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SUMMARY

Although the existing works on DNA motif discovery on DNA sequences are plethoric, mechanistic

knowledge to infer DNAmotifs from protein sequences across multiple DNA-binding domain families

without conducting any wet-lab experiments is still lacking. Therefore, the k-spectrum recognition

modeling is proposed to address the issues at the highest possible resolutions. The k-spectrummodel

can capture DNA motif patterns from protein sequences at the resolution in which local sequence

context and nucleotide dependency can be taken into account completely.Multiple evaluationmetrics

are adopted and measured on millions of k-mer binding intensities from 92 proteins across 5 DNA-

binding families (i.e., bHLH, bZIP, ETS, Forkhead, and Homeodomain), demonstrating its competitive

edges. In addition, it not only can contribute to DNAmotif recognition modeling but also can help pri-

oritize the observed or even unobserved binding of single nucleotide variants on transcription factor

binding sites in a genome-wide manner.

INTRODUCTION

According to a robust estimation (Li and Biggin, 2015), 73% of protein expression is regulated by gene

transcription. Such a percentage is substantially higher than the other steps such as translation (8%), pro-

tein degradation (8%), and mRNA degradation (11%). A recent study also indicated that most individuals

have unique repertoires of gene transcription activities, which can contribute to phenotypic variations

(Barrera et al., 2016) and thus the difficulties in developing personalized medicine. Therefore, under-

standing gene transcription forms the important basis for personalized medicine development. Espe-

cially, the protein-DNA binding interactions between transcription factors (TFs) and transcription factor

binding sites (TFBSs) are the essential components in eukaryotic gene transcription where TFs bind to

TFBSs in a sequence-specific manner as evidenced by the study that 17.5%–19.5% of the

top expression quantitative trait loci are overlapped with the annotated TFBSs (1000 Genomes Project

Consortium et al., 2015).

Therefore, substantial efforts have been made into elucidating the DNA-binding specificity patterns (TFBS

patterns) of TFs, which are the essential proteins for gene transcription. TFs bind onto specific DNA sites

(TFBSs) on regulatory regions (e.g., promoters and enhancers), controlling when and where each gene is

transcribed. Given its central importance, the existing protein-DNA binding structures have been analyzed

to decipher the protein-DNA binding interactions between TFs and TFBSs (Luscombe et al., 2001) on spe-

cific TF families (e.g., zinc fingers [Krishna et al., 2003]). Bonding and force types, bending of the DNA

(Jones et al., 1999), TF conservation, and mutations (Luscombe and Thornton, 2002) have been discovered

as the key factors that can determine the binding amino acid residues on the TF side (Jones et al., 2003). In

addition, many have tried to generalize the binding rules (i.e., the one-to-one mapping between amino

acids from TFs and nucleotides from TFBSs). Unfortunately, despite the efforts (Mandel-Gutfreund et al.,

1995; Mandel-Gutfreund and Margalit, 1998; Luscombe and Thornton, 2002), it is suggested that there is

not any general binding rule across different TF families (Sarai and Kono, 2005).

To address this, high-throughput biotechnologies have been developed such as chromatin immunoprecip-

itation (ChIP) sequencing technologies (e.g., ChIP-Chip, ChIP-seq, and ChIP-exo), ChIA-PET, HT-SELEX,

CHAMP, and ORGANIC (Jung et al., 2017; Kasinathan et al., 2014). In particular, protein binding microarray

(PBM) has been developed as a high-throughput technology that can discover the in vitro TFBSs (Barrera

et al., 2016). Each PBM run can measure binding intensities of a given TF to all possible DNA k-mers (kR 8).

With these technologies, international projects (e.g., ENCODE, GTEx, and FANTOM) have been success-

fully launched (ENCODE Project Consortium, 2012; GTEx Consortium, 2015; Forrest et al., 2014),
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accumulating massive TFBS data that we can study for human TFs on a genome-wide scale; for instance,

the sequencing data from the ENCODE consortium has enabled the systematic genome-wide discovery

and characterization of human TFBSs (Kheradpour and Kellis, 2014). In addition, Jolma et al. have also

characterized the DNA-binding specificity landscape of human TFs for large-scale TFBS data (Jolma

et al., 2013).

The de factomodeling of TFBS is usually in the form of either solid consensus sequences or position weight

matrices (PWMs). Nonetheless, it is well known that nucleotide dependencies and indel operations exist

(Tomovic and Oakeley, 2007). Therefore, Wong et al. have proposed to adopt probabilistic modeling to

tackle these challenges (Wong et al., 2013). Transcription Factor Flexible Model has also been proposed

by Mathelier and Wasserman to solve these issues with variable sequence lengths (Mathelier and Wasser-

man, 2013). Recently, deep convolutional neural networks have also been applied for large-scale modeling

(Alipanahi et al., 2015). Therefore, TFBS modeling is still an active but central challenge in nucleic acids

research.

However, these studies are limited to the DNA side. In recent years, given the exponential increase in data,

people started to realize that we can predict DNA motifs from the protein side; for instance, Pelossof et al.

have successfully adopted the PBM data to predict the DNA-binding affinities of different Homeodomain

proteins (Pelossof et al., 2015). Gupta et al. have also proposed a random forest recognition model to pre-

dict DNA motif matrices from the protein sequences of the C2H2 zinc finger family (Gupta et al., 2014). Un-

fortunately, both studies are limited to a single DNA-binding family. In addition, its modelingmethodology

is either limited to k-mer independence assumption or PWM assumption. The actual modeling perfor-

mance across multiple DNA-binding families remain speculative. Therefore, in this study, an approach

that can take into account sequence context and nucleotide dependency for k-mer dependence modeling

at the highest possible resolution is proposed.

DNA Motif Recognition Modeling

For this study, the proposed framework is summarized in Figure 1. Themajor step descriptions can be refer-

enced from the figure caption. Further details are provided in the following subsections.

Data Sources

The DNA-binding-family-specific recognition models are retrieved from the previous study (Wong et al.,

2015). The training and testing k-spectrum data (i.e., e-scores), if available, are retrieved from UniPROBE

in October 2017 (Barrera et al., 2016). In particular, the top five DNA-binding domain families with the

largest available PBM data are selected and tabulated in Table S1. For each family, leave-one-out cross-

validations (LOOCVs) are conducted for fair evaluations. The official Pfam web server is chosen in October

2017 (Finn et al., 2016). The ground truth DNA motif matrices are based on CIS-BP (v1.02) in human

(Weirauch et al., 2014).

DNA k-Spectrum Recognition Model Training

DNA k-spectrum refers to the complete quantitative modeling onm DNA k-mers {kmer1,kmer2,.,kmerM}

of length k. The DNA kmers can be selected based on the DNA-binding intensity ranking from PBM

experiments.

Although progress has been made in DNA motif recognition modeling, we lack in silico DNA motif

recognition models that can achieve such a high resolution for the TF of interest across multiple

DNA-binding families. Therefore, we aim at developing the first-of-its-kind in silico DNA k-spectrum

recognition model that can fully capture the DNA-binding specificities of TFs at a very high resolution

across multiple DNA-binding families. As the intermediate step, we have already developed a unique

model ModelNAR, which can predict specificity-determining residue-nucleotide interactions between

TFBSs and TFs with known annotations from protein-DNA binding sequences with the help of random

forest model training on the existing protein-DNA binding complex structures from Protein Data Bank

(PDB) (Wong et al., 2015).

Briefly, given a TF whose DNA-binding specificity we would like to find, we can run the existing protein

domain annotation programs (e.g., InterPro and PFam) to annotate its DNA-binding domains (DBDs) on

its protein sequence. For the DBD of interest (D), we collect T known PBM k-spectrum profiles
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Figure 1. Proposed Framework Overview

(Step 1) The input protein sequence is given for elucidating its DNA-binding specificities. (Step 2) The input protein sequence is scanned with Pfam to

retrieve its DNA-binding domain (D) annotation. (Step 3) Based onD, the corresponding recognition model can be retrieved from the previous study (Wong,

2015). (Steps 4 and 5) The domain (D) annotation and its sequence are fed into the retrieved model. (Step 6) A draft DNA k-spectrum is generated from the

model. (Step 7) The draft DNA k-spectrum is forwarded into the Markov random field model trained for detailed refinement. (Step 8) The predicted DNA

k-spectrum profile is generated from the Markov random field model. (Step 9) Evaluations and applications are conducted under leave-one-out cross-

validations (LOOCVs).
fPPðtÞ
D jct%T˛Ng from UniProbe where t denotes the DBD instance index for model training or building. In

each profile PP
ðtÞ
D , we have the binding intensities of all DNA k-mers of interest:

PPðtÞ
D =

n
PðtÞ
kmer1

;PðtÞ
kmer2

;.;PðtÞ
kmerM

o
where P

ðtÞ
kmera

denotes the actual binding intensity of kmera as measured by PBM. In addition, we can also

collect the corresponding k-spectrum recognition profile RP
ðtÞ
D from the modelModelNAR using DNA motif

recognition modeling techniques for each DBD instance based on its protein sequence (Wong et al., 2015):

RPðtÞ
D =

n
IðtÞkmer1

; IðtÞkmer2
;.; IðtÞkmerM

o
where I

ðtÞ
kmera

denotes the binding intensity of kmera as recognized byModelNAR. As a result, our objective is

to build a mathematical model that can predict PP
ðtÞ
D from RP

ðtÞ
D , given the T known instances of the DBD of

interest (D). Statistically, it is a sparse multi-task regression problem where the predictor variables are

RP
ðtÞ
D = fIðtÞkmer1

; I
ðtÞ
kmer2

;.; I
ðtÞ
kmerM

g and the response variables are PP
ðtÞ
D = fPðtÞ

kmer1
;P

ðtÞ
kmer2

;.;P
ðtÞ
kmerM

g. However,
such a formulation does not take into account the sequence neighborhood among different k-mers.
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Figure 2. A Markov Random Field Example of the Sequence Neighborhood NB (kmera = AAA) with One

Substitution Error

Reverse complements are not shown for illustrative purposes.
Therefore, a Markov Random Field (MRF) model ModelMRF = fðfab;gaÞjca;b%M˛Ng is proposed to cap-

ture the sequence neighborhood information for sparse multi-task regression. Mathematically, the energy

function E of ModelMRF is given by:

E =
XT
t = 1

 XM
a= 1

ga

�
PðtÞ
kmera

; IðtÞkmera

�
+
XM
a= 1

X
b˛NBðaÞ

fab
�
PðtÞ
kmera

; PðtÞ
kmerb

�!

where T is the number of DBD instances, M is the number of DNA k-mers, ga and fab are the MRF clique

potential functions, and NB (a) is the sequence neighborhood of kmera, which can be defined in different

settings. An example of the sequence neighborhood NB (kmera = AAA) with one substitution error is illus-

trated in Figure 2. To ensure its function convexity, the classic least square error estimation formulation is

adopted: gaðPðtÞ
kmera

; I
ðtÞ
kmera

Þ= ðPðtÞ
kmera

� saI
ðtÞ
kmera

� iaÞ
2
and fabðPðtÞ

kmera
; P

ðtÞ
kmerb

Þ = ðPðtÞ
kmera

� P
ðtÞ
kmerb

Þ2. Given the

training data fPPðtÞ
D g and fRPðtÞ

D g, we can take partial derivatives to the energy function E with respect to

the regression parameters {sa} and {ia}, resulting in the typical ordinary least aquares estimations for the

model training of ModelMRF.

DNA k-Spectrum Recognition Model Testing

For each DBD of interest (D), its known PBM k-spectrum profiles fPPðtÞ
D jct%T˛Ng have already been

collected from UniProbe where t denotes the DBD instance index for model training on the top M k-

mers (e-scores). On the other hand, its corresponding k-spectrum recognition profiles fRPðtÞ
D jct%T˛Ng

have also been generated via the model ModelNAR (Wong et al., 2015). To test the model ModelMRF,

LOOCVs are conducted on those DBD instances. For each left-out DBD instance indexed by t, given its

k-spectrum recognition profile RP
ðtÞ
D , we have to compute for its predicted PBM k-spectrum profile

PP
ðtÞ0
D = fPðtÞ0

kmer1
;P

ðtÞ0
kmer2

;.;P
ðtÞ0
kmerM

g via the model ModelMRF, which has been trained on the other instances.

Unfortunately, we do not have any closed form solution without any distribution assumption. Therefore,
iScience 7, 198–211, September 28, 2018 201



Figure 3. DNA-Binding Intensity Correlation Comparisons under Different k-mer Neighborhood Settings

Box plots on the Spearman rank correlations between the actual binding intensities of k-mers and the predicted binding intensities of k-mers using the

previous method (Wong et al., 2015), and the current method denoted in red and blue colors, respectively.

(A) Number of top k-mers (M) = 100.

(B) Number of top k-mers (M) = 1,000.
the iterative formula is obtained by taking partial derivatives to the energy function E with respect to each

P
ðtÞ
kmera

for all kmera (i.e., ca%M˛N):

PðtÞ
kmera

=
1

1+ jNBðaÞj

 �
saI

ðtÞ
kmera

+ ia
�
+
X

b˛NBðaÞ
PðtÞ
kmerb

!

Such a formulation has the linear complexityOðjNBðaÞjÞ. Convexity is also guaranteed because of the least

square error estimation setting. Therefore, it can be easily iterated from random initialization until conver-

gence or maximal number of iterations, resulting in the overall linear complexityOðIMjNBðaÞjÞwhere I is the
actual number of iterations (i.e., less than 50 iterations in most cases). At the implementation level, we can

also combine the equations for all kmera into a system of linear equations and solve it via the matrix inverse

operation if sufficient memory is available.

DNA k-mer Neighborhood Modeling

Given the central importance of the DNA k-mer neighborhood modeling (NB), different possible defini-

tions are parameterized and compared in this study. In particular, three distance metrics are proposed

for measuring k-mer sequence similarity: Hamming distance (Norouzi et al., 2012), longest common subse-

quence (LCS) distance (Paterson and Dan�cı́k, 1994), and Levenshtein distance (also known as edit distance)

(Yujian and Bo, 2007). Notably, LCS distance is a special case of Levenshtein distance. To extensively cover

all possible scenarios, the distance thresholds from one to five are enumerated for each distance metric,

resulting in 15 different definitions of DNA k-mer neighborhood NB.
RESULTS

DNA-Binding Intensity Correlation

Given the linear model complexities, for each DBD (D), the aforementioned LOOCV procedures are con-

ducted to obtain the predicted PBM k-spectrum profiles fPPðtÞ0
D jct%T˛Ng and compared with the actual

PBM k-spectrum profiles fPPðtÞ
D jct%T˛Ng where k = 8, following previous studies (Weirauch et al., 2013;

Wong et al., 2013; Zhao and Stormo, 2011; Chen et al., 2007). Spearman rank correlation coefficients are

computed for evaluations as depicted in Figure 3. It can be observed that the proposed approach performs

better than the previous approach in capturing DNA-binding intensities (Wong et al., 2015); for instance,

for most of the cases, it can achieve the correlation values well above 0.5 and up to 0.9. However, the pro-

posed approach cannot work very well with the bHLH and bZIP families partly due to their dimerization na-

ture. The bHLH family is especially the worst because its TFs are known for its structural dimer flexibility as
202 iScience 7, 198–211, September 28, 2018



Figure 4. Markov Random Field Network of the Hidden Variables for the bHLH Family When 100 Top k-mers Are Selected (M) for Modeling

Hamming distance threshold of one is adopted for sequence neighborhood connections while reverse complements are considered equivalent. The edge

betweenness community detection method has been adopted to segregate the Markov network into different communities for modularity maximization

(i.e., ‘‘cluster_edge_betweenness’’ function in R), as highlighted in different colors. The node sizes are proportional to the node degrees.
well as loose DNA-binding contacts, leading to diverse DNA motif instances that are difficult to be

captured (Ellenberger, 1994).

To investigate it further, the MRF networks of the hidden variables (i.e., the predicted PBM k-spectrum

profile variables) of the five DNA-binding families when the number of top k-mers (M) is 100 are

plotted in Figures 4 and S1–S4. The corresponding performance values are visualized in Figure 3. The

edge betweenness community detection method is applied to segregate each Markov network into

different communities for modularity maximization (i.e., the ‘‘cluster_edge_betweenness’’ function in R).
iScience 7, 198–211, September 28, 2018 203



Figure 5. Examples of Left-One-Out Cross-Validation Predictions on 1,000 Top k-mers Whose Neighborhood Is Defined Based on the Hamming

Distance Threshold of One

Each dot represents one k-mer. The evaluations are based on Spearman rank correlations (r). Random initialization shows the initial guess before the

iterations. The figures are drawn using R, where the red curves are local polynomial regression fittings with a = 2/3 and the p values are computed using

algorithm AS 89 (Best and Roberts, 1975). Additional examples are depicted in Figures S6–S8 for illustration purposes.

(A) ERG from ETS family.

(B) PROP1 from Homeodomain family.
Interestingly, based on the community structures, we can observe several characteristics and reasons for

the aforementioned family-specific performance difference. (1) The bHLH family has multiple disjoint

communities that impose difficulties in synergizing the sequence neighborhood information for binding

intensity correlation modeling. (2) The bZIP and Homeodomain families have multiple singleton commu-

nities that can isolate the related k-mers from other communities for network modeling. (3) The ETS and

Forkhead families have strongly overlapping communities that can boost sequence neighborhood infor-

mation for DNA motif recognition modeling.

Based on these observations, we may wonder whether we can improve the modeling performance by

increasing the number of DNA k-mers. In this study, the number of top DNA k-mers M is varied among

{100,200,300,500,1,000} as depicted in Figure S5. Interestingly, it can be observed that the proposed

approach can be improved with the increasing number of top k-mers, regardless of the DNA-binding family

type. It indicates that our MRF modeling can be scaled for improvement once rich k-mer information is

made available. Two left-out examples are shown in Figure 5. The first example concerns the DNA-binding

specificities of ERG, which is an oncogene related to hematopoiesis, whereas the second example

belongs to PROP1, which is responsible for hormone regulation. Additional examples are depicted in

Figures S6–S8.
DNA Motif Pattern Recognition

Given those top k-mers ranked, consistent with the previous study by Zhao and Stormo (Zhao and Stormo,

2011), we pick the top 25 scoring k-mers and compare themwith the previous studies’ top 25 k-mers (Wong

et al., 2015). In particular, for each left-out DBD instance, the literature procedures are followed to align the

top 25 scoring k-mers and build DNA motif matrices, which are then compared with the ground truth DNA

motif matrices in CIS-BP (v1.02) as indexed by the protein names (Weirauch et al., 2014). To quantify the

DNA motif matrix pattern similarities, the previously published motif matrix distance is adopted (Wong
204 iScience 7, 198–211, September 28, 2018



Figure 6. Complete DNA Motif Pattern Recognition Performance Comparisons under Different k-mer Neighborhood Settings

Distribution plots on the DNAmotif matrix distances (Wong et al., 2013) between the actual DNA motif matrices in CIS-BP (v1.02) (Weirauch et al., 2014) and

the predicted DNA motif matrices using the previous method (Wong et al., 2015) and the current method denoted in red and blue colors, respectively The

horizontal axis denotes different neighborhood distance metrics, whereas the vertical axis denotes different distance thresholds.
et al., 2013). All resultant DNA motif matrices are compared with the ground truth DNA motif matrices in

CIS-BP (v1.02) (Weirauch et al., 2014). The results are depicted in Figure 6.

From the figure, it can be observed that the motif distance distribution of our generated motifs are

skewed more toward the left side (zero side) than the previous approach (Wong et al., 2015); it indicates

that the DNA motif matrices generated by our approach are more similar to the ground truth DNA motif

matrices than those generated by the previous approach (Wong et al., 2015). In particular, if the k-mer

neighborhood is defined using the LCS distance, the DNA motif matrices are consistently similar to

the ground truth across different thresholds. It is important as the ground truth DNA motif matrices in

CIS-BP (v1.02) are built on both in vivo and in vitro technologies such as ChIP-seq, HT-SELEX, and

PBM. It can be observed that the DNA motif matrices generated in this study not only can capture the

in vitro DNA-binding specificities but also have the potential to infer in vivo DNA-binding specificities.

Examples are visualized in Figure 7. Additional examples are depicted in Figures S9–S12 for illustration

purposes.

Although the proposed approach has been extensively benchmarked across five DNA-binding families

(i.e., bHLH, bZIP, ETS, Forkhead, and Homeodomain), one may wonder about its performance compared
iScience 7, 198–211, September 28, 2018 205



Figure 7. Examples of DNA Motif Matrices Generated by the Previous Approach and Our Approach and the Actual DNA Motif Matrices as

Measured using PBM

The first two motif matrices are based on the left-one-out cross-validation predictions on 1,000 top k-mers whose neighborhood is defined based on the

Hamming distance threshold of one. All settings strictly follow the protocols established by Zhao and Stormo (Zhao and Stormo, 2011). Additional examples

are depicted in Figures S9–S11 for illustration purposes.

(A) HLH-30 from bHLH family.

(B) YAP3 from bZIP family.

(C) EHF from ETS family.

(D) FOXO3 from Forkhead family.
with the existing motif recognition modeling approaches. Therefore, the existing works on DNA motif

elucidation are surveyed. Unfortunately, most of the existing works are based on verified DNA sequences

(e.g., ChIP-seq, HiTS-FLIP, and DNase hypersensitivity data) (Wang et al., 2014; Khamis et al., 2018; Dai

et al., 2017). It is not fair to do the comparisons. On the other hand, the most related work is limited to a

specific DNA-binding family (i.e., homeodomain) (Pelossof et al., 2015). Therefore, the performance com-

parisons are conducted on the Homeodomain motif recognition tasks here.

Pelossof et al. have proposed an affinity regression approach to infer DNAmotifs from Homeodomain pro-

tein sequences (Pelossof et al., 2015). It is applied to generate and compare their DNA motifs against our

DNA motifs. All experimental settings follow the standard setting by Zhao and Stormo (Zhao and Stormo,

2011). The results are depicted in Figure 8. It can be observed that our approach can generate the Homeo-

domain motifs more similar to the CIS-BP motifs than the other approaches, demonstrating its competitive

edges. The comparison is significant as the Pelossof method already has 163 Homeodomain motif data for

model building, whereas our approach only has 19 Homeodomain motif data for model building under

LOOCVs. Some of the motif examples are depicted in Figure S13 for illustration purposes. Its success

can be attributed to the k-mer community segregation ability of the underlying MRF modeling as exempli-

fied in Figure S4, where you can see that the Homeodomain top k-mers are segregated into different com-

munities, consistent with the existing knowledge that the Homeodomain family members have indepen-

dently evolved into different subtypes for its DNA-binding specificity over the past years (Berger et al.,

2008).
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Figure 8. Homeodomain DNA Motif Pattern Recognition Performance Comparisons under Different k-mer Neighborhood Settings

Distribution plots on the Homeodomain DNA motif matrix distances (Wong et al., 2013) between the actual DNA motif matrices in CIS-BP (v1.02) (Weirauch

et al., 2014) and the predicted DNA motif matrices using the previous method (Wong et al., 2015), Pelossof method (Pelossof et al., 2015), and the current

method denoted in red, blue, and green colors, respectively. The horizontal axis denotes different neighborhood distance metrics, whereas the vertical axis

denotes different distance thresholds of the current method.
Single Nucleotide Variants on DNA Motifs

In the previous studies, significant efforts have been made and relied on DNAmotif matrices for regulatory

single nucleotide variant (rSNV) prioritization (Macintyre et al., 2010; Guo et al., 2013; Zeng et al., 2016) with

additional genomic information such as DNase accessibility and chromatin features (Shi et al., 2016; Li

et al., 2016) on TFBSs; for instance, atSNP was proposed to address the rSNV prioritization challenge

with ENCODE and JASPAR motif matrices (Zuo et al., 2015). SNP2TFBS was also built as an online resource

that can bridge the annotation gap between rSNV and the classic SNV databases based on existing motif

matrices automatically (Kumar et al., 2017). Unfortunately, motif matrices are well known for their position

independence assumption (Benos et al., 2002). Although several improvements in DNA motif modeling

have been proposed to address the issues (Mathelier andWasserman, 2013; Wong et al., 2013), the combi-

natorial space of the sequence context in DNA motif modeling remains computationally expensive to be

modeled around the rSNVs.

The current study offers a novel opportunity for us to quantify the effects of rSNVs on DNAmotifs, thanks to

its high-resolution k-spectrummodelingmethodology. Given an rSNV onDNAmotif instances known to be

bound by a family-specific TF, we can apply our model to compute the score difference between the
iScience 7, 198–211, September 28, 2018 207



Figure 9. Violin Plots on the k-mer Score Difference Distributions of the SNVs at Top-Ranked Motif Instances via Family-Specific Recognition Modeling

The observed SNVs are retrieved from the clinically verified dataset, ClinVar (version 20171029), whereas the DNA motif instances are ranked by TFBSTools

(Tan and Lenhard, 2016). Other settings are visualized in Figure S14.

(A) SNVs at top 5% motif instances.

(B) SNVs at top 10% motif instances.
reference sequence and its variant; for example, at Chr3: 38591950 (on Human Assembly GRCh37), an SNV

(rs972777761) has been reported where the reference adenine (A) is changed to guanine (G) (or thymine [T]

to cytosine [C] on the opposite strand). At the same time, we have also detected a surrounding motif

instance (AAGGAAGTG) as bound by the ELF1 protein from the ETS family between Chr3:38591945 and

Chr3:38591953. We can enumerate the reference k-mers and alternate k-mers surrounding the SNV, for

instance, the 8-mers AGGAAGTG and AGGAGGTG, and compute their score difference using the ETS

family model in our study. Since the scores represent k-mer binding intensities, the score difference and

its sign could quantify the DNA-binding effect of the candidate SNV for mechanistic prioritization. In this

case, our model returns �0.15, which indicates that the SNV could disrupt the DNA-binding affinity of

ELF1 and thus its downstream regulation.

To provide genome-wide insights, we have adopted the DNAmotifs generated in our previous section and

scanned the humane genome (GRCh37) using TFBSTools (Tan and Lenhard, 2016). In particular, we have

selected the advanced genome-wide phylogenetic footprinting function (i.e., ‘‘searchPairBSgenome’’ in

R) to improve the scanning performance by chaining the human genome (GRCh37) over the mouse

genome (mm10), taking advantage of evolutionary conservation (Wasserman and Sandelin, 2004).

Once scanned, we overlapped those motif instances with the clinically verified SNVs from ClinVar (version

20171029), resulting in 303,666 motif instances overlapping with known SNVs (Fisher’s exact test p value <

0.001). For each DNA-binding family, we focus on the top DNAmotif instances as ranked by TFBSTools (Tan

and Lenhard, 2016). The family-specific results with different top ranks are depicted in Figure 9. For

completeness, additional results with other parameter settings are depicted in Figure S14.

Interestingly, it can be observed that different DNA-binding families have strikingly different score differ-

ence distributions of observed SNVs from the clinically verified dataset, ClinVar (version 20171029). The

bHLH, ETS, and Forkhead families have the score difference distributions skewed toward negativity. It in-

dicates that the SNVs on the DNAmotif instances bound by the TFs from those three families usually act by

disrupting the corresponding protein-DNA binding interactions. In contrast, we observed the opposite

trend for the bZIP family. The trend is even more complicated for the Homeodomain family as we can

observe bimodal distributions for the SNVs on the DNA motif instances bound by its TFs, regardless of

the DNA motif instance ranks as observed from Figures 9 and S14. On the other hand, we also observe

that the clinically verified SNVs are more neutral than the possible SNVs on the DNA motif instances which

are yet to be observed, consistent with the previous finding that negative selection pressures have been

observed on DNA motif instances (Vorontsov et al., 2016).
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Figure 10. Single Nucleotide Variants (SNV) Prioritization on DNA Motifs according to ClinVar and TFBSTools

SNV prioritization performance comparisons based on area under receiver operating characteristics (ROCs) on Homeodomain motif rSNVs using the

previous method (Wong et al., 2015), Pelossof method (Pelossof et al., 2015), and the current method denoted in red, blue, and green colors, respectively.

(A) Bar chart details.

(B) Violin and boxplot summary.
To support the aforementioned insights, the SNVs overlapping with the Homeodomain motif instances are

extracted, resulting in 126,924 SNVs clinically verified in ClinVar (version 20171029). On the other hand, the

previous setting is followed to generate an equal number of random SNVs as the control. Therefore, it con-

stitutes a two-class SNV dataset (i.e., ClinVar versus control) for rSNV prioritization benchmark compari-

sons. The previous methods and the affinity regression approach (Pelossof et al., 2015) are run on those

SNVs for prioritization. The k-mer frequencies and its differences are computed to ascertain the signifi-

cance of each rSNV on those Homeodomain motif instances. The resultant areas under receiver operating

characteristics values on different motifs are depicted and summarized in Figure 10. It is not surprising that

different approaches have their own competitive edges on different DNA motifs for rSNV prioritization.

Therefore, we seek to summarize them in the second figure, where we can observe that our approach is

slightly better than the previous approaches as a whole. However, we note that we cannot ascertain any

statistical significance using hypothesis testing (i.e., t test and rank-sum test) here. It indicates that our

approach is comparable to the existing state-of-the-art approaches including the previous method pub-

lished in Nucleic Acids Research and the affinity regression method published in Nature Biotechnology.
DISCUSSION

DNAmotif recognitionmodelingoffersopportunities for us to inferDNAmotifs fromprotein sequences. Suchan

approach is not only applicable in the cases in which the direct evidences are unavailable but also holds promise

for us to understand the DNA-binding specificities from the first principle on the protein side.

The proposed approach directly addressed such issues at the unprecedented resolution based on the k-spec-

trumMRF modeling. It has been extensively benchmarked on millions of k-mer binding intensities from 92 TFs

across 5 DNA-binding families bHLH, bZIP, ETS, Forkhead, and Homeodomain, as tabulated in Table S1.

The DNA-binding intensity correlation results demonstrate that the proposed approach is robust against

different numbers of top k-mers. In particular, it can be scaled and keeps improving with increasing k-mers.

The DNA motif pattern recognition results also reveal that it can capture not only the in vitro patterns but

also the in vivo patterns in CIS-BP (v1.02). Last, the DNAmotif patterns have been overlapped with the clinically

verified SNVs, revealing genome-wide insights into the DNA-binding mechanisms across five DNA-binding

families. Thanks to the underlying formulation, themodels also have the potential to predict the deleteriousness

of unobserved SNVs for the DNA-binding specificities of TFs. It is especially important to uncover unobserved

deleterious SNVs as the current studies estimated that, even if we have 500,000 sequenced individuals, we can

only observe 12% of all possible SNVs under the protein-coding variant subset (Zou et al., 2016). Therefore, our

approaches should be promising based on the first principle in the near future.
iScience 7, 198–211, September 28, 2018 209



As the future works, one may be interested in integrating the existing DNA shape data into the modeling

process (Yang et al., 2013). However, it is subject to data availability as well as reliability since the current

DNA shape data are mostly computationally predicted (Zhou et al., 2013) and may not be applicable to our

DNA-binding specificity studies (Rossi et al., 2017).

Limitation of Study

The current study is limited to five DNA-binding families: bHLH, bZIP, ETS, Forkhead, and Homeodomain

because of data availability. In the future, it should be extended to other families such as zinc finger. In addi-

tion, the study can be benchmarked with longer k-mers than the current ones. TheMarkov assumption here

can be investigated further under different Markov orders.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Transparent Methods, 14 figures, 1 table, and 1 data file and can be

found with this article online at https://doi.org/10.1016/j.isci.2018.09.003.
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S1 Supplementary Information

S1.1 Transparent Methods

The computer programs for generating the draft k-spectrum profile are implemented in
JAVA. The computer programs for the Markov random field modeling are implemented
in R. The library and package dependencies are explicitly stated in the programs. The
source code and data are freely available for open reproducibility at Supplemental Data
or http://bioinfo.cs.cityu.edu.hk/MotifMRF.htm.

S1.2 Supplemental Data

Supplemental Data is available online.

Data S1: Source code and example data, Related to Figure 1.
The programs for k-spectrum profiling are implemented in JAVA while the programs for
Markov random field modeling are implemented in R.

S1.3 Supplemental Figures and Tables

Supplemental Figures and Tables are listed below.
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Family UniPROBE ID Protein Name Family UniPROBE ID Protein Name

bHLH UP00050 BHLHB2 ETS UP00418 ETV6
bHLH UP00324 TYE7 ETS UP00419 SPIC
bHLH UP00332 PHO4 ETS UP00420 ELK3
bHLH UP00356 RTG3 ETS UP00421 ETV1
bHLH UP00357 HLH-11 ETS UP00422 ETV3
bHLH UP00358 HLH-10 ETS UP01363 ELF1
bHLH UP00364 HLH-27 Forkhead UP00025 FOXK1
bHLH UP00365 HLH-30 Forkhead UP00039 FOXJ3
bHLH UP00367 MXL-3 Forkhead UP00041 FOXJ1
bHLH UP00368 HLH-29 Forkhead UP00061 FOXL1
bHLH UP00370 HLH-26 Forkhead UP00073 FOXA2
bHLH UP00379 HLH-3 Forkhead UP00303 FHL1
bHLH UP00383 REF-1 Forkhead UP00312 FKH2
bHLH UP00384 HLH-2 Forkhead UP00353 FKH1
bHLH UP00386 HLH-25 Forkhead UP00521 FOXN2
bHLH UP00387 HLH-1 Forkhead UP00522 FOXN4
bZIP UP00020 ATF1 Forkhead UP00523 FOXR1
bZIP UP00285 GCN4 Forkhead UP00526 FOXN1
bZIP UP00316 YAP6 Forkhead UP00528 FOXM1
bZIP UP00327 YAP1 Forkhead UP00589 FOXC1
bZIP UP00426 JUN Forkhead UP01365 FOXA3
bZIP UP00453 CAD1 Forkhead UP01366 FOXB1
bZIP UP00454 CIN5 Forkhead UP01367 FOXC2
bZIP UP00455 CST6 Forkhead UP01368 FOXG1
bZIP UP00457 HAC1 Forkhead UP01369 FOXJ2
bZIP UP00464 SKO1 Forkhead UP01371 FOXO3
bZIP UP00473 YAP3 Homeodomain UP00584 ARX
bZIP UP01354 ATF3 Homeodomain UP00586 CRX
bZIP UP01356 CEBPA Homeodomain UP00588 ESX1
bZIP UP01357 CEBPB Homeodomain UP00594 HESX1
bZIP UP01359 DBP Homeodomain UP00595 HOXB7
bZIP UP01402 TEF Homeodomain UP00596 HOXC4
bZIP UP01403 XBP1 Homeodomain UP00597 HOXD13
ETS UP00015 EHF Homeodomain UP00598 ISX
ETS UP00038 SPDEF Homeodomain UP00603 MSX2
ETS UP00085 SFPI1 Homeodomain UP00604 NKX2-5
ETS UP00090 ELF3 Homeodomain UP00605 NKX2-8
ETS UP00404 ELF2 Homeodomain UP00613 PBX4
ETS UP00409 ELF5 Homeodomain UP00614 PHOX2B
ETS UP00410 ELK1 Homeodomain UP00615 PITX2
ETS UP00411 ERG Homeodomain UP00619 PROP1
ETS UP00412 ETV5 Homeodomain UP00620 SIX6
ETS UP00413 ELF4 Homeodomain UP00623 VAX2
ETS UP00414 ETS1 Homeodomain UP00624 VENTX
ETS UP00416 FLI1 Homeodomain UP00625 VSX1
ETS UP00417 ETV4 Homeodomain UP00626 VSX2

Table S1 List of Protein Binding Microarray (PBM) data as available and
retrieved from UniPROBE in Oct 2017, related to Figure 1.
The family column indicates the DNA-binding domain families.
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Figure S1 Markov random field network of the hidden variables for the bZIP
family when 100 top k-mers are selected (M) for modeling, related
to Figure 4
Hamming distance threshold of one is adopted for sequence neighborhood
connections while reverse complements are considered equivalent. The edge
betweenness community detection method has been adopted to segregate the
Markov network into different communities for modularity maximization (i.e.
’cluster edge betweenness’ function in R) as highlighted in different colours.
The node sizes are proportional to the node degrees.
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Figure S2 Markov random field network of the hidden variables for the Ets
family when 100 top k-mers are selected (M) for modeling, related
to Figure 4
Hamming distance threshold of one is adopted for sequence neighborhood
connections while reverse complements are considered equivalent. The edge
betweenness community detection method has been adopted to segregate the
Markov network into different communities for modularity maximization (i.e.
’cluster edge betweenness’ function in R) as highlighted in different colours.
The node sizes are proportional to the node degrees.
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Figure S3 Markov random field network of the hidden variables for the Fork-
head family when 100 top k-mers are selected (M) for modeling,
related to Figure 4
Hamming distance threshold of one is adopted for sequence neighborhood
connections while reverse complements are considered equivalent. The edge
betweenness community detection method has been adopted to segregate the
Markov network into different communities for modularity maximization (i.e.
’cluster edge betweenness’ function in R) as highlighted in different colours.
The node sizes are proportional to the node degrees.
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Figure S4 Markov random field network of the hidden variables for the
Homeodomain family when 100 top k-mers are selected (M) for
modeling, related to Figure 4
Hamming distance threshold of one is adopted for sequence neighborhood
connections while reverse complements are considered equivalent. The edge
betweenness community detection method has been adopted to segregate the
Markov network into different communities for modularity maximization (i.e.
’cluster edge betweenness’ function in R) as highlighted in different colours.
The node sizes are proportional to the node degrees.

24



Figure S5 Box plots on the Spearman rank correlations between the actual
binding intensities of k-mers and the predicted binding intensities
of k-mers against different number of k-mers using the current
method, related to Figure 2
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(a) HLH-25 from bHLH Family (b) CST6 from bZIP Family

(c) ERG from ETS Family (d) FOXJ1 from Forkhead Family

Figure S6 Examples of left-one-out cross-validation predictions on 1000 top
k-mers which neighborhood is defined based on the Hamming dis-
tance threshold of one, related to Figure 5
Each dot represents one k-mer. The evaluations are based on Spearman
rank correlations (r). Random initialization shows the initial guess before
the iterations. The figures are drawn using R where the red curves are local
polynomial regression fittings with α = 2/3 and the p-values are computed
using algorithm AS 89 (Best and Roberts, 1975).
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(a) HLH-26 from bHLH Family (b) JUN from bZIP Family

(c) FOXG1 from Forkhead Family (d) VSX2 from Homeodomain Family

Figure S7 Examples of left-one-out cross-validation predictions on 1000 top
k-mers which neighborhood is defined based on the longest com-
mon subsequence (LCS) distance threshold of one, related to Fig-
ure 5
Each dot represents one k-mer. The evaluations are based on Spearman
rank correlations (r). Random initialization shows the initial guess before
the iterations. The figures are drawn using R where the red curves are local
polynomial regression fittings with α = 2/3 and the p-values are computed
using algorithm AS 89 (Best and Roberts, 1975).
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(a) HLH-3 from bHLH Family (b) CST6 from bZIP Family

(c) FOXJ1 from Forkhead Family (d) MSX2 from Homeodomain Family

Figure S8 Examples of left-one-out cross-validation predictions on 1000 top
k-mers which neighborhood is defined based on the Levenshtein
distance threshold of one, related to Figure 5
Each dot represents one k-mer. The evaluations are based on Spearman
rank correlations (r). Random initialization shows the initial guess before
the iterations. The figures are drawn using R where the red curves are local
polynomial regression fittings with α = 2/3 and the p-values are computed
using algorithm AS 89 (Best and Roberts, 1975).
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(a) TYE7 from bHLH Family (b) XBP1 from bZIP Family

(c) FLI1 from ETS Family (d) MSX2 from Homeodomain Family

Figure S9 Examples of DNA motif matrices generated by the previous ap-
proach (Wong et al., 2015), our approach, and the actual DNA mo-
tif matrices as measured using PBM (Robasky and Bulyk, 2011),
related to Figure 7
The first two motif matrices are based on the left-one-out cross-validation
predictions on 1000 top k-mers which neighborhood is defined based on the
LCS distance threshold of one. All settings strictly follow the protocols
established by Zhao and Stormo (Zhao and Stormo, 2011).
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(a) HLH-29 from bHLH Family (b) EHF from ETS Family

(c) FOXK1 from Forkhead Family (d) MSX2 from Homeodomain Family

Figure S10 Examples of DNA motif matrices generated by the previous ap-
proach (Wong et al., 2015), our approach, and the actual DNA
motif matrices as measured using PBM (Robasky and Bulyk,
2011), related to Figure 7
The first two motif matrices are based on the left-one-out cross-validation
predictions on 1000 top k-mers which neighborhood is defined based on
the Levenshtein distance threshold of one. All settings strictly follow the
protocols established by Zhao and Stormo (Zhao and Stormo, 2011).
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(a) RTG3 from bHLH Family (b) EHF from ETS Family

(c) FOXN4 from Forkhead Family (d) PROP1 from Homeodomain Family

Figure S11 Examples of DNA motif matrices generated by the previous ap-
proach (Wong et al., 2015), our approach, and the actual DNA
motif matrices as measured using PBM (Robasky and Bulyk,
2011), related to Figure 7
The first two motif matrices are based on the left-one-out cross-validation
predictions on 1000 top k-mers which neighborhood is defined based on
the hamming distance threshold of two. All settings strictly follow the
protocols established by Zhao and Stormo (Zhao and Stormo, 2011).
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(a) RTG3 from bHLH Family (b) SPIC from ETS Family

(c) FKH2 from Forkhead Family (d) ARX from Homeodomain Family

Figure S12 Examples of DNA motif matrices generated by the previous ap-
proach (Wong et al., 2015), our approach, and the actual DNA
motif matrices as measured using PBM (Robasky and Bulyk,
2011), related to Figure 7
The first two motif matrices are based on the left-one-out cross-validation
predictions on 1000 top k-mers which neighborhood is defined based on
the hamming distance threshold of three. All settings strictly follow the
protocols established by Zhao and Stormo (Zhao and Stormo, 2011).
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(a) ESX1 from Homeodomain Family (b) PHOX2B from Homeodomain Family

(c) PITX2 from Homeodomain Family (d) SIX6 from Homeodomain Family

Figure S13 Examples of Homeodomain DNA motif matrices generated by
the previous approach (Wong et al., 2015), Pelossof method
(Pelossof et al., 2015), our approach, and the actual DNA motif
matrices as measured using PBM (Robasky and Bulyk, 2011),
related to Figure 7
The first and third motif matrices are based on the 1000 top k-mers which
neighborhood is defined based on the Hamming distance threshold of two.
The second motif matrix is generated based on (Pelossof et al., 2015). All
settings strictly follow the protocols established by Zhao and Stormo (Zhao
and Stormo, 2011).
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(a) SNVs at Top 20% Motif Instances (b) SNVs at Top 30% Motif Instances

(c) SNVs at Top 50% Motif Instances (d) SNVs at All Motif Instances

Figure S14 Violin plots on the k-mer score difference distributions of the
SNVs at top-ranked motif instances via family-specific recogni-
tion modeling, related to Figure 9
The observed SNVs are retrieved from the clinically verified dataset, Clin-
Var (version 20171029), while the DNA motif instances are ranked by TF-
BStools (Tan and Lenhard, 2016).
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