China). LAP was purchased from Shandong Yousuo Huagong
Co., Ltd. (Shandong, China). FPUF (FM28) with a density of 27.8 ± 2 kg/m3 was obtained
from Hangzhou Guangsheng Foam Plastics Co., Ltd. (Hangzhou, China). Deionized water
was made in the laboratory.

3.2. Preparation of Flame-Retardant FPUFs

Firstly, LAP, PA, and Fe2(SO4)3·xH2O were dissolved in deionized water and stirred
at room temperature to prepare these flame retardants according to a certain molar ratio
(1:0:0, 0:1:0, 25:1:135, and 0:1:135, named LAP, PA, PA-Fe/LAP, and PA-Fe, respectively).
Secondly, FPUF was cut into the desired size, and dried at 80 ◦C. Afterward, FPUF was
placed in the above flame-retardant solutions separately. They were pressed continuously
to fully coat the FPUF surface with the flame retardants. Finally, the flame-retardant FPUFs
were dried at 80 ◦C until a constant weight was obtained. The obtained flame-retardant
FPUFs were named FPUF/PA, FPUF/LAP, FPUF/PA-Fe, and FPUF/PA-Fe/LAP according
to the flame-retardant solutions.

3.3. Characterization
3.3.1. The Micromorphology and Element Distribution

The morphology of neat FPUF, flame-retardant FPUFs, and char residues after CCT
was obtained on a scanning electron microscope (TESCAN-VEGA3, Brno, Czech Republic).
Additionally, the element composition of flame-retardant FPUFs was measured by an
energy dispersive X-ray analyzer (XSAM80, Kratos Co, Manchester, UK). The samples were
sputter-coated by a thin gold layer before the test.

3.3.2. Thermal Stability

The thermo-oxidative stability was assessed through thermogravimetric analyses
carried out with a with a Perkin-Elmer STA 6000 TG analyzer ((Perkin-Elmer Ltd., Waltham,
MA, USA). The test was obtained under an air flow of 30 mL·min−1 and the heating rate
was set at 10 ◦C·min−1 from 40 to 800 ◦C. The thermal stabilities and the consist of gaseous
products were performed using a TG analyzer with a Perkin-Elmer FTIR spectrometer
(Perkin-Elmer Ltd., Waltham, MA, USA). The samples were heated under 50 mL·min−1

flow of nitrogen, and other conditions were the same as in air.

3.3.3. Flame Retardancy and Combustion Behaviors

UL-94 was performed on an LFY-601A vertical flame tester (Shandong Textile Academy,
Qingdao, China) with the sample size of 100 × 50 × 15 mm3. UL-94 was measured in the
light of the ASTM D 3801. LOI, which sample size was 150 × 10 × 10 mm3, was obtained on
an LFY-606 B oxygen index meter (Shandong Institute of Textile Science, Qingdao, China)
in accordance with the GB/T2406.2-2008 standard. Burning behaviors were collected us-
ing a cone calorimeter (Fire Testing Technology, West Sussex, UK) according to the ISO
5660-1 standard. The sample had dimensions of 100 × 100 × 25 mm3 and was exposed to
35 kW·m−2 heat flux. SDT was executed by a JCY-2 equipment (SPT Co., Yangzhou, China)
following the EN ISO 5659-2. The sample size was set to be 75 × 75 × 25 mm3 and under a
pilot flame of 25 kW·m−2.
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3.3.4. Mechanical Properties and Air Permeability

The tensile strength was evaluated by a universal testing machine (INSTRON 5967,
INSTRON, Norwood, MA, USA) referenced from the GB/T 6344-2008. The sample was
tailored into 40 × 10 × 10 mm3 at a crosshead speed of 500 mm·min−1. The resilience of
the samples was performed using a universal testing machine (INSTRON 5965, INSTRON,
Norwood, MA, USA) that was interfaced to a 5000 N load cell. The samples were subjected
to 20 cyclic compressing-releasing tests at 50% compression strain at a compression rate
of 20 mm·min−1. The dimension of each sample was 20 × 20 × 20 mm3. The 50%
compression test was measured following the ISO1856-2000. The sample was tailored
into 50 × 50 × 10 mm3 and compressed by two metal plates for 22 h at 77 ◦C. The air
permeability of FPUFs was measured by a fully automatu permeability instrument (YG461E-
III, Ningbo Textile Instrument Factory, Ningbo, China) at 100 Pa.

4. Conclusions

PA-Fe/LAP coating was constructed on the FPUF surface by dip-coating, which gives
FPUF flame retardancy and antidripping without deteriorating its cyclic compression and
permanent deformation. FPUF/PA-Fe/LAP has flame retardancy and reduces the risk of
a secondary fire, as evidenced by a satisfying UL-94 V-0 rating and a higher LOI value of
24.5%, and inhibits heat and smoke release. The PHRR and Ds,max values of FPUF/PA-
Fe/LAP are reduced by 38.7% and 38.5% compared with those of neat FPUF. Moreover,
although the elongation at break of FPUF/PA-Fe/LAP reduces by 30.6% compared with
neat FPUF, the height loss of FPUF/PA-Fe/LAP (from 6.57% to 7.53%) and the deformation
(from 4.66% to 5.43%) are close to those of neat FPUF. Therefore, the deterioration of PA-
Fe/LAP coating on the mechanical properties of FPUF is acceptable. This work provides
an effective way to enhance the flame retardancy of FPUF.
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