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A key question in nuclear RNA surveillance is how target

RNAs are recognized. To address this, we identified in vivo

binding sites for nuclear RNA surveillance factors,

Nrd1, Nab3 and the Trf4/5–Air1/2–Mtr4 polyadenylation

(TRAMP) complex poly(A) polymerase Trf4, by UV cross-

linking. Hit clusters were reproducibly found over known

binding sites on small nucleolar RNAs (snoRNAs), pre-

mRNAs and cryptic, unstable non-protein-coding RNAs

(ncRNAs) (‘CUTs’), along with B642 predicted long anti-

sense ncRNAs (asRNAs), B178 intergenic ncRNAs and,

surprisingly, B1384 mRNAs. Five putative asRNAs tested

were confirmed to exist and were stabilized by loss of

Nrd1, Nab3 or Trf4. Mapping of micro-deletions and sub-

stitutions allowed clear definition of preferred, in vivo

Nab3 and Nrd1 binding sites. Nrd1 and Nab3 were believed

to be Pol II specific but, unexpectedly, bound many oli-

goadenylated Pol III transcripts, predominately pre-tRNAs.

Depletion of Nrd1 or Nab3 stabilized tested Pol III tran-

scripts and their oligoadenylation was dependent on

Nrd1–Nab3 and TRAMP. Surveillance targets were en-

riched for non-encoded A-rich tails. These were generally

very short (1–5 nt), potentially explaining why adenyla-

tion destabilizes these RNAs while stabilizing mRNAs

with long poly(A) tails.

The EMBO Journal (2011) 30, 1790–1803. doi:10.1038/

emboj.2011.97; Published online 1 April 2011

Subject Categories: chromatin & transcription; RNA

Keywords: RNA degradation; RNA processing; RNA surveil-

lance; yeast, RNP structure

Introduction

Quality control of RNA processing and nuclear surveillance

of aberrant RNAs are integral features of eukaryotic gene

expression. The exosome is a conserved complex with

endonuclease and 30 exonuclease activities, which functions

together with a set of cofactors to degrade many types of

defective transcript as well as processing the 30 ends of

stable RNAs (reviewed by Houseley and Tollervey, 2009).

Characterized nuclear cofactors include the Trf4/5–Air1/2–

Mtr4 polyadenylation (TRAMP) complexes and the Nrd1–

Nab3 RNA-binding heterodimer. The TRAMP complexes con-

tain three proteins; a poly(A) polymerase (either Trf4 or Trf5),

the DExH-box helicase Mtr4 and a zinc-knuckle protein

(either Air1 or Air2) (LaCava et al, 2005; Vanacova et al,

2005; Wyers et al, 2005). Analyses of strains lacking Trf4 or

Trf5 show that they have partially overlapping functions, but

Trf4 appears to have the major role in nuclear surveillance

(reviewed by Houseley and Tollervey, 2009). Adenylation by

the TRAMP complexes promote exosome-mediated degrada-

tion, in contrast to the role of poly(A) addition in promoting

mRNA stability and translation. This distinction was pro-

posed to derive from the lower processivity observed in vitro

for Trf4/5, compared with the mRNA poly(A) polymerase

(LaCava et al, 2005) but the actual lengths of tails added by

TRAMP in vivo was unclear.

The Nrd1–Nab3 complex participates in transcription termi-

nation on RNA polymerase II transcribed small nucleolar RNAs

(snoRNAs), cryptic unstable intergenic transcripts (CUTs) and

some mRNAs (Steinmetz et al, 2001; Thiebaut et al, 2006; Arigo

et al, 2006a, b; Carroll et al, 2007; Rondon et al, 2009; Kim et al,

2010). Nrd1–Nab3 termination is also proposed to be available

to all mRNAs transcripts as an alternative pathway (Rondon

et al, 2009). Nrd1 binds directly to the Ser5/Ser7 phosphory-

lated C-terminal domain (CTD) of the large subunit of Pol II

(Gudipati et al, 2008; Vasiljeva et al, 2008; Kim et al, 2010). This

suggested that their direct role in termination is restricted to

short transcripts, since phosphorylation at Ser5/Ser7 is gener-

ally replaced by Ser2 during elongation (Komarnitsky et al,

2000; Schroeder et al, 2000; Egloff et al, 2007). In addition,

Nrd1–Nab3 act as exosome cofactors, promoting degradation of

CUTs and 30 processing of precursors to snoRNAs (Arigo et al,

2006b; Thiebaut et al, 2006; Vasiljeva and Buratowski, 2006;

Grzechnik and Kufel, 2008).

Pol II ChIP and microarray data have identified many non-

protein-coding RNAs (ncRNAs), including CUTs and stable

unannotated transcripts (SUTs) (David et al, 2006; Steinmetz

et al, 2006). Moreover, the promoter regions of protein-coding

genes generate short, bidirectional, promoter-associated RNAs

(PARs) (Neil et al, 2009; Xu et al, 2009; Churchman and

Weissman, 2011). Genome-wide tiling arrays and nucleosome

position analyses indicate that Pol II can initiate wherever DNA

is accessible. Accumulation of the resulting transcripts is, how-

ever, greatly limited by the surveillance machinery, which acts

as the gatekeeper of the transcriptome.

RNA Pol III transcribes tRNAs, 5S rRNA and many other

small stable RNAs. Surveillance of the processing and modi-

fication of at least some Pol III transcribed RNAs involves
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TRAMP and the exosome (Kadaba et al, 2004, 2006;

Vanacova et al, 2005; Huang et al, 2006; Schneider et al,

2007; Wang et al, 2008), which are also key players in

surveillance of Pol I transcribed pre-rRNAs (Allmang et al,

2000; Dez et al, 2006; Wery et al, 2009). In contrast, the

known functions and associations of Nrd1–Nab3 suggested

that they were specific for Pol II transcripts.

Numerous studies have revealed specific targets for the

nuclear RNA surveillance machinery. However, general re-

cognition mechanisms that discriminate between functional

RNAs and aberrant transcripts remain elusive. In vivo UV

crosslinking is a powerful approach for the identification of

sites of RNA–protein interactions (Ule et al, 2003, 2005;

Granneman et al, 2009; Hafner et al, 2010). Here, we use a

UV crosslinking approach to identify RNAs bound by nuclear

RNA surveillance factors. High-throughput sequencing ana-

lysis of crosslinked RNAs revealed that the TRAMP complex

marks its targets with a short oligo(A) tail and that Nrd1–

Nab3 functions upstream of TRAMP and exosome in surveil-

lance of a wide range of previously unrecognized targets.

Results

Identification and validation of targets for surveillance

factors

In order to identify novel targets for the nuclear RNA sur-

veillance machinery, we applied an in vivo RNA–protein

crosslinking approach (CRAC) (Granneman et al, 2009) to

the RNA-binding proteins Nrd1, Nab3 and the polyA poly-

merase Trf4. Yeast strains were constructed expressing geno-

mically encoded, C-terminal tagged Nrd1–HTP, Nab3–HTP

and Trf4–HTP, respectively, expressed under the control of

the endogenous promoter. All three strains showed wild-type

(WT) growth rates, indicating that the fusion proteins were

functional. The trf4D strain is cs-lethal at 181C (Sadoff et al,

1995), and impairs growth at all temperatures. The cs-lethal

phenotype was fully complemented by the tagged construct

(Supplementary Figure S1A). To assess the expression levels

of the tagged proteins, lysates of strains expressing Nab3–

HTP and Trf4–HTP was treated with TEV protease and

western blotted using anti-Nab3 and anti-Trf4 antibodies,

respectively. Nab3–HTP was mildly overexpressed (B1.5-

fold) relative to the endogenous proteins, whereas Trf4 was

underexpressed (B3-fold). Antibodies raised against Nrd1

failed to give a clear result, but northern analyses revealed

that the mRNA was close to the WT levels (data not shown).

HTP-tagged versions of the Air1 and Air2 proteins, which

associate with Trf4 in the TRAMP complex, were also gener-

ated but failed to give usable crosslinking efficiencies (data

not shown).

Crosslinking was performed in these strains and a non-

tagged control strain in three biological replicates. RNA–

protein complexes were purified by two-step purification

and recovered RNAs were reverse transcribed. cDNA libraries

were initially analysed by cloning and Sanger sequencing.

Two independent data sets from each strain were further

analysed by Solexa sequencing (Supplementary Figure S1).

Solexa data sets were analysed separately and results shown

represent averages over both experiments, unless stated

otherwise. Graphs over single genomic locations are shown

for one representative experiment only. Notably, in each case

the low- and high-throughput data sets were similar in

distribution of targets and presence of oligo(A) tails. The

sequences recovered were assigned to genomic locations as

described (Granneman et al, 2009) and grouped into func-

tional categories (Figure 1A–E; Supplementary Figure S2).

For each of the tagged strains, 0.4–4.5 M sequence reads were

obtained and mapped to the genome. In contrast, only 23 K

reads could be mapped for the non-tagged control (see also

Supplementary data), largely corresponding to 25S rRNA

fragments that are common contaminants in CRAC analyses

(Supplementary Figure S1) (Granneman et al, 2009).

The ribosome synthesis factor Nop58 was used as positive

control; 71% of recovered sequences represented snoRNAs

and 22% rRNA, consistent with its known functions

(Granneman et al, 2009). The full data sets are available

from the authors.

In all data sets, the three factors tested were associated

with classes of RNA corresponding to known targets (Figure

1A–D). For Trf4–HTP, 50% of all sequences mapped to the

Pol I transcribed rDNA, consistent with the role of Trf4 in pre-

rRNA surveillance (Dez et al, 2006) and the degradation of

truncated fragments generated by transcriptional pausing and

R-loop formation in the 18S rRNA 50 region (El Hage et al,

2010). In contrast, pre-rRNAs were largely absent from the

Nrd1 and Nab3 data sets, despite their very high abundance

in total RNA. Other stable RNAs, snRNAs and snoRNAs, were

found in all data sets (Figure 1A–D), consistent with reported

roles for Nrd1–Nab3 in termination of their transcription

(Steinmetz et al, 2001) and surveillance by TRAMP

(Houalla et al, 2006; Grzechnik and Kufel, 2008). Many

non-coding, cryptic unstable transcripts (CUTs) were also

recovered, as anticipated. Unexpectedly, all low- and high-

throughput data sets contained numerous tRNAs, which were

not believed to be targets for surveillance by Nab3 or Nrd1,

with similar distributions in the low-throughput analyses

(data not shown).

Nab3 consistently showed higher crosslinking efficiency

and more hit clusters than Nrd1 (Supplementary Figures S1

and S2). Together with the better representation of Nab3

consensus sequences in the recovered fragments (below),

this suggests that Nab3 might be the primary RNA-binding

protein at many, but not all, target sites.

Surveillance targets carry A-rich, non-encoded tails

Oligoadenylation of RNAs by the TRAMP complex is an

important signal for degradation mediated by the exosome

(LaCava et al, 2005; Vanacova et al, 2005; Wyers et al, 2005).

cDNAs associated with Nrd1, Nab3 and Trf4 were compared

with the genomic sequence and analysed for the presence of

non-encoded, 30 residues. Non-encoded tails were initially

defined as any sequence located between the genome-

mapped and 30-linker-mapped fragments of reads (see

Supplementary data). As a control, we analysed a data set

obtained with the snoRNP protein Nop58 (Granneman et al,

2009).

A large majority of non-encoded tails identified were

oligo(A). In all Nab3, Nrd1 and Trf4 experiments, between

50 and 80% of non-encoded tails contained only A residues.

Manual analysis of the sequence data revealed that tails with

large numbers of non-A nucleotides could usually be ex-

plained by incorrect mapping of the reads. To improve

mapping quality, in the subsequent analyses we focused on

non-encoded tails with a maximum of 20% non-A residues.
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The number of adenylated reads recovered will under-

estimate the true association with oligo(A)þ RNA, since the

small fragments sequenced include the tail only when the

protein-binding site is located in very close vicinity. Despite

this, between 6 and 18% of Nrd1, Nab3 and Trf4 reads carried

three or more non-encoded, 30-terminal adenosine residues.

In contrast, Nop58–HTP recovered o1% of oligoadenylated

reads. This provides strong support for the recovery of bona

fide targets for the surveillance machinery (Figure 1F).

Analysis of non-encoded tails can provide an estimate of

the in vivo nucleotide specificity of the poly(A) polymerases

involved in RNA surveillance. The per-nucleotide frequencies

of non-A residues in non-encoded tails in Nab3, Nrd1 and

Trf4 experiments, were 2.5, 3.1 and 5.1%, respectively.

Among the non-A residues, between 54 and 81% were G,

15–36% were U and 4–14% were C, consistent with in vitro

measurements of the nucleotide specificity of Trf4 (LaCava

et al, 2005).

Analysis of the distribution of oligoA tail lengths allowing

up to 20% non-A nucleotides in the A-rich tails gave the

distribution of tail lengths shown in (Figure 1G; Supple-

mentary Figure S1F and G). The median tail length is between

3 and 5 nt. This was not simply due to the short read lengths

in the deep sequencing data, since oligoadenylated sequences

with a similar length distribution were also identified

by Sanger sequencing (data not shown). Moreover, the

RNA was fragmented with RNases AþT1, which do not cut

adjacent to As, so oligo(A) tails will remain intact. The

relatively small population of long-tailed RNAs presumably

give rise to the fractions previously identified as poly(A)þ by

oligo(dT) selection. Notably, this result implies that the RNAs

identified here as surveillance substrates would predomi-

nately be overlooked in microarray analyses that involve

oligo(dT) selection or priming for cDNA synthesis.

An outstanding question was how A tail addition by

TRAMP could target aberrant RNAs for degradation, while

mRNAs were stabilized by polyadenylation? These data

indicate that oligo(A) tails added by TRAMP are predomi-

nately too short to bind the canonical poly(A)-binding protein

Pab1, which stabilizes mRNAs and stimulates translation but

requires around A12 to bind (Sachs et al, 1987). Therefore, the

oligo(A) and A-rich tails are left unprotected and provide an

entry side for exonuclease degradation of the marked RNAs.

Identification of preferred binding motifs

During studies on snoRNA transcription, consensus-binding

motifs for Nrd1 and Nab3 were characterized in vitro and in

vivo (Carroll et al, 2004, 2007). We assessed the extent to

which these and other motifs are enriched among all RNAs

recovered with each protein. All motif analyses were per-

formed on reads with a 100% match in the genome. Figure 2A

shows the statistical overrepresentation scores for all possible

4 mers in the actual data set compared with a simulated

control data set (see Materials and methods). In the case of
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Trf4, this analysis failed to identify any clear consensus-

binding sites. Recovered sequences appeared to contain

fewer C nucleotides than expected (data not shown), suggest-

ing that overall nucleotide composition might contribute to

the affinity of Trf4 binding. Alternatively, multiple protein

cofactors might have the primary role in Trf4 recruitment to

its targets. For both Nab3 Solexa data sets, the previously

identified UCUU motif is the second most overrepresented

4 mer in the data set. Only a variant of this motif, CUUG,

scored higher, and 65% of reads contained one of these

motifs. Alignment of the top scoring k mers revealed that

UCUUG forms the core of preferred binding motifs for Nab3

(Supplementary Figure S1H). For Nrd1 the reported binding

motifs, GUAA and GUAG, were significantly overrepresented

in the sequencing data (Figure 2A), but other purine-rich

motifs such as UGGA and GAAA had higher scores. No single

4 mer was present in 430% of reads, indicating that the

presence of GUAA/G is not strictly required to recruit Nrd1 in

vivo. Similar findings were obtained from low-throughput

analyses, as around 60% of the Nab3 sequences contained

either UCUU or CUUG and for Nrd1 around 30% of all reads

contained GUAA/G or UGGA.

Nucleotide substitutions and deletions can identify precise

crosslinking sites (Ule et al, 2005; Granneman et al, 2009).

We therefore plotted the distribution of clusters of hits,

putative crosslinking-induced deletions and putative cross-

linking-induced substitutions in a 200-nt window around all

TCTT, CTTG, GTAA and GTAG motifs found in the genome

(Figure 2B–D). As expected, Nab3 hit clusters were enriched

in a relatively broad, 50 nt region around the TCTTand CTTG

sequences (Figure 2B). Strikingly, crosslinking-induced dele-

tions in Nab3 data were enriched 10-fold in a very narrow

region of 5–6 nt around the Nab3-binding motif (Figure 2C).

Crosslinking-induced substitutions were also strongly en-

riched around the Nab3 motif, although the main peak was

accompanied by a broad shoulder towards the 30 end of the

reads (Figure 2D). In contrast, the Nrd1 data showed a mild

decrease in signal over the Nab3 consensus sites. This is

consistent with binding as a heterodimer, in which Nab3

contacts the UCUU/CUUG motif. No peak of deletions or

substitutions was seen for Nrd1, indicating that the deletions

are genuinely caused by Nab3 crosslinking, rather than by an

increase of sequencing error rate or background crosslinking

efficiency near UCUU or CUUG motifs.
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An analysis of genomic GTAA and GTAG sequences,

previously identified as Nrd1-binding motifs, revealed at

most a weak enrichment of Nrd1 hit clusters (Figure 2B).

This is consistent with our finding that GUAA and GUAG are

not among the most strongly enriched 4 mers in the Nrd1 data

set. Despite this, deletions and substitutions in Nrd1 data

were strongly enriched in a 3-nt window around the Nrd1-

binding motifs (Figure 2C and D). No such enrichment could

be seen in the Nab3 data. This indicates that the analysis of

crosslinking-induced deletions and substitutions can greatly

aid the determination of in vivo specificity of RNA-binding

proteins and identify sites of direct protein–RNA interaction.

Characterization of known snoRNA and mRNA targets

Nrd1–Nab3 are involved in transcription termination and

coupled 30 processing of snoRNAs, snRNAs and some

mRNAs, whereas Nrd1–Nab3 plus TRAMP terminate and

degrade cryptic, unstable ncRNAs and the truncated Nrd1

mRNA (Steinmetz et al, 2001; Arigo et al, 2006a, b; Thiebaut

et al, 2006; Ciais et al, 2008; Grzechnik and Kufel, 2008;

Rondon et al, 2009). snoRNAs comprised B10% of Nrd1–

Nab3 targets and 2% of Trf4 hits (Figure 1A–D) in the Sanger

and both Solexa sequencing data sets.

Previous analyses of SNR13 identified two terminator

elements downstream of the 30 end of the snoRNA

(Steinmetz et al, 2001; Carroll et al, 2004). These include

consensus Nrd1 and Nab3 binding sequences and their

mutation leads to transcriptional read-through (Carroll et al,

2004). Pre-snR13 was bound by Nrd1 and Nab3, but also

interacted with Trf4. The majority of reads were mapped to

the downstream terminator elements, rather than the mature

snoRNA (Figures 1E and 3A; Supplementary Figure S3).

Nop58 crosslinked to snR13 and many other boxC/D

snoRNAs, but preferentially associated with the internal

boxD0 element, which is different from the preferred surveil-

lance factor binding sites (Figure 1E). Terminator I was

bound by both Nrd1 and Nab3, with the reads covering the

consensus-binding sequences (Figure 3A; Supplementary

Figure S3).

Analyses of micro-deletions revealed that Nab3 directly

binds the UCUU consensus motifs positioned 40 and 85 nt

downstream of snR13. For Nrd1 nucleotide substitutions in

and around a GUAG motif 50 nt downstream of snR13

(Supplementary Figure S3) also indicated sequence-specific

recognition.

Transcription termination on SNR3 is impaired in nrd1

mutants (Steinmetz et al, 2001) and Nrd1 and Nab3 cross-

linked to the 30 end of this snoRNA and in the flanking region

(Figure 3B). Multiple consensus Nab3 binding sites and fewer

Nrd1 sites are located in several short regions up to 300 nt

downstream of the mature 30 end. These regions were re-

covered with the respective proteins and presumably contain

the signals for Nrd1–Nab3-dependent snR3 termination/pro-

cessing. Specific association with consensus Nrd1 and Nab3

binding sites was also observed for other snoRNA genes (data

not shown), demonstrating the specificity of in vivo cross-

linking and providing a detailed view of Nrd1–Nab3-depen-

dent snoRNA terminator elements.

The 50 UTR and 50 coding region of NRD1 contain con-

sensus-binding sites for Nrd1 and Nab3, which autoregulate

NRD1 mRNA levels via premature transcription termination

(Steinmetz et al, 2001; Arigo et al, 2006a). Nrd1 and Nab3

recovered sequences from the 50 UTR and the 50 end of the

NRD1 ORF, including the consensus motifs (Figure 3C).

Previous analyses indicated that mRNAs from the CTH2

gene are generated by post-transcriptional processing from a

precursor that is 30 extended by B1.6 kb (Ciais et al, 2008).

Maturation involves recognition of the pre-mRNA by Nrd1–

Nab3 and subsequent 30 processing by TRAMP and the

exosome. Sequences associated with Nrd1, Nab3 and Trf4

were consistent with binding to the 30 extended pre-CTH2

RNA (Figure 3D). Nrd1 and Nab3 bound a cluster of pre-

viously predicted binding sites located at þ 900 relative to the

30 end of the ORF, supporting both the conclusions concern-

ing the processing pathway and the reliability of the CRAC

technique.

Identification of novel mRNA targets

In all data sets, a surprisingly large number of sequences

were mapped to mRNAs (19–31%). A few nuclear mRNA

transcripts were previously shown to be targets for Nrd1–

Nab3 binding and all known targets were recovered

(Figure 3).

For B1384 mRNAs, the sense strands were identified by

hit clusters in both Solexa data sets (Supplementary Figure

S2). In all data sets, hit clusters were distributed across the

entire coding sequence, (Supplementary Figure S3 and data

not shown) and are therefore unlikely to correspond to the

short, unstable, promoter-associated transcripts (PARs) pre-

viously detected in strains lacking TRAMP and exosome

activities (Wyers et al, 2005; Davis and Ares, 2006) or to

reflect the roles of Nrd1–Nab3 in failsafe transcription termi-

nation (Rondon et al, 2009). The oligo(A) tails recovered

were generally located at sites within the ORF, rather than at

the expected mRNA polyadenylation site (Supplementary

Figure S3), indicative of crosslinking to degradation inter-

mediates. The recovery of oligoadenylated fragments demon-

strates that hits recovered do not reflect non-specific binding

to intact mRNAs. Many well-expressed housekeeping genes

were not recovered in these analyses, including the compo-

nents of the exosome itself. Notably, the oligo(A) tail length

data indicate that RNAs identified here would not have been

included in most previous analyses. We conclude that nuclear

turnover of mRNA precursors is substantially more active

than previously believed.

Intergenic ncRNA targets

A large number of reads from each data set were mapped to

intergenic regions (unannotated and not overlapping with

any feature annotated in SGD) or were antisense to protein-

coding genes; 26% of all reads for Nrd1, 30% for Nab3 and

13% for Trf4 (Figure 1A–D). A number of CUTs were pre-

viously shown to be stabilized by loss of Trf4, Nrd1 or Nab3

(Wyers et al, 2005; Arigo et al, 2006b) and all CUTs pre-

viously characterized as surveillance targets contained clus-

ters of hits in the CRAC analyses. In addition, 178 other

intergenic regions were reproducibly identified by hit clus-

ters. The identification of these ncRNA confirms that they are

actively transcribed in WT cells, and are not only induced by

mutation of the surveillance machinery.

Characterized CUTs include the IGS1-R ncRNA, derived

from the intergenic spacer region of the rDNA repeat

(Kobayashi and Ganley, 2005; Houseley et al, 2007). IGS1-R
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was frequently recovered with Nrd1, Nab3 and Trf4

(Figure 3E; 41000 hits per million).

SRG1 is a ncRNA transcript that partially overlaps with the

promoter of the downstream gene SER3, which it represses

by nucleosome positioning (Martens et al, 2004, 2005;

Hainer et al, 2011). SRG1 is oligoadenylated and degraded

in the nucleus in a Nrd1–Nab3/TRAMP/exosome-dependent

manner or in the cytoplasm by the 50 exonuclease Xrn1 after
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decapping (Arigo et al, 2006b; Thiebaut et al, 2006;

Thompson and Parker, 2007). We found Nrd1, Nab3 and

Trf4 associated with SRG1 ncRNA but not significantly with

the downstream SER3 mRNA (Figure 3F).

Numerous long antisense RNAs are targets for

Nrd1–Nab3, TRAMP and the exosome

A small number of asRNAs have been functionally analysed

and shown to participate in regulating the expression of

cognate sense mRNA (Camblong et al, 2007). In the GAL

cluster, a 4.0-kb long ncRNA (GAL10as) is expressed when

transcription of the GAL10 mRNA is repressed by glucose

(Houseley et al, 2008; Pinskaya et al, 2009). GAL10as is

subject to TRAMP-dependent degradation and present at

only 0.07 copies per cell (i.e. about one cell in 13 has a

copy of the RNA at steady state) (Houseley et al, 2008).

Despite this low abundance, we were readily able to detect

the association of GAL10as with Trf4, Nrd1 and Nab3 in all

Solexa data sets (Supplementary Figure S4). Depletion of

Nrd1 or Nab3 increased the level of the GAL10as (data not

shown), confirming that it is indeed a target. We conclude

that the CRAC technique can identify even low abundance

targets of the surveillance machinery. Around 642 other

putative transcripts that lie antisense to protein-coding

genes (asRNAs) were reproducibly identified by hit clusters

(Supplementary Figure S2).

To determine whether these putative novel asRNAs

were actually present and subject to surveillance, selected

candidates were examined in detail. Transcription start

sites (TSSs) were mapped for the asRNAs CAF17as and

HPF1as by 50 RACE in trf4D and WT strains (Figure 4A and

B; Supplementary Figure S4). For CAF17as two TSSs were

identified, one lying 10 nt upstream and one 10 nt down-

stream of the stop codon of the corresponding mRNA. The

TSS for HPF1as is located 265 nt downstream of the mRNA

stop codon. Strong asRNA accumulation was seen in strains

depleted for Nrd1 or Nab3, lacking the nuclear exosome

component Rrp6 or lacking Trf4, but not in strains lacking

the homologous poly(A) polymerase Trf5 (Figure 4C and D).

The same strains accumulated three other asRNAs tested;

DBP2as, MAL32as and PCH2as (data not shown). All asRNAs

detected were long (0.5–8 kb) but notably heterogeneous in

size, with multiple bands being visible by northern hybridi-

zation. Heterogeneity was also observed for previously ana-

lysed asRNAs and intergenic RNAs (Arigo et al, 2006b;

Thiebaut et al, 2006) and may be a common feature of

yeast ncRNAs.

The major northern bands for CAF1as and HPF1as ob-

served in trf4D and rrp6D strains and weakly in the WT were

shorter than in strains depleted for Nrd1 or Nab3. This would

be consistent with a role for Nrd1 and Nab3 in transcription

termination on these asRNAs, with the longer RNAs repre-

senting read-through products.

Analyses using genome-wide tilling arrays (Xu et al, 2009)

grouped ncRNAs into CUTs (both intergenic and antisense),

which accumulate in strains lacking the non-essential exo-

some component Rrp6 and SUTs that are unaffected by loss of

Rrp6. Comparison of the CRAC data sets with the CUTs and

SUTs revealed B266 CUTs and B150 SUTs that were repro-

ducibly identified by CRAC hit clusters (Supplementary

Figure S2). Notably, the averaged density of Nrd1 and Nab3

hits over all annotated CUTs was substantially higher than

over annotated SUTs, ORFs or intergenic regions in each of

the high-throughput data sets (Figure 5).

Nrd1 and Nab3 participate in surveillance of Pol III

transcripts

The most unexpected feature of the CRAC data was the

apparent association of Nrd1 and Nab3 with RNA Pol III

transcripts, which comprised 31% of Nrd1 and 17% of Nab3

hits over all low- and high-throughput data sets. Interactions

of TRAMP and the exosome with RNA Pol III transcripts were

previously shown for 30 truncated 5S rRNA (5S*) and under-

methylated tRNAiMet (Kadaba et al, 2004, 2006; Vanacova

et al, 2005; Schneider et al, 2007). In contrast, other defective

tRNAs tested were predominately 50 degraded by Rat1

(Chernyakov et al, 2008) and the roles of Nrd1–Nab3 were

suspected to be restricted to Pol II due to the interactions

between Nrd1 and the CTD region (Vasiljeva et al, 2008).

Nrd1, Nab3 and Trf4 were each most frequently associated

with 5S sequences that terminated between nucleotides 50

and 100. These often but not exclusively carried oligo(A)

tails, indicating that they represent degradation intermediates

(Supplementary Figure S5). In addition, oligoadenylated se-

quences were found at, and downstream of, the mature 30

end of 5S (Supplementary Figure S5), probably representing

precursors to the truncated species. 5S rRNA contains several

consensus Nrd1-binding motifs and sequencing data revealed

nucleotide substitution in the second, and deletions in the

fourth GUAA/G motif (deleted nucleotides underlined), in-

dicating direct Nrd1 binding at these positions. Nab3 and Trf4

also bound this region of 5S, with crosslinking to the fourth

GUAG motif (Nab3; deleted nucleotide underlined) and the

nucleotides downstream of the motif (Trf4; Supplementary

Figure S5). In vivo analysis did not reveal clear stabilization

of any distinct, truncated 5S species following depletion of

Nrd1, Nab3 or both (data not shown). This may reflect the

redundancy observed in many yeast RNA surveillance path-

ways (Houseley and Tollervey, 2009).

RPR1 encodes the RNA component of RNase P and is

transcribed by Pol III as a precursor containing a 50 leader

and 30 trailer, removal of which requires RNP assembly (see

Srisawat et al (2002) and references therein). CRAC revealed

association of Nab3 and Trf4 with the 50 leader and Nrd1 and

Trf4 with the 30 trailer of pre-RPR1 (Figure 6A–C). Sequences

recovered with Nrd1 and Trf4 did not contain the full 30 trailer

up to the transcription stop site but carried extensions with

non-encoded oligo(A) tails (Figure 6C). Trf4 and Nab3 bound

an overlapping set of sites within the mature RNA, which are

brought into proximity in the predicted secondary structure

(Figure 6B).

We predicted that defects during RNase P assembly in WT

cells lead to recognition of pre-RPR1 RNA by Nrd1–Nab3,

oligoadenylation by Trf4 and exosome degradation. To test

this hypothesis, poly(A)þ RNA from trf4D and strains de-

pleted of Nrd1 or Nab3 was analysed by northern hybridiza-

tion. Pre-RPR1 was detectably polyadenylated in WT cells

(Figure 6D), presumably reflecting normal surveillance activ-

ity. Polyadenylation was lost when Trf4 was absent (data not

shown) and following depletion of Nrd1 or Nab3 (Figure 6D).

The GALHnrd1 and GALHnab3 strains showed reduced

levels of pre-RPR1 in the poly(A)þ fraction, while RPR1

and pre-RPR1 RNA levels remained constant in the total

RNA of all tested strains, demonstrating that the primary
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defect is not in RPR1 processing. We conclude that Nrd1 and

Nab3 are required to recognize defective pre-RPR1 and to

recruit Trf4 to add an oligo(A) tail.

Pre-tRNAs are transcribed with a 50 leader and 30 trailer

and in some cases also contain introns. These are removed

during tRNA maturation, while the 30 CCA tail is added

and many base modifications are introduced. Nrd1, Nab3

and Trf4 were associated with many pre-tRNA fragments,

which generally contained introns (Figure 7A), 50 leaders

(Figure 7B) or 30 extensions (Figure 7C). Almost no tRNA

recovered carried the 30 CCA tail, whereas many retained

the 30 oligo(U) Pol III termination signal, followed by a non-

encoded oligo(A) tail, or just an oligo(A) tail following the

coding region (Figure 7D and data not shown). The recovery
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of many oligoadenylated RNAs that extend to the Pol III

terminator indicated that tRNA-like species detected in

CRAC analyses are derived from bona fide pre-tRNAs. In

the case of tRNAIle(AAU), which is reported to be edited

(Auxilien et al, 1996), the Nrd1 CRAC recovered only RNAs

that had failed to undergo editing of the anticodon loop (data

not shown). We conclude that the RNAs recovered were

predominately derived from pre-tRNA species rather than

mature tRNAs. Pre-tRNAs recovered with Nrd1–Nab3 gener-

ally carried consensus-binding motifs and mutations were

frequently found within and around the GUAA/G and UCUU/

CUUG sequences (underlined in Figure 7D and E), indicating

direct protein binding.

CRAC analyses of Nrd1 and Nab3 recovered many hits

on pre-tRNAArg(ACG)J, frequently with oligo(A) tails (Supple-

mentary Figure S6). Notably, tRNAArg(ACG) is encoded by a

multigene family but tRNAArg(ACG)J has two single-nucleotide

substitutions (A43G and A56G) relative to the five other genes.

Folding predictions indicate that these mutations are likely

to interfere with formation of the normal tRNA structure

(Supplementary Figure S6). The strongly preferential recov-

ery of tRNAArg(ACG)J relative to other isoforms indicates that

the misfolded pre-tRNA was targeted by Nrd1–Nab3 binding.
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Primer extension analysis revealed that the level of pre-

tRNAArg(ACG)J is similar to that of the other isoforms but the

corresponding mature tRNA could not be detected, support-

ing the selective surveillance of this species prior to pre-tRNA

processing (Supplementary Figure S6).

To confirm the participation of Nrd1–Nab3 in pre-tRNA

surveillance, depleted strains were analysed by northern

hybridization for pre-tRNAs identified in CRAC experiments

(Figure 7F and G). Accumulation of unspliced forms of five

pre-tRNAs tested was seen in strains depleted of Nrd1 and

Nab3, but no decrease in mature tRNA levels was observed

(Figure 7F). In contrast, metabolic depletion of the tRNA

splicing endouclease Sen34 lead to a stronger accumulation

of pre-tRNAs and loss of mature tRNA (Supplementary

Figure S6). To further test the possibility that the tRNAs

identified by CRAC represent spurious Pol II transcripts, we

analysed a nrd1 mutant, that is unable to interact with the

CTD (nrd1CIDD; Vasiljeva et al, 2008). In this mutant, levels

of mature and pre-tRNAs were unchanged (Figure 7F), in-

dicating that the observed effects of Nrd1 and Nab3 on tRNAs

are independent of their association with Pol II. The CRAC

analyses also identified 50 extended pre-tRNAs (Figure 7B

and E) and northern hybridization revealed that depletion

of Nab3 and, to a lesser extent Nrd1, increased the level

of 50 extended tRNAArg(UCU) (Figure 7G and H). These pheno-

types were not accompanied by loss of the mature tRNA,

indicating that the pre-tRNA accumulation does not reflect a

processing defect.

We conclude that pre-tRNAs with defects in folding or

maturation are bound by Nrd1–Nab3 and targeted to the

TRAMP–exosome degradation pathway.

Discussion

Our results provide a genome-wide view of the RNA popula-

tion that is targeted by the nuclear RNA surveillance system

in WTcells. Known substrates of the Nrd1–Nab3 and TRAMP

complexes were recovered including cryptic ncRNA tran-

scripts as well as defective RNAs generated by Pol I and Pol

II. The identification of the ncRNAs confirms that these are

actively transcribed in WT cells, and not solely produced in

response to deficient surveillance activities. These ncRNAs

included the GAL10as RNA, which is present at around one

molecule per 13 cells, supporting the sensitivity and relia-

bility of the technique. The unexpected recovery of Pol III

targets demonstrates that the roles of Nrd1 and Nab3 in

surveillance are not obligatorily dependent on association

with the CTD of RNA Pol II.

Nab3 showed a clear preference for targets that contained

the consensus-binding site previously identified (UCUU), or

closely related sequences (CUUG). Mapping of crosslinking-

induced micro-deletions and substitutions onto genomic se-

quences showed that their analysis can greatly enhance the

identification of direct, in vivo RNA-binding motifs. In the

case of Nrd1, enrichment of the previously identified binding

site (GUAA/G) in the recovered target sequences was modest,

but analysis of deletions clearly pin-pointed this motif as a

preferred in vivo binding site.

Many RNAs recovered carried non-templated oligo(A) or

A-rich tails that are characteristic of RNAs recognized and

targeted for degradation by TRAMP. A long-standing question

was how adenylation can stabilize mRNAs and promote

translation while inducing degradation of surveillance tar-

gets? This was resolved by the observation that surveillance

targets generally carried A3–A5. Poly(A) tails on mRNAs

associate with the poly(A)-binding protein (Pab1 in yeast),

which both stabilizes the mRNA and stimulates translation.

However, Pab1 requires a minimum binding site of BA12

(Sachs et al, 1987) and is therefore not expected to bind most

surveillance targets detected here. We cannot formally

exclude the possibility that surveillance substrates initially

have longer tails that are truncated to the observed lengths.

However, Jankowski and colleagues (personal communica-

tion) have observed that TRAMP preferentially adds A4 tails

when assayed in vitro, indicating that this is an intrinsic

property of the surveillance system. The frequency of non-A

residues in the non-encoded tails (B2.5–5%) is not consis-

tent with their addition by the canonical poly(A) polymerase,

but is broadly similar to other systems from Escherichia coli

to human cells (Deutscher, 2006; Slomovic et al, 2006;

West et al, 2006). The preference for inclusion G4U4C

is also consistent with the in vitro activity of Trf4 (LaCava

et al, 2005).

Recent analyses have revealed pervasive transcription.

A key question is, how the large numbers of ncRNAs can

be systematically distinguished from the complex mRNA

population? The finding that the averaged density of Nrd1

and Nab3 hits over all annotated CUTs (Xu et al, 2009)

was substantially higher than over annotated SUTs, ORFs or

intergenic regions in each of the high-throughput data sets,

strongly supports the idea that Nrd1–Nab3 binding constitu-

tes one general feature that targets ncRNAs to the exosome.

The tilling array and CRAC data sets each contained

transcripts that were not identified with the other approach

(Supplementary Figure S2). Predicted CUTs not recovered in

the CRAC analyses may be targeted for degradation by other

nuclear surveillance factors, several of which are known

(reviewed in Houseley and Tollervey, 2009). Conversely,

Figure 1G shows that most of the oligo(A) tails present on

RNA surveillance substrates are too short to be recovered by

oligo(dT) selection or to act as primers for oligo(dT) primed

cDNA synthesis. Since these are important steps in previous

microarray analyses, such RNAs will be poorly identified.

Transcription termination mediated by Nrd1–Nab3 on CUTs

and small stable RNAs was thought to be limited to short

transcripts due to the association of the complex with Ser5/

Ser7 phosphorylated CTD (Gudipati et al, 2008; Vasiljeva et al,

2008; Kim et al, 2010). However, depletion of either Nrd1 or

Nab3 caused a termination defect on the 5-kb HPF1as-RNA,

suggesting that Nrd1–Nab3 termination activity is not fully

dependent on Ser5 phosphorylation of the CTD.

CTD-independent activity of Nrd1–Nab3 in surveillance

was further shown by the recovery of oligoadenylated

pre-tRNAs and other Pol III transcripts. One concern

was that the tRNA-like RNAs might not arise from Pol III

transcription, but from spurious Pol II transcription through

the region. However, a nrd1 mutant, defective in CTD

association (nrd1CIDD) did not exhibit an accumulation of

pre-tRNAs, supporting the conclusion that the effect on Pol III

transcripts is Pol II independent. In addition, many oligoade-

nylated clones stopped at the Pol III terminator. More-

over, tRNAArg(ACG) is encoded by six genes; five of these

have identical tRNA sequences but one carries two single-

nucleotide substitutions. The CRAC analyses of Nrd1 and
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Nab3 preferentially recovered the altered pre-tRNA, freq-

uently with oligo(A) tails (Supplementary Figure S6). RNA-

folding algorithms predict that this RNA is unlikely to fold

into the correct tRNAArg structure, providing a clear rationale

for its targeting by the surveillance system. These differences

in folding would not, however, have been predicted to alter

the fate of a spurious RNA Pol II transcript.

Depletion of Nrd1 or Nab3 resulted in accumulation

of unspliced pre-tRNAs, but was not associated with loss

of mature tRNAs, indicating that it reflects pre-tRNA stabili-

zation rather than the inhibition of pre-tRNA splicing.

Mutations in NRD1 and NAB3 potentially cause transcription

read-through into SEN2, which encodes a pre-tRNA splicing

factor (Steinmetz et al, 2001). However, depletion of the tRNA

splicing endonuclease Sen34 leads to a different phenotype,

with strong pre-tRNA accumulation and loss of mature tRNAs

(Supplementary Figure S6), making it unlikely that Sen2

depletion underlies the nrd1/nab3 phenotypes. The precursor

to the RNA component of RNase P, pre-RPR1, was also bound

by Nrd1, Nab3 and Trf4. Analysis of poly(A)þ RNA revealed

that pre-RPR1 is polyadenylated by Trf4 and that this poly-

adenylation is strongly reduced in the absence of Nab3 or

Nrd1. This supports the model that Nrd1–Nab3 acts upstream

of TRAMP in recognizing defective Pol III transcripts and

targeting them for degradation by the exosome. RNA Pol III

transcribes very structured RNAs and we predict that

during normal transcription and folding, binding sites for

Nrd1–Nab3 are not exposed. Misfolding of the RNA, for

whatever reason, would make these sites available leading

to targeting for degradation. The recognition of tRNAArg

carrying point mutations predicted to alter its structure sup-

ports this model for structure-dependent targeting.

Together, our findings suggest a revised model of nuclear

RNA surveillance (Figure 8). Nrd1–Nab3 can bind the Pol II

CTD and nascent transcripts cotranscriptionally but also act

post-transcriptionally on Pol III RNAs. The TRAMP complex

is recruited to the defective RNA by the Nrd1–Nab3 complex,

which remains associated with the RNA through the process

of polyadenylation, until the exosome degrades the aberrant

transcript. Hit clusters and oligoadenylated fragments were

recovered at multiple sites on many transcripts, suggesting

that repeated rounds of surveillance factor binding and

oligo(A) addition may be needed for complete substrate

degradation. Budding yeast lacks the miRNA systems present

in most other eukaryotes analysed. The miRNAs are believed

to modestly reduce the expression of large numbers of genes,

with some stronger, more specific effects. A surprisingly large

number of mRNAs were targeted by the surveillance factors.

We speculate that nuclear surveillance similarly acts to

modulate the expression of many genes, in addition to

specifically targeting defective RNAs.

Materials and methods

Yeast strains and depletion experiments
Strains were constructed by standard methods (Gietz et al, 1992) and
are listed in Supplementary Table S1. For crosslinking experiments,
colonies from HTP-tagged strains were pre-grown overnight in YPD
(2% glucose), diluted to OD600 0.05 and grown to OD600 0.5 at 301C.
Plasmids used are listed in Supplementary Table S2. For RNA analysis,
cells were grown at 251C to OD600 0.2–0.6 in YPD. GAL strains for
depletion experiments were grown overnight to OD600 0.2–0.5 in
YPGalSuc (2% galactose, 1% sucrose), diluted to OD600 0.2 in YPD
and proteins were depleted for the indicated times.

Crosslinking and analysis of Solexa data
The CRAC method was performed as previously described (Granne-
man et al, 2009). Solexa sequencing data were aligned to the yeast
genome using NOVOALIGN (http://www.novocraft.com). A de-
tailed description of the bioinformatics analysis can be found in the
Supplementary data.

RNA preparation and northern hybridization
Yeast RNA extraction and northern blotting were performed as
described in Tollervey (1987). Details for generation and hybridiza-
tion of riboprobes can be found in the Supplementary data.
Poly(A)þ RNA was prepared using PolyA tract mRNA isolation
System IV (Promega) as amended by LaCava et al (2005). Northern
blots contained 10 mg total RNA (on 2% BPTE agarose gels and 8%
PAA, TBE, 8.3 M urea gels), or 2mg total RNA and 60mg polyAþ

RNA with respect to the input for polyAþ analyses. Hybridization
probes are listed in Supplementary Tables S3 and S4.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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Figure 8 Model for transcription termination and surveillance
mediated by the Nrd1–Nab3, TRAMP and exosome complexes.
(A) Nrd1–Nab3 interact with the CBC and CTD of Pol II to initiate
transcription termination through recognition of consensus-binding
motifs of sn(o)RNAs, CUTs and long ncRNAs. They subsequently
recruit TRAMP and exosome complexes for oligoadenylation and
degradation/processing. (B) Nrd1–Nab3 interact post-transcription-
ally with aberrant Pol III transcripts, recognizing consensus-binding
motifs or structural abnormalities in the RNA. They subsequently
recruit TRAMP and exosome complexes for oligoadenylation and
degradation.
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Boulay J, Régnault B, Devaux F, Namane A, Séraphin B, Libri
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