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Abstract

The functions of actin family members during development are poorly understood. To investigate the role of beta-actin in
mammalian development, a beta-actin knockout mouse model was used. Homozygous beta-actin knockout mice are lethal
at embryonic day (E)10.5. At E10.25 beta-actin knockout embryos are growth retarded and display a pale yolk sac and
embryo proper that is suggestive of altered erythropoiesis. Here we report that lack of beta-actin resulted in a block of
primitive and definitive hematopoietic development. Reduced levels of Gata2, were associated to this phenotype.
Consistently, ChIP analysis revealed multiple binding sites for beta-actin in the Gata2 promoter. Gata2 mRNA levels were
almost completely rescued by expression of an erythroid lineage restricted ROSA26-promotor based GATA2 transgene. As a
result, erythroid differentiation was restored and the knockout embryos showed significant improvement in yolk sac and
embryo vascularization. These results provide new molecular insights for a novel function of beta-actin in erythropoiesis by
modulating the expression levels of Gata2 in vivo.
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Introduction

Actins are highly conserved proteins among various species

throughout evolution [1]. The human genome has multiple

functional actin genes and more than twenty pseudogenes [2,3].

The expression patterns of vertebrate actins are temporally and

spatially regulated during development and in the adult organism,

suggesting different isoform specific functions [1,4]. The four

muscle-specific actins provide strength and contractility to muscle

cells. By contrast beta- and gamma-cytoplasmic actins (further

referred to as beta- and gamma-actin), that are coexpressed in all

adult non-muscle tissues [5] are thought to participate in more

dynamic actin cytoskeletal processes. Whereas gamma-actin seems

to be uniformly distributed in all actin-containing structures, beta-

actin seems to have a more polarized distribution, localized to the

cortex of cells, specifically functioning in protrusive structures such

as lamellipodia and filopodia [6,7,8,9].

In more recent cell work, actin was found localized in the

nucleus leading to the hypothesis that beta-actin could be

implicated in modulating transcriptional activity. Actin interacts

with all three RNA polymerases and beta-actin has been identified

as a component of different types of chromatin remodeling

complexes in a wide range of organisms [10]. In addition,

antibodies against beta-actin block transcription [11] and nuclear

translocation of beta-actin is involved in macrophage differenti-

ation [12]. Although these previous studies obviously demonstrate

a role for beta-actin in the nucleus, it is not clear if subsets of genes

are dependent on beta-actin function in the nucleus and whether

such mechanisms are important in instructing developmental

processes.

A wealth of information regarding function and localization of

actin isoforms was obtained from in vitro and ex vitro work, but

studies on their role in vivo and in particular during mouse

development, are lagging behind [13,14]. The alpha-skeletal

muscle actin knockout mouse and the alpha-cardiac muscle actin

knockout mouse die, respectively, postnatally and perinatally due

to muscle weakness [15,16]. The alpha-smooth muscle actin

knockout mice are viable but display cardiovascular defects [17].

Most gamma-actin knockout mice die within 48 hours after birth

due to respiratory failure [18]. Mice that survive display

progressive hearing loss. The embryonic lethality of the beta-actin

knockout mice at E10.5, in spite of compensatory upregulation of

other actins, suggests a lack of redundancy of actin functions at this

stage in development [19]. In view of these observations, the

functions of the cytoplasmic actins, and in particular of beta-actin,

during development have remained poorly understood.
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To contribute to knowledge on the function of beta-actin during

mouse development we further investigated the possible causes of

this early embryonic lethality by employing a heterozygous beta-

actin knockout mouse that was previously generated (Actb+/2) [19].

We observed a diminished number of primitive erythroid cells and

a paucity of well-organized blood islands that are the initial sites of

primitive erythroid and endothelial cell development. We show

that ablation of beta-actin expression during development

interferes with red blood cell (RBC) development, resulting in

reduced amounts of primitive and definitive erythroid cells in the

Actb2/2 embryos. Most strikingly, mRNA expression levels of

Gata2, a transcription factor involved in early hematopoiesis, was

dramatically decreased in yolk sacs of E8.5 Actb2/2 embryos.

Corroborating a role for beta-actin in Gata2 regulation, we could

show association of the beta-actin protein to the Gata2 promoter.

Further confirming a developmental link between beta-actin

function and Gata2 regulation, transgenic expression of Gata2

specifically within the erythroid lineage in these Actb2/2 embryos

partially rescued the observed phenotypes. Our findings therefore

support a novel function of beta-actin in modulating erythropoiesis

by fine-tuning Gata2 levels in the early developing mouse embryo.

Materials and Methods

Ethics Statement
The animal ethics committee of Ghent University approved all

experiments performed on mice. Approval number ECD10/29.

Mice
The generation of the Actb+/2 mice has been previously

described [19]. Actb+/2 mice were crossed to generate control

Actb+/+ embryos and Actb2/2 embryos. Genotyping was done by

fluorescent microscopy (positive for Actb+/2 and Actb2/2) followed

by western blotting with an antibody against beta-actin (to

distinguish Actb+/2 and Actb2/2). Mice were kept on an inbred

BALB/c background. Actb+/2 mice were crossed with Flk1-LacZ

mice [20] to generate double heterozygous knockouts. Genotyping

was done by fluorescent microscopy followed by a LacZ PCR.

Actb+/2 mice were crossed with EpoR-iCreTg/+ [21] mice and with

ROSA26-hGata2Tg/Tg [21] to generate the Actb2/2 R26+hGa-

ta2EpoR-iCre/+ rescue mice. Genotyping was done by fluorescent

microscopy followed by PCR.

Antibodies
Antibodies (Ab) used in this study are rat-anti-mouse PECAM-1

mAb (Clone CD31), biotin-conjugated rat-anti-mouse PECAM-1

mAb (clone CD31) and biotin-conjugated goat-anti-rat Ig specific

pAb, all from BD Pharmingen. ABC reagent (Vector Labs) was

used with the biotin-conjugated CD31 mAb, whereas the

Renaissance TSA Biotin System (PerkinElmer Life Sciences) was

used with the other Abs. Anti beta-actin mAb (clone AC-15), from

Sigma. Anti gamma-cytoplasmic actin pAb, from Millipore. Anti

gata2 pAb, from Abcam.

Paraffin histology
Dissected samples were fixed overnight in 4% paraformalde-

hyde at 4uC, processed for paraffin embedding, and sectioned at

6 mm. Sections were stained with hematoxylin and eosin (H&E).

Additional paraffin sections were used for immunohistochemistry

and immunofluorescence.

Immunohistochemistry
Immunohistochemistry on whole mount embryos was per-

formed as previously described [22]. Briefly, embryos were fixed in

MeOH:DMSO (4:1) overnight at 4uC, treated with MeOH:DM-

SO:H2O2 (4:1:1) for 5–10 hours at room temperature to block

endogenous peroxidase activity and stored in methanol at 220uC.

The embryos were subsequently rehydrated in 50% MeOH in

phosphate buffered saline PBS and incubated with the primary

antibody in 3% instant skim milk powder/0.1% Triton X-100 in

PBS (PBSMT) overnight at 4uC. Following washes in PBSMT for

5 hours at room temperature, embryos were incubated with the

ABC reagent, in PBSMT overnight at 4uC. Following washes in

PBSMT for 5 hours at room temperature and brief washes with

PBS with 0.1% Triton X-100, the embryos were developed with

3.3-diaminobenzidine tetrahydrochloride (DAB) (Vector laborato-

ries). The reaction was stopped by fixing the embryos in 4% PFA

in PBS at room temperature for 1 hour. Immunohistochemistry

on paraffin sections was done according to the protocol of the

Renaissance TSA Biotin System (NEL 700, PerkinElmer). LacZ

stainings were done according to manufacturer protocols (Milli-

pore).

Immunofluorescence
Immunofluorescence on paraffin sections started by deparaffi-

nization through ethanol series. Sections were microwaved in

0,01 M citrate buffer (pH 6.0) for 15 min at full power and

washed in PBS. Sections were blocked in 10% goat serum/1%

BSA in PBS for 1 hour at room temperature and incubated with

primary antibody in blocking solution overnight at 4uC. Following

four washes with PBS of each 30 min at room temperature,

sections were incubated with secondary antibody for 2 hours at

room temperature. Following four washes with PBS of each

15 min at room temperature, nuclei of cells were stained with

DAPI and sections were mounted with DABCO mounting

medium (Sigma-Aldrich).

Molecular analysis
Yolk Sacs (YS) were dissected at E8.5 and E10.25, or in case of

Actb2/2 R26+hGata2EpoR-iCre/+ at E10.25 and E11.5, flash-frozen

in liquid nitrogen, and processed according to standard protocols.

RNA was extracted with High Pure RNA isolation kit (Roche) and

precipitated overnight at 280uC or 1 hr on dry ice. cDNA was

synthesized with the transcriptor first strand cDNA synthesis kit

(Roche). Quantitative reverse-transcription-polymerase chain re-

action (qRT-PCR) was performed on a LightCycler 480 system

(Roche) using the SYBR Green Master kit (Roche). Gene

expression was normalized using glyceraldehyde 3-phosphate

dehydrogenase (Gapdh), ubiquitine C (Ubc), glucose-6-phosphate

dehydrogenase, (G6pdh) and hypoxanthin phosphoribosyl transfer-

ase 1 (Hprt1) as controls. Primers used are given in Table S1. The

expression levels of each gene are reported relative to those

observed in Actb+/+ control samples. For sampling and statistics see

below.

ChIP
Bone marrow cells were cross-linked in 1% formaldehyde for 10

minutes at room temperature and the reaction was stopped with

glycine (final concentration 0,125 M). Cells were lysed in the

presence of protease inhibitors and DNA was sonicated. For each

immunoprecipitation, 100 mg DNA was used together with 3 ml of

anti beta-actin mAb (clone AC-15, Sigma) or anti gamma-

cytoplasmic actin pAb (Millipore). Complexes were precipitated

with protein A and G Sepharose beads (GE Healthcare).

Formaldehyde cross-links were reversed by overnight incubation

at 65uC and DNA was purified using QIAquick PCR Purification

Kit (Qiagen). Matinspector was used to analyse amplicons for

DNA core consensus sites. Primers used are given in Table S2,

Absence of Beta-Actin Modulates Erythropoiesis
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including localization of the respectively amplicons on the Gata2

promotor.

In vitro hematopoietic progenitor assays
For primitive erythroid (EryP) colony assays were performed on

stage matched E8.5 whole embryos as previously described [21].

Definitive erythroid colony assays were performed on E9.75 yolk

sacs as previously described [21] using 1% methylcellulose

(StemCell Technologies) containing complete recombinant cyto-

kines (MethoCult GF M3434) for the detection and quantification

of burst forming unit-erythroid cells (BFU-E), colony forming unit-

granulocyte/macrophage (CFU-GM) and colony forming unit-

granulocyte/erythrocyte/monocyte/megakaryocyte (CFU-

GEMM). After 7 days colonies were scored under a microscope.

The results are expressed as a percentage of absolute number of

colonies per yolk sac of the Actb+/+ controls.

Imaging
Embryos were imaged on a Leica MS5 (Leica Microsystems)

stereomicroscope. Digital images were acquired using a Leica

camera. Section H&E staining and immunohistochemistry were

imaged using a SNAP-COOL camera (Roper Scientific) mounted

on an Olympus Bx51 microscope (Olympus), with Plan Olympus

206/0.40 or 406/0.65 lens and RSImage Version 1.9.2 software

(Roper Scientific).

Figure 1. Actb2/2 embryos are pale and growth retarded at E10.25. (A) Pictures of freshly dissected embryos at E10.25. Pale and growth
retarded Actb2/2 embryos show no obvious vascular pattern in the embryo proper (middle) or yolk sac (right) compared to the Actb+/+ littermates.
156magnification. (B) LacZ stainings of Actb+/+ and Actb2/2 yolk sac at E9.5 indicate reduced vascular branching complexity of Actb2/2 yolk sacs.
206magnification. (C) Whole mount PECAM-1 immunohistochemistry of Actb+/+ and Actb2/2 embryos, processed in parallel, shows less coloring,
indicating fewer endothelial cells and red blood cells. 156 magnification. Embryos were imaged on a Leica MS5 (Leica Microsystems)
stereomicroscope. Digital images were acquired using a Leica camera.
doi:10.1371/journal.pone.0067855.g001
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Statistical analysis
Data were expressed as mean plus or minus SEM. Comparison

between 2 data groups was done by the 2-sided Student t test. A

minimum of three biological replicates was used in each condition

for each genotype. Two technical replicates were used per

biological replicate.

Results

Yolk sac blood island development is affected in beta-
actin knockout embryos

To specifically address the role of beta-actin in development, a

beta-actin knockout mouse allele was used (Actb+/2). It was

previously shown that the homozygous beta-actin knockout mice

(Actb2/2) are lethal at E10.5 [19], however the exact cause of

lethality has not been investigated. At E8.5, no obvious

morphological differences between Actb+/+ and Actb2/2 embryos

could be observed (data not shown). One day later at E9.5 Actb2/2

embryos have an appropriate number of somites and were in that

aspect comparable in development to Actb+/+ littermates. Howev-

er, the Actb2/2 embryos display a visibly pale yolk sac and embryo

proper (Figure 1A). Yolk sacs of Actb+/+ embryos displayed large

RBC containing vessels, whereas no such vessels could be observed

in Actb2/2 yolk sacs. (Figure 1A). To study the branching pattern

of the vasculature in the yolk sac, Actb+/2 mice were crossed with

Flk1-LacZ mice [20]. Flk1 marks vascular and hematopoietic

progenitors and the Flk1-LacZ mice express a LacZ reporter under

control of the Flk1 promotor. It is therefore possible to monitor the

migration of hemangioblast progenitors from the primitive streak

towards the yolk sac and to study the vasculogenesis process. The

resulting E9.5 Actb2/2 Flk1-LacZ embryos displayed clearly

reduced vascular branching complexity in the yolk sac and

specifically in the head region of the embryo proper compared to

the Actb+/+ Flk1-LacZ littermates (Figure 1B). Especially the

remodeled large branched vessels, which are already prominent in

yolk sacs of Actb+/+ Flk1-LacZ embryos seemed to be absent in the

Actb2/2 Flk1-LacZ embryos. Rather the Actb2/2 yolk sacs still

contained the honeycomb-shaped capillary plexus (typical for E8.5

embryos), which did not reorganize into large branches, suggesting

a block in proper vasculo/angiogenesis development.

At E10.25, the Actb2/2 embryos were morphologically growth

retarded. In view of the impaired vascular development of the yolk

sac at E9.5 we performed PECAM-1 whole mount immunostain-

ing at E10.25 embryos. This analysis showed the presence of a

more weakly stained vasculature and therefore suggests diminished

numbers of endothelial cells in Actb2/2 embryos, similar to the

yolk sac vascular defects (Figure 1C). PECAM-1 immunostaining

on sections from E9.5 embryos demonstrated normal endocardial

and slightly abnormal intersomitic vessel development (Figure 2A

and data not shown).

More detailed analysis of yolk sacs of Actb2/2 embryos at E9.5

revealed enlarged blood islands harboring fewer RBCs compared

to wild type Actb+/+ yolk sacs (Figure 2B). At E10.25, routine H&E

staining and PECAM-1 immunohistochemistry revealed abnormal

vessel morphology and endothelial patterning in Actb2/2 yolk sacs

(Figure 2C-D). We conclude that blood island morphology is

largely impaired.

Absence of beta-actin modulates yolk sac erythropoiesis
As the embryo becomes larger, diffusion of oxygen is no longer

sufficient at E9.5. To accommodate the embryo proper with

sufficient oxygen, primitive erythropoiesis takes place before this

stage, enabling the production of a temporary wave of primitive

RBCs in the blood islands of the yolk sac. In view of the pale yolk

sacs of Actb2/2 embryos, suggesting reduced numbers of primitive

RBCs, we investigated if primitive erythropoiesis was affected.

Although there was no difference in the morphology of erythroid

progenitor (EryP) colonies, the number of colonies derived from

E8.5 Actb2/2 embryos was decreased by more than 90%

compared to Actb+/+ embryos (Figure 3A), a result that is

consistent with the low amount of RBCs observed in freshly

dissected embryos and sections (Figure 1–2).

The initial phase of primitive erythropoiesis is succeeded by

definitive embryonic erythropoiesis, and therefore we also

quantified definitive erythroid progenitors in vitro. Methylcellulose

assays conducted on E9.75 yolk sacs showed an 85% decrease of

BFU-E and 90% decrease of CFU-GM and CFU-GEMM colony

numbers in Actb2/2 embryos (Figure 3B). Again, the colonies

formed in methylcellulose did not morphologically differ from the

colonies of Actb+/+ littermates. These results demonstrate that

absence of beta-actin has negative effects on embryonic hemato-

poiesis.

Absence of primitive erythropoiesis in Actb2/2 embryos
correlates with reduced Gata2 expression

To correlate these effects on embryonic erythropoiesis in the

Actb2/2 embryos with molecular alterations of known transcrip-

tional modulators that play important roles in erythropoiesis, we

performed qRT-PCR mRNA expression analysis on Actb2/2

versus Actb+/+ yolk sacs for key erythroid transcription factors

Gata1 and Gata2. Since separation of endothelial and hematopoi-

etic cells from yolk sacs of this stage is technically extremely

challenging, we used the whole yolk sac. We also tested the

embryonic globins Hbb-y and Hbb-bh1 and the adult globins Hba

and Hbb. At E8.5, no morphological differences could be

observed between Actb2/2 and Actb+/+ embryos. We found no

significant changes for Gata1 and Hbb. Hba gave a slight but

significant reduction (Figure 4A). However, the most dramatic

effects were seen for Gata2, Hbb-y and Hbb-bh1 expression. Gata2

was decreased by 90% and Hbb-y and Hbb-bh1 expression levels

were decreased by respectively 75% and 70% (Figure 4A). This

further corroborates the negative effects of beta-actin depletion on

primitive erythropoiesis observed in our methylcellulose experi-

ments. Our results regarding the observed decrease in primitive

hematopoiesis in the Actb2/2 embryo are consistent with the

observed anemia and lethality at E10.5 in Gata2 knockout embryos

[23] indicating that the diminished expression of Gata2 contributes

to this phenotype in the Actb2/2 embryos.

We also quantified target genes of Gata2 at E8.5: Runx1, Tal/Scl,

c-kit, EpoR, Hhex and Lmo2 (Figure 4B). In none of the genotypes

we detected expression of Hhex and Lmo2 at this developmental

stage (data not shown). Runx1 and Tal/Scl expression levels gave

no significant differences but c-kit and EpoR were downregulated

by more than 50% in Actb2/2 yolk sacs, further emphasizing the

consequences of Gata2 downregulation in the Actb2/2 embryos.

Gata2 is also expressed in the vascular endothelium of the

embryo proper [24]. To differentiate between the remodeling

defects of yolk sac blood vessels versus the impaired erythropoiesis,

we studied the expression of GATA2 protein in the blood islands

at E9.5. In the Actb+/+ embryos GATA2 protein is expressed in

primitive erythrocytes and to a moderate extent in the yolk sac

endoderm. However, no GATA2 expression could be seen in the

vascular endothelial cells of the yolk sac. Importantly, we could not

detect a difference between GATA2 expression in the endoderm

nor in the vascular endothelial cells of Actb2/2 versus the Actb+/+
yolk sacs, suggesting that the vascular remodeling defect is not

caused by a differential expression of GATA2 (Figure 4C), but

rather by an impaired blood flow and/or increased hypoxia due to

Absence of Beta-Actin Modulates Erythropoiesis
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lack of erythroid differentiation. Indeed, we also tested Vegf

expression levels in the yolk sac at E8.5 and E10.25 (Figure 4D). At

E10.25, Vegf mRNA levels are more than 50% higher in Actb2/2

yolk sacs versus Actb+/+ yolk sacs, suggesting hypoxic conditions in

the embryos. Moreover, the Gata2 target gene Tal/Scl, involved in

the development of the vascular endothelium [24], shows no

difference in expression between Actb+/+ and Actb2/2 yolk sacs

(Figure 4B), further supporting the hypothesis that impaired blood

flow or hypoxic insult arising due to a lack of erythropoiesis is

causing the vascular remodeling defects.

Compensatory up regulation of gamma-actin does not
prevent lethality

In Actb2/2 embryos as well as in Actb2/2 mouse embryonic

fibroblasts (MEFs) and T-cells, gamma-actin, the second cytoplas-

mic isoform, is upregulated [13,18]. To investigate whether this is

also the case in Actb2/2 yolk sacs we compared gamma-actin

expression levels with Actb+/+ control yolk sacs by qRT-PCR and

Western blot analysis. At E8.5, there is an approximate two-fold

increase of gamma-actin mRNA expression and only a slight

increase of gamma-actin protein in the Actb2/2 versus Actb+/+ yolk

sacs (Fig S1A–B). At E10.25, gamma-actin mRNA expression

patterns remained doubled and the gamma-actin protein levels

were increased compared to the E8.5 timepoint (Fig S1A–C). In

view of the observation that gamma-actin is the dominant isoform

during mouse organogenesis (Fig S1D), this continuing compen-

satory expression of gamma-actin in the Actb2/2 yolk sac is

apparently not capable of rescuing the hematopoietic related

phenotypes and indicates that the functions of both cytoplasmic

isoforms are in this process non redundant.

Beta-actin linked to several regions of the Gata2 gene
To begin determining the molecular basis linking beta-actin to

Gata2 expression, we performed ChIP analysis. Since it is

technically impossible to obtain enough hematopoietic cells from

these embryos to perform ChIP experiments, we isolated bone

marrow cells from wild type mice. We used 9 primer sets covering

3 kbp of the Gata2 promotor region. As shown in Figure 5A,

immunoprecipitation with the anti beta-actin antibody followed by

qRT-PCR with specific primers for the Gata2 promotor region

yielded two loci of interest (amplicon 3 and 8, Figure 5A),

indicating that beta-actin binds directly or indirectly to the Gata2

promotor. In contrast, immunoprecipitation with an antibody

against gamma-actin did not yield any amplicon signal, indicating

Figure 2. Actb2/2 embryos show reduced number of red blood cells and abnormal blood island morphology in the yolk sac. (A)
PECAM-1 immunostained sagittal cardiac and somitic section, showing normal development of the left atrium (a), atrioventricular canal (av), left
ventricle (v) and regular development of intersomitic vessels. (B) H&E stained yolk sac sections show disrupted blood island morphology with empty,
enlarged cavities in E9.5 Actb2/2 embryos. A and B at 206magnification. (C) H&E stained yolk sac sections show an almost complete absence of
blood islands in E10.25 Actb2/2 embryos. 406 magnification. (D) PECAM-1 immunostained yolk sac section showing disorganized endothelial
patterning and almost no red blood cells populating the remaining blood islands at E10.25. C and D at 406magnification. Sections were imaged
using a SNAP-COOL camera (Roper Scientific) mounted on an Olympus Bx51 microscope (Olympus), with Plan Olympus 206/0.40 or 406/0.65 lens
and RSImage Version 1.9.2 software (Roper Scientific).
doi:10.1371/journal.pone.0067855.g002

Absence of Beta-Actin Modulates Erythropoiesis
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Figure 3. Yolk sac erythropoiesis is impaired in Actb2/2 embryos. (A) Primitive erythroid colonies (EryP) from E8.5 yolk sacs measured by
methylcellulose assays show a dramatic decrease in colony forming potential in Actb2/2 embryos compared to Actb+/+ embryos. Results are given as
percentage of Actb+/+ embryos absolute number of colonies (100%). (B) Definitive erythroid colonies (BFU-E, CFU-GM and CFU-GEMM) from E9.75 yolk
sacs measured by methylcellulose assays show an 85 to 90% decrease in colony forming potential of Actb2/2 embryos versus Actb+/+ embryos.
Results are given as percentage of Actb+/+ embryos absolute number of colonies (100%). Bars represent mean 6SEM; *P,.05, **P,.01, ***P,.001.
doi:10.1371/journal.pone.0067855.g003

Figure 4. Absence of beta-actin during primitive erythropoiesis correlates with reduced Gata2 expression levels in the yolk sac. (A)
Relative E8.5 yolk sac mRNA levels measured by qRT-PCR of Gata1, Gata2, Hbb-y, Hbb-bh1, Hba and Hbb. We found a 90% decrease of Gata2
expression level in Actb2/2 embryos versus Actb+/+ embryos. (B) Relative E8.5 yolk sac mRNA levels measured by qRT-PCR of Gata2 target genes:
Runx1, Tal1/Scl, c-kit and EpoR. c-kit and EpoR show 50% reduced expression levels in Actb2/2 embryos versus Actb+/+ embryos. (C) Gata2
immunohistochemistry on E9.5 yolk sac sections. Gata2 expression was detected only in the endoderm of the yolk sac (white arrows). No difference in
Gata2 expression could be seen between Actb2/2 embryos and Actb+/+ embryos. 606magnification. (D) Relative E8.5 and E10.25 yolk sac mRNA
levels measured by qRT-PCR of Vegf. At E10.25, we could demonstrate a 50% increase of Vegf mRNA expression. Error bars represent mean 6SEM;
*P,.05. Immunofluorescence sections were imaged using an Olympus IX81 confocal microscope with Fluoview FV10 software.
doi:10.1371/journal.pone.0067855.g004

Absence of Beta-Actin Modulates Erythropoiesis
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that beta-actin specifically binds to these regions of the Gata2

promotor.

Genomic alignment of these amplicon sequences using BLAT

(http://genome.ucsc.edu/) indicated that amplicon 3 is partly

overlapping with a highly conserved region within the Gata2

promotor (Figure 5B). The fact that this domain is highly

conserved during mammalian evolution suggest that it may

contain important regulatory binding sites that control Gata2

transcription. Therefore, we screened the amplicon 3 sequence as

well as flanking sequences for putative core consensus binding sites

of transcription factors playing key roles in hematopoiesis and

blood island formation. Multiple DNA core consensus sites were

found (Figure S2) such as target binding sequences for Runx1,

Hhex, Szf1, Mzf1 and Tal/Scl [25,26,27,28] transcription factors

with a role in hematopoiesis. Contained within these conserved

sequences we also found binding sites for the CP2, Klf1 (Eklf) and

Zbp-89 transcription factors that are specifically involved in the

regulation and/or maturation of erythroid progenitors [29,30,31].

Other putative sites found within these regions are for transcrip-

tion factors that are downstream effectors of multiple signaling

pathways (NF-kB and c-Rel) [32], functioning in hypoxia signaling

cascades (Hif-1) [33] or functioning as chromatin organizers (Ctcf)

[34]. Interestingly, we also identified a site for ZF161 (ZF5), an

activator or repressor of transcription that was shown to repress

the Actb promotor [35]. Amplicon 8 harbors a reverse CCAAT

box, the consensus sequence for the maternal CCAAT box

transcription factor, specifically necessary for full promotor activity

of the Gata2 gene [36].

Erythroid restricted ROSA26-promoter based expression
of Gata2 partially rescues erythropoiesis block of Actb2/2

embryos
To further confirm the functional involvement of decreased

Gata2 levels in the erythropoiesis block in Actb2/2 embryos and

to demonstrate that the vascular defects are secondary to this

block in erythroid differentiation we attempted to rescue the

lethality using erythroid lineage restricted expression of a

ROSA26-promoter based transgenic expression of human

Gata2 (hGata2). The erythroid lineage restricted expression of

Gata2 was previous described in literature [21,37]. We

generated EpoR-iCreTg/+, ROSA26-hGata2Tg/+, Actb2/2 embryos

Figure 5. Beta-actin binds to specific regions of the Gata2 gene. (A) Immunoprecipitation with the anti beta-actin and anti gamma-actin
antibodies followed by qRT-PCR with 9 specific primers for the Gata2 promotor region yielded 2 loci of interest: amplicon 3 and 8. Error bars
represent mean 6SEM; *P,.05, **P,.01. (B) Genomic alignment with multiple species showing that amplicon 3 is partly overlapping with a highly
conserved region in the Gata2 promotor, especially in mammals. Also the localization of the specific amplicons relative to the mouse Gata2 gene is
shown. Amplicon8 is located between exons 1 and 2. Figure was made using UCSC genome bioinformatics software (http://genome.ucsc.edu/).
doi:10.1371/journal.pone.0067855.g005

Absence of Beta-Actin Modulates Erythropoiesis

PLOS ONE | www.plosone.org 7 June 2013 | Volume 8 | Issue 6 | e67855



(Actb2/2 R26+hGata2EpoR-iCre/+, breeding scheme in Figure 6A).

Unlike their Actb2/2 embryo littermates we could obtain viable

normal looking Actb2/2 R26+hGata2EpoR-iCre/+ embryos until

E11.5, providing strong genetic evidence that erythroid-restricted

transgene expression of Gata2 is capable of rescuing the lethality of

the Actb2/2 embryos at E10.5. However, despite this partial rescue

all Actb2/2 R26+hGata2EpoR-iCre/+ embryos were not surviving past

E12.5 (Figure 6B). Percentages of surviving embryos are summa-

rized in Table S3. Figure 6B clearly illustrates that Actb2/2

R26+hGata2EpoR-iCre/+ embryos passed the primitive erythropoiesis

phase and show prominent RBCs filled blood vessels at E11.5. We

observed some heterogeneity in the rescue abilities of the embryos at

E11.5 (Figure 6C). However, we found a direct correlation between

the degree of normality and the overall Gata2 expression levels, with

the most normal looking rescue embryos also expressing higher

Gata2 levels (corresponding to both endogenous and transgene

transcripts). qRT-PCR experiments on the yolk sacs of Actb2/2

R26+hGata2EpoR-iCre/+ embryos demonstrate that the rescue

embryos displaying higher Gata2 values (Figure 7A–C, light-grey

bars) also have higher Gata1, Hbb-y and Hbb-bh1 expression levels

at both E10.25 and E11.5 (Figure 7A,C). Gata2 target genes show

variable expression profiles in the rescue embryos (Figure 7B).

Interestingly, expression levels of gamma-actin did not decrease in

the rescue embryos at E10.25 (Figure 7B) and at E11.5 (data not

shown).

Discussion

This study has revealed an unexpected role for beta-actin

during development. Beta-actin has been described in protrusive

cellular structures and has traditionally been associated with a

major role in cell migration [6,8,38]. The Actb2/2 embryos appear

normal until E8.5 and they undergo gastrulation without any

obvious defects. Cell migration processes at these developmental

stages therefore seem to be intact. We investigated other events

requiring cell migration processes such as formation of the

vasculature and hematopoietic system in the embryo. PECAM-1

staining suggests some vessel disorganization in the embryo proper

and we also found vascular defects in the yolk sac. This could

indicate a cell migration defect of hemangioblast cells, a progenitor

population with both hematopoietic and vascular potential. These

cells are thought to migrate from the embryo proper to the blood

islands in the yolk sac where cells differentiate into primitive

erythrocytes and endothelial cells. However, by tracking heman-

gioblast cells expressing LacZ under the Flk1 promotor [39,40], we

observed no dramatic block in migration of hemangioblast cells at

E9.5. This strongly suggests that a cell migration problem of

hemangioblast cells per se is not causing the hematopoietic

problems in the embryo and consequently has no major

contribution to the observed lethality.

Our results however strongly suggest that an erythroid

differentiation defect is most likely responsible for the observed

embryonic lethality at E10.5 and one of the putative downstream

players involved is Gata2. Indeed, the expression of this key

erythroid transcription factor was dramatically downregulated at

E8.5. Similar to the Actb2/2 embryos in this study, Gata2 knockout

embryos show marked anemia and fail to survive beyond the stage

of primitive hematopoiesis [41]. Transgenic expression of Gata2

specifically in erythroid cells rescued the embryos from lethality at

E10.5. The Actb2/2 R26+hGata2EpoR-iCre/+ embryos displayed

obvious remodeled RBC containing blood vessels in the yolk sac

and embryo proper and the slight variations amongst those

embryos could be correlated with the levels of transgenic Gata2

expression. After rescue the Actb2/2 R26+hGata2EpoR-iCre/+

embryos displayed similar levels of embryonic hemoglobins

Hbb-y and Hbb-bh1, in line with restoration of primitive

erythropoiesis. The vasculature of yolk sac and embryo proper

appears intact at E11.5 in Actb2/2 R26+hGata2EpoR-iCre/+

embryos. This highly suggests that the vascular malformations

observed in the Actb2/2 embryo proper immediately before

lethality and the vascular remodeling defects in the yolk sac from

E9.5 onwards are secondary defects, whereas downregulation of

Gata2 and the associated block in primitive erythropoiesis is the

primary defect causing the observed lethality at E10.5. The lack of

full genetic rescue by erythroid-restricted GATA2 transgene

expression could imply important roles of Gata2 in later stages of

cardiovascular development [42,43] that are not rescued using this

approach.

One scenario whereby absence of beta-actin leads to reduced

Gata2 mRNA levels is that Gata2 expression is modulated by beta-

actin in the nucleus. The nuclear role of beta-actin has recently

been consolidated and it appears to have a potent role in the

regulation of transcription and gene expression by various

molecular means [10,44,45]. Our ChIP analysis supports a

function of beta-actin in the nucleus since we detected beta-actin

binding to specific regions of the Gata2 promotor. One of the

amplicons that was picked up by the ChIP experiment partly

overlapped with a highly conserved region in the Gata2 promoter,

suggesting the presence of important regulatory sequences in this

region of the promoter. Indeed, the detailed analyses revealed

multiple consensus sites for transcription factors with known roles

in erythropoiesis and/or hematopoiesis. However, it is not clear

whether these transcription factors bind to the Gata2 promotor in

vivo nor is it evident from literature that they associate with the

beta-actin protein. It also remains to be clarified whether beta-

actin itself binds to the promotor as a transcription factor or

whether it is part of a transcriptional complex. However, taking

the previously described roles of beta-actin into account

[10,11,12,44,45], we favor the possibility whereby beta-actin

binds the promotor of Gata2 in complex with other proteins.

Gamma-actin is, together with beta-actin, one of the main actin

isoforms during embryonic development. It is approximately 2-

fold upregulated in the embryo proper and in MEFs isolated from

the Actb2/2 embryos [13]. We observed similar compensatory

mechanisms in Actb2/2 yolk sacs (Figure S1A–C). It remains to

be clarified whether such an upregulation also occurs in the

Actb2/2 erythroid precursors but in two independent studies

using Actb2/2 MEFs and T-cells, an upregulation of the other

cytoplasmic actin isoform has been observed [13,18]. Therefore, in

addition to beta-actin specific nuclear effects on Gata2 expression,

lack of cytoskeletal integrity which is important in erythrocytes,

cannot completely be excluded.

In summary, our results reveal a novel role for beta-actin in the

early phases of hematopoiesis. By fine-tuning Gata2 levels beta-

actin plays a role in primitive and definitive erythropoiesis in the

early mouse embryo. This was further demonstrated by transgenic

expression of Gata2 in the erythroid lineages, as rescue embryos

were able to pass the primitive erythropoiesis phase. The functions

of beta-actin described here seem very specific for this actin

isoform as increased expression of gamma-actin cannot rescue this

phenotype. As well, transgenic expression of Gata2 does not lead to

a normalization of gamma-actin expression levels and gamma-

actin appears not to associate with regions in the Gata2 promotor

that are, however, bound by beta-actin in ChIP experiments. This

study has therefore shed new light on novel specific functions of

the beta-actin isoform during mouse embryogenesis.
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Figure 6. Actb2/2 R26+hGata2EpoR-iCre/+ embryos remain viable at E11.5. (A) Schematic view of the breeding scheme used to generate
Gata2 expression in the erythroid lineage in Actb2/2 mice. (B) Pictures from freshly dissected embryos at developmental stages E10.5, E11.5 and
E12.5. Black crosses mark the absence of Actb2/2 embryos at stages E11.5 and E12.5. Note the presence of RBCs in the Actb2/2 R26+hGata2EpoR-
iCre/+ embryos. Statistics on embryo recovery in function of genotype are in Table S3. E10.5: 156magnification, E11.5: 126magnification; E12.5: 106
magnification. (C) Morphology variation of Actb2/2 R26+hGata2EpoR-iCre/+ embryos at E11.5. Aberrant looking Actb2/2 R26+hGata2EpoR-iCre/+
embryos (left panel) compared to normal looking Actb2/2 R26+hGata2EpoR-iCre/+ embryos (right panel), 126magnification. Embryos were imaged
on a Leica MS5 (Leica Microsystems) stereomicroscope. Digital images were acquired using a Leica camera.
doi:10.1371/journal.pone.0067855.g006
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Supporting Information

Figure S1 Compensatory up regulation of gamma-actin
occurs in Actb2/2 yolk sacs. (A) Relative gamma-actin

mRNA levels measured by qRT-PCR in yolk sacs of E8.5 and

E10.25 embryos. Both embryonic stages show an approximately

two fold increase in gamma-actin expression. Bars represent mean

6SEM; **P,.01, ***P,.001. (B) Western Blot analysis of

gamma-actin protein level in yolk sacs of E8.5 embryos. A slight

increase of gamma-actin can be detected in Actb2/2 yolk sacs

versus Actb+/+ yolk sacs. (C) Western Blot analysis of gamma-

actin protein level in yolk sacs of E10.25 embryos. The increase of

gamma-actin protein level in Actb2/2 yolk sacs is more

pronounced. (D) Comparison of expression of mouse beta- and

gamma actin at gastrula and organogenesis stage, data are from

http://www.ncbi.nlm.nih.gov/unigene.

(TIFF)

Figure S2 Consensus sites possibly important for
erythropoiesis in amplicon 3 and 8. Detail analysis of the

large amplicon 3 (amplicon 3+ regions between amplicon 2–3 and

3–4) and amplicon 8 reveal multiple DNA consensus sites for

binding of transcription factors possible involved in erythropoiesis

in mouse.

(TIFF)

Table S1 Overview of the primer sets used in this study.

(TIFF)

Table S2 Overview of the primer sets used for the ChIP
analysis and gene location of the corresponding ampli-
con.

(TIFF)

Table S3 Percentages of surviving embryos. Mendelian

ratios are given in bold under the genotype.

(TIFF)
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