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SUMMARY

This article concerns testing for equality of distribution between groups. We focus on screen-
ing variables with shared distributional features such as common support, modes and patterns of
skewness. We propose a Bayesian testing method using kernel mixtures, which improves perfor-
mance by borrowing information across the different variables and groups through shared kernels
and a common probability of group differences. The inclusion of shared kernels in a finite mix-
ture, with Dirichlet priors on the weights, leads to a simple framework for testing that scales well
for high-dimensional data. We provide closed asymptotic forms for the posterior probability of
equivalence in two groups and prove consistency under model misspecification. The method is
applied to DNA methylation array data from a breast cancer study, and compares favourably to
competitors when Type I error is estimated via permutation.

Some key words: Epigenetics; Independent screening; Methylation array; Misspecification; Multiple comparisons;
Multiple testing; Nonparametric Bayes inference.

1. INTRODUCTION

1·1. Motivation

In modern biomedical research, it is common to screen for differences between groups in
many variables. These variables are often measured using the same technology and are not well
characterized using a simple parametric distribution. As an example, we consider DNA methy-
lation arrays. Methylation is an epigenetic phenomenon that can affect transcription and occurs
at genomic locations where a cytosine nucleotide is followed by a guanine nucleotide, called
CpG sites. High-throughput microarrays are commonly used to measure methylation levels for
thousands of CpG sites genome-wide. Measurements are typically collected from a tissue that
contains several distinct cell types, and at a given CpG site each cell type is typically either methy-
lated or unmethylated (Reinius et al., 2012). Arrays therefore give continuous measurements for
discrete methylation states, and the resulting values are between 0, no methylation, and 1, fully
methylated. Figure 1 shows the distribution of methylation measurements over individuals for
three CpG sites based on data from the Cancer Genome Atlas Network (2012). Multimodality
and skewness are common; kernel mixtures are useful for modelling such complexity.

Methylation variables share several distributional features, such as common support, common
modes and common patterns of skewness. The use of kernels that are shared across variables thus

c© 2015 Biometrika Trust
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Fig. 1. Distribution of methylation measurements at three CpG sites; for each histogram the vertical
scale gives the frequency of occurrence among individuals.

not only reduces computational burden but can also improve performance. It is also natural to
share kernels across groups, with the interpretation that two groups arise from the same discrete
process but in potentially different proportions.

We introduce a simple, computationally efficient, and theoretically supported Bayesian
method for screening using shared kernels across groups and, if appropriate, across variables.
The population distribution for each variable is approximated using a mixture of kernels {Fk}K

k=1.
For two groups 0 and 1, we test whether the groups have different kernel weights. Specifically, for
group distributions F (0)

m and F (1)
m at variable m, F (0)

m =∑K
k=1 π

(0)
mk Fk and F (1)

m =∑K
k=1 π

(1)
mk Fk ,

the competing hypotheses are

H0m : π(0)
mk = π

(1)
mk for all k versus H1m : π(0)

mk |= π
(1)
mk for some k. (1)

In practice, F1, . . . , FK and a shared Dirichlet prior distribution for the weights �
(0)
m and �

(1)
m are

estimated empirically. A simple and tractable Gibbs sampling procedure is then used to estimate
the posterior probability of H0m for each variable.

While methylation array data provide excellent motivation, our framework addresses
the general statistical problem of testing for equality between two groups that are drawn from
the same strata but in potentially different proportions. We argue that the method may also be
useful for applications that do not have such a clear interpretation, and this is supported with
theoretical results in § 4.
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1·2. Related work

The multimodality of methylation measurements is widely recognized (Laird, 2010) but often
not accounted for in practice. The two-sample t-test is most commonly used to identify sites of
differential expression in case-control studies (Bock, 2012). Alternative testing approaches are
rank-based or discretize the data based on arbitrary thresholds (Chen et al., 2011; Qiu & Zhang,
2012). Other statistical models have been proposed to identify CpG sites that are hypomethylated,
hypermethylated or undifferentiated with respect to normal cells (Khalili et al., 2007; Akalin
et al., 2012). The focus on differential methylation levels between groups may miss other impor-
tant differences between group distributions; for example, certain genomic regions have been
shown to exhibit more variability in methylation, and hence greater epigenetic instability, among
cancer cells than among normal cells (Hansen et al., 2011).

Although our model involves finite mixtures, it is intended to be robust with respect to
parametric assumptions and so is comparable to nonparametric methods. There is a literature
on nonparametric Bayes testing of equivalence in distribution between groups. Dunson & Ped-
dada (2008) used a dependent Dirichlet process to test for equality against stochastically ordered
alternatives; they employed an interval test based on total variation distance, and the framework
is easily extended to unordered alternatives. Pennell & Dunson (2008) also used a Dirichlet pro-
cess model for multiple groups and an interval test. Ma & Wong (2011) and Holmes et al. (2015)
used Polya tree priors to test for exact equality. Existing nonparametric Bayes tests do not exploit
shared features among variables, in the form of shared kernels or otherwise.

If kernel memberships are known, our testing framework (1) is equivalent to a test for
association with a 2 × K contingency table. For this there are standard frequentist methods such
as Fisher’s exact test and Pearson’s chi-squared test, as well as established Bayesian methods
(Good & Crook, 1987; Albert, 1997). In our context the component memberships are unknown
and are inferred probabilistically. Xu et al. (2010) addressed this as part of a series of compar-
isons for Bayesian mixture distributions between groups. They compared marginal likelihoods
for models with and without assuming constant weights between groups. Our focus is instead
on screening settings in which there are many variables, and it is important to borrow informa-
tion while adjusting for multiple testing. Shared kernels facilitate borrowing of information and
computational scaling, and in our implementation a shared prior for the probability of equality
at each variable induces a multiplicity adjustment with favourable properties (Scott & Berger,
2006, 2010; Muller et al., 2007).

2. MODEL

2·1. Shared kernel mixtures

Below we describe the general model for shared kernel Bayesian screening. Details that are
specific to our implementation for methylation array data, including estimation techniques that
facilitate posterior computation in high dimensions, are given in § 5.

First we describe a shared kernel mixture model, to lay the groundwork for the two-group
screening model in § 2·2. Given data xmn for M variables (m = 1, . . . , M) and N subjects
(n = 1, . . . , N ), the shared kernel model assumes that observations xmn are realized from one
of K component distributions F1, . . . , FK . Typically xmn is a continuous and unidimensional
observation, but we present the model in sufficient generality to allow for more complex data
structures. We assume that F1, . . . , FK have corresponding likelihoods from the same paramet-
ric family f (· , θk).

Let cmn ∈ {1, . . . , K } represent the component generating xmn , and let πmk = pr(cmn = k) be
the probability that an arbitrary subject belongs to component k in variable m. The generative
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model is xmn ∼ Fk with probability πmk . Under a Bayesian framework, one puts a prior distribu-
tion on {�m = (πm1, . . . , πmK )}M

m=1 and, if they are unspecified, the kernels F1, . . . , FK . It is
natural to use a Dirichlet conjugate prior for �m , characterized by a K -dimensional parameter α

of positive real numbers. Small values of α, with αk � 1, will favour small values for a subset of
the πmk values. Thus, some kernels may have negligible impact for a given variable.

2·2. Two-group screening

We extend the shared kernel model above to allow for two sample groups: X (0) with data
x (0)

mn for N0 subjects (n = 1, . . . , N0; m = 1, . . . , M), and X (1) with data x (1)
mn for N1 subjects

(n = 1, . . . , N1; m = 1, . . . , M). Observations for all M variables are realized from a common
set of kernels F1, . . . , FK , but the two groups have potentially different weights {�(0)

m }M
m=1 and

{�(1)
m }M

m=1.

The weights �
(0)
m and �

(1)
m each have prior distribution Dir(α), whether they are identical or

not. Let H0m be the event that the mixing weights are the same for both groups: �
(0)
m = �

(1)
m .

Under H1m , �
(0)
m and �

(1)
m are considered independent realizations from Dir(α). Let F (0)

m be
the distribution for group 0 and F (1)

m the distribution for group 1. We consider a dummy variable
1(H0m) ∼ Ber{pr(H0m)} and independent realizations �̃mk, �̃

(0)
mk, �̃

(1)
mk ∼ Dir(α) to give the joint

distribution for groups i = 0, 1:

F (i)
m =

K∑
k=1

[
1(H0m)π̃mk + {1 − 1(H0m)}π̃ (i)

mk

]
Fk .

As pr(H0m) → 1, F (0)
m and F (1)

m share the same mixing weights, and as pr(H0m) → 0 the weights
are independent.

Let �n(0)
m = (n(0)

m1, . . . , n(0)
mK ) represent the number of subjects in group 0 that belong to each

kernel k in variable m, and define �n(1)
m similarly for group 1. Then �nm = �n(0)

m + �n(1)
m gives the total

number of subjects allocated to each component. Under H0m , the distribution for the component
memberships C (0)

m and C (1)
m is

pr
(
C (0)

m , C (1)
m | H0m

)=
∫

�

pr
(
C (0)

m , C (1)
m | �) f (� | α) d�

= �
(∑K

k=1 αk
)

�
(∑K

k=1 nmk + αk
) K∏

k=1

�(nmk + αk)

�(αk)

= β(�nm + α)/β(α),

where � is the gamma function and β(α) =∏K
k=1 �(αk)/�(

∑K
k=1 αk) is the multivariate beta

function. Similarly, under H1m ,

pr
(
C (0)

m , C (1)
m | H1m

)=
∫

�

pr(C (0)
m | �) f (�m | α) d�

∫
�

pr
(
C (1)

m | �) f (� | α) d�

= β
(�n(0)

m + α
)
β
(�n(1)

m + α
)

β(α)2
.
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Let the shared prior probability of no difference be P0 = pr(H0m) for all m. The posterior
probability of H0m given C (0)

m and C (1)
m is

pr
(

H0m | C (0)
m , C (1)

m

)= P0 pr
(
C (0)

m , C (1)
m | H0m

)
P0 pr

(
C (0)

m , C (1)
m | H0m

)+ (1 − P0) pr
(
C (0)

m , C (1)
m | H1m

)
= P0β(α)β

(�nm + α
)

P0β(α)β
(�nm + α

)+ (1 − P0)β
(�n(0)

m + α
)
β
(�n(1)

m + α
) ,

(2)

but in practice the kernel memberships are unknown, and the kernels may be unknown as well.
There is no analogous closed form that accounts for uncertainty in (C (0)

m , C (1)
m ), and direct com-

putation is usually infeasible. We instead employ a Gibbs sampling procedure that uses (2)
to approximate the full posterior distribution. Under multiple related tests, M > 1, we infer
P0 using a Be(a, b) prior, where by default a = b = 1. The mean of the realized values of
pr(H0m | C (0)

m , C (1)
m ) over the sampling iterations is used to estimate the posterior probability

of H0m for each variable.
While this article focuses on the two-group case, extensions to multiple groups are straight-

forward. A natural approach is to define a prior to cluster the groups. For example, we could
use a Dirichlet process as in Gopalan & Berry (1998), but instead of clustering group means we
would be clustering group distributions. Each cluster would then have a separate weight vector
drawn from a Dirichlet distribution.

The above approach is presented in the context of shared kernels for high-dimensional screen-
ing, i.e., large M . The framework is also useful in the simple case where M = 1, and is particularly
well motivated when two groups have the same strata but are in potentially different proportions.
The theoretical results presented in §§ 3 and 4 are not specific to high-dimensional screening,
and we will drop the variable subscript m for simplicity.

3. ASYMPTOTIC FORMS

We investigate the asymptotic forms that result from (2) as the number of observations tends
to infinity. The proofs are given in the Supplementary Material.

Let N = N0 + N1 and fix λ0 = N0/(N0 + N1). In Theorem 1 we derive the asymptotic form
of the conditional Bayes factor pr(H0 | C (0), C (1))/ pr(H1 | C (0), C (1)).

THEOREM 1. Let �p0 = �n(0)/N0, �p1 = �n(1)/N1, �p = (�n(0) + �n(1))/N, r0k = p0k/pk and r1k =
p1k/pk. Then, as N0, N1 → ∞,

pr
(

H0 | C (0), C (1)
)

pr
(

H1 | C (0), C (1)
) ∼ cN (K−1)/2

K∏
k=1

r
−n(0)

k
0k r

−n(1)
k

1k ,

where

c = P0

1 − P0

{
λ0(1 − λ0)

2π

}(K−1)/2 K∏
k=1

pαk+1/2
k (r0kr1k)

1/2−αk .

The asymptotic form given in Theorem 1 does not depend on the generative distribution. In
the following we consider corollaries under H0 and H1.



834 E. F. LOCK AND D. B. DUNSON

COROLLARY 1. Under H0 : �(0) = �(1) = �,

pr
(

H0 | C (0), C (1)
)

pr
(

H1 | C (0), C (1)
) ∼ cN (K−1)/2

K∏
k=1

exp

[
−{λ0(1 − λ0)}1/2

2πk
N (p0k − p1k)

2
]

,

where {λ0(1 − λ0)}1/2 N (p0k − p1k)
2 ∼ χ2

1 .

It follows that under H0 the log Bayes factor has order (K − 1)log(N )/2 + Op(1), and there-
fore pr(H0 | C (0), C (1)) converges to 1 at a sublinear rate.

COROLLARY 2. Under H1 : �(0) |= �(1), let �∗ = λ0�
(0) + (1 − λ0)�

(1). Then

pr
(

H0 | C (0), C (1)
)

pr
(

H1 | C (0), C (1)
) ∼ cN (K−1)/2

K∏
k=1

(
π

(0)
k

π∗
k

)−Nλ0π
(0)
k
(

π
(1)
k

π∗
k

)−N (1−λ0)π
(1)
k

exp
{

Op
(

N 1/2)}.
It follows that under H1 the log Bayes factor has order

−N
∑{

λ0π
(0)
k log

(
π

(0)
k

π∗
k

)
+ (1 − λ0)π

(1)
k log

(
π

(1)
k

π∗
k

)}
+ Op

(
N 1/2),

and therefore pr(H0 | C (0), C (1)) converges to zero at an exponential rate.
Exponential convergence under H1 and sublinear convergence under H0 have been observed

for many Bayesian testing models (Kass & Raftery, 1995; Walker, 2004). Johnson & Rossell
(2010) discuss this property for local prior densities, in which regions of the parameter space
consistent with H0 also have nonnegligible density under H1; they give general conditions for
the Bayes factor to have order N/2 under H0 and to converge exponentially under H1 when
testing a point null hypothesis for a scalar parameter. In our view, the asymmetry in asymptotic
rates under H0 and H1 is reasonable in our case and in most other models, as H0 is much more
precise. In practice, we still obtain strong evidence in favour of H0 for moderate samples.

The exact asymptotic distributions given in Corollaries 1 and 2 are derived under the assump-
tion that the component memberships C (0) and C (1) are known, but in practice they are unknown.
Additionally, the component distributions F1, . . . , FK may be unknown. A simulation study pre-
sented in the Supplementary Material suggests that the asymptotic rates derived above also hold
with a prior on C (0), C (1) and F1, . . . , FK .

4. CONSISTENCY

We establish consistency of our method as a test for equality of distribution under very gen-
eral conditions. The following results allow for misspecification in that the true data-generating
distribution may not fall within the support of the prior. For example, F (0) and F (1) may not
be finite mixtures of simpler component distributions. Such misspecified models clearly do not
provide a consistent estimator for the full data-generating distribution, but, as we will show, they
can still be consistent as a test for equality of distribution. The proofs of all theorems, corollaries
and remarks in this section are given in the Appendix.

First, we derive asymptotic results for a one-group finite mixture model under misspecifi-
cation. The proof of our first result uses the general asymptotic theory for Bayesian posteriors
under misspecification given in Kleijn & van der Vaart (2006), and we borrow their notation
where appropriate. Theorem 2 below implies that the posterior for a mixture distribution will
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converge to the convex combination of component distributions f ∗ that is closest in terms of
Kullback–Leibler divergence to the true density f0. First, we define B(ε, f ∗; f0) to be a neigh-
bourhood of the density f ∗ under the measure induced by the density f0,

B(ε, f ∗; f0) =
{

f ∈ F : −
∫

f0 log
f

f ∗ � ε2,

∫
f0

(
log

f

f ∗

)2

� ε2

}
,

and define d( f1, f2) to be the weighted Hellinger distance,

d2( f1, f2) = 1

2

∫ (
f 1/2
1 − f 1/2

2

)2 f0

f ∗ .

THEOREM 2. Let x1, . . . , xN be independent with density f0. Let F be the set of all con-
vex combinations of dictionary densities { fk}K

k=1, and let P define a prior on F. Assume that
f ∗ = arg min f ∈F

KL( f0|| f ∗) exists and that pr{B(ε, f ∗; f0)} > 0 for all ε > 0. Then, for any
fixed ε > 0,

pr{ f ∈ F : d( f, f ∗) � ε | x1, . . . , xN }, N → 0.

The prior support condition pr{B(ε, f ∗; f0)} > 0 for all ε > 0 is satisfied for all priors that
have positive support over F. This includes priors for � with positive support over the unit sim-
plex S

K−1, such as Dirichlet priors. Although the weighted Hellinger distance d is nonstandard,
convergence in d implies convergence of the component weights, as shown in Corollary 3.

COROLLARY 3. In the setting of Theorem 2, let �∗ = (π∗
1 , . . . , π∗

K ) be the component weights
corresponding to f ∗. Assume �∗ is unique in that

∑
πk fk =∑π∗

k fk = f ∗ only if � = �∗.
Then, for any fixed ε > 0,

pr
(
� ∈ S

K−1 : ‖� − �∗‖ � ε | x1, . . . , xN
)
, N → 0.

Uniqueness of the component weights at f ∗ is trivially satisfied if distinct mixture weights
yield distinct distributions in F. Such identifiability has been established in general for Gaussian
mixtures with variable means and variances, as well as for several other common cases (Teicher,
1963; Yakowitz & Spragins, 1968).

Kullback–Leibler divergence over F is convex, and its minimizer f ∗ satisfies interesting con-
ditions.

Remark 1. In the setting of Theorem 2, assume that π∗
k > 0 for k = 1, . . . , K and

∑
π∗

k = 1.
Then f ∗ =∑π∗

k fk achieves the minimum Kullback–Leibler divergence in F with respect to f0
if and only if ∫

f1

f ∗ f0 = · · · =
∫

fK

f ∗ f0.

If some π∗
k = 0, the minimum divergence is achieved where

∫
( fk/ f ∗) f0 are equivalent for all

π∗
k > 0.
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We now give the result on consistency as a test for equality of distribution.

THEOREM 3. Assume that x (0)
1 , . . . , x (0)

N0
are independent with density f (0) and x (1)

1 , . . . , x (1)
N1

are independent with density f (1), and let

f ∗(0) = arg min
f ∈F

KL

(
f (0)|| f

)
, f ∗(1) = arg min

f ∈F

KL

(
f (1)|| f

)
.

Assume that the uniqueness condition in Corollary 3 holds for f ∗(0) and f ∗(1). If f (0) = f (1),
then pr(H0 | X) → 1 as N → ∞. If f ∗(0) |= f ∗(1), then pr(H0 | X) → 0 as N → ∞.

Theorem 3 implies that the posterior probability of equality is consistent under H0, even under
misspecification. Consistency under H1 holds generally under misspecification, but fails if f (0)

and f (1) are both closest in Kullback–Leibler divergence to the same f ∗ ∈ F. This can occur if
f (0) and f (1) are both closer to the same component distribution fk than they are to any other
distribution in the convex hull.

5. APPLICATION TO METHYLATION DATA

5·1. Data and estimation

We illustrate our approach on a methylation array dataset for N = 597 breast cancer samples
and M = 21 986 CpG sites. These data are publicly available from TGCA Data Portal (Cancer
Genome Atlas Network, 2012). We focus on testing for a difference between tumours that are
identified as basal-like (N0 = 112) and those that are not (N1 = 485) at each site. Basal-like
samples have a relatively poor clinical prognosis and a distinct gene expression profile, but the
role of DNA methylation in this distinction has not been well characterized.

For scalability and to borrow information across sites, we apply a two-stage procedure. First,
a set of dictionary kernels is estimated. Specifically, for k = 1, . . . , K , fk is the density of a
normal distribution with mean μk and precision τk truncated to fall within the interval [0, 1]. We
use a normal-gamma prior for μk and τk . For computational reasons we estimate the posterior for
f1, . . . , fK from a subsample of 500 sites, for an effective sample size of 597 × 500 = 298 500
observations. We employ a Gibbs sampler and update the common Dirichlet prior parameter α at
each iteration using maximum likelihood estimation (Ronning, 1989). Alternatively, one could
use a hyperprior for α, but this complicates posterior estimation and probably has little influence
on posterior estimates as the effective sample size is very large. Similarly, we find that there is
little uncertainty in the posterior mean and variance for each kernel; we can ignore the error in
estimating these densities and fix them in the second stage.

The number of kernels K = 9 is chosen by crossvalidation based on the mean loglikelihood
for held-out observations. Estimates for the dictionary densities f1, . . . , f9 are shown in Fig. 2;
to address the label-switching problem, we order the kernels by their means and then average
over Gibbs samples. For fixed f1, . . . , f9, we compute the posterior for the two-group model
at each CpG site using a simple and efficient Gibbs sampler and a uniform hyperprior for P0.
We calculate the component likelihoods fk(xmn) for all sites m, samples n, and components k in
advance, which greatly reduces the computational burden.

5·2. Results

We run Gibbs sampling for the two-group model for all 21 986 CpG sites, with 5000 iterations,
after a 1000-iteration burn-in. The draws mix well and converge quickly; mixing is considerably
improved by fixing the dictionary densities.
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Fig. 2. Truncated normal dictionary densities for K = 9; above each panel the percentage of samples allocated
to each density (over all sites) is shown.
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Fig. 3. Histogram of posterior probabilities of H0 at 21 986 CpG sites with
N0 = 112 basal and N1 = 485 nonbasal tumours.

The global prior probability of no difference, inferred using a uniform hyperprior, was
P̂0 = 0·821. The estimated posterior probabilities pr(H0m | X) are shown in Fig. 3. These have
a U-shaped distribution, with 91% of values falling below 0·05 or above 0·95. Many values are
close to 1, suggesting that these methylation sites play no role in the distinction between basal
and nonbasal tumours.

Figure 4 shows the sample distributions and mixture density fits for basal and nonbasal
tumours at four CpG sites. These four sites were selected to show a range of estimated differences
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Fig. 4. Estimated densities for basal (red) and nonbasal (blue) samples for four CpG sites with different posterior
probabilities of H0. Histograms are shown for both groups, and their overlap is coloured violet.

between the distributions for basal and nonbasal tumours. In general, the estimated mixture
densities appear to fit the data well. Some CpG sites with posterior probabilities pr(H0m | X) that
are very small have dramatically different distributions between the two groups. For the major-
ity of CpG sites, the estimated distributions for the two groups are nearly identical. The method
naturally borrows strength across groups to estimate a common density when pr(H0m | X) → 1,
and estimates the two densities separately when pr(H0m | X) → 0.

We investigated the potential relevance of differentially distributed CpG sites by considering
the expression of the gene at their genomic location. DNA methylation is thought to primar-
ily inhibit transcription and therefore suppress gene expression. Of the 2117 CpG sites with
pr(H0m | X) < 0·01, 1256 have a significant negative association with gene expression accord-
ing to Spearman’s rank correlation, with p-value less than 0·01. For these cases, methylation pro-
vides a potential mechanistic explanation for well-known differences in gene transcription levels
between basal and nonbasal tumours. In particular, these include five genes from the well-known
PAM50 gene signature for breast cancer subtyping (Parker et al., 2009): MYBL2, EGFR, MIA,
SFRP1 and MLPH. A spreadsheet included with the Supplementary Material gives the posterior
probability pr(H0m | X) and the corresponding gene expression statistics for all CpG sites.

6. METHODS COMPARISON ON METHYLATION DATA

We use data from § 5 to compare the power of testing methods on methylation array data. We
consider the following methods: (a) the shared kernel test, as implemented in § 5 but with P0
fixed at 0·5 so that the Bayes factors are independent; (b) the two-sample Anderson–Darling test
(Scholz & Stephens, 1987); (c) a dependent optional Polya tree test (Ma & Wong, 2011), using
code provided by the authors under default specifications; (d) a Polya tree test (Holmes et al.,
2015), using code provided by the authors under default specifications; (e) the Wilcoxon rank
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Fig. 5. Proportion of CpG sites identified as different between groups plotted against the proportion of sites
identified as different under permutation, i.e., the Type I error rate, for seven different testing methods:
the shared kernel test (solid); the Anderson–Darling test (dashed); the t-test (dotted); the Wilcoxon test
(dot-dash); the dependent optional Polya tree test (asterisks); the restricted dependent Dirichlet process test

(circles); and the Polya tree test (crosses).

sum test; (f) the two-sample t-test with unequal variance; (g) a restricted dependent Dirichlet
process test (Dunson & Peddada, 2008) using the interval null hypothesis dTV ∈ [0, 0·05], where
dTV is the total variation distance. Methods (a)–(d) are general tests for equality of distribution,
while methods (e)–(g) test for different levels of methylation.

We use each method to test for a difference between basal and nonbasal tumours at all 21 986
CpG sites. For comparison, we also apply each method under random permutation of the group
labels separately at each site to generate a null distribution. The curves shown in Fig. 5 are
obtained by varying the threshold on the Bayes factor or p-value, depending on the method.
We compare the proportion of the 21 986 CpG sites that are identified as different with the
proportion of sites that are identified as different under permutation. The proportion under per-
mutation gives a robust estimate of the Type I error rate, so this is a frequentist approach to
assessing discriminatory power. The shared kernel test exceeds other Bayesian nonparametric
tests by a wide margin. It also generally performs as well as or better than frequentist approaches,
although the Anderson–Darling test is competitive. Unlike nonparametric frequentist competi-
tors, the shared kernel approach admits a full probability model to assess strength of evidence
for both the null and the alternative hypotheses, which can be used in larger Bayesian models.
Moreover, the shared kernel approach facilitates interpretation by modelling the full distribution,
with uncertainty, for each group.
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840 E. F. LOCK AND D. B. DUNSON

APPENDIX

Proof of Theorem 2

The result follows from Corollary 2.1 of Kleijn & van der Vaart (2006). The space F is compact rel-
ative to total variation distance, and hence is bounded with respect to d. Therefore the covering numbers
N (ε, F, d) are finite for all ε > 0. The space F is also convex, and so it follows from Lemmas 2.2 and 2.3
of Kleijn & van der Vaart (2006) that the entropy condition of Corollary 2.1 is satisfied for the metric d.

Proof of Corollary 3

Fix ε > 0. Because KL( f ∗|| f ) is defined, f ∗ and f0 have common support. Therefore d( f, f ∗) = 0
implies that H( f, f ∗) = 0, where H is the Hellinger distance

H 2( f, f ∗) = 1

2

∫
( f 1/2 − f ∗1/2)2.

Hence, d(
∑

πk fk, f ∗) = 0 implies that f = f ∗, and therefore that � = �∗ by the uniqueness assumption.
Because d(

∑
πk fk, f ∗) is continuous with respect to �, there exists δ > 0 such that d(

∑
πk fk, f ∗) � δ

implies that ‖� − �∗‖ � ε. Therefore

pr
(
� ∈ S

K−1 : ‖� − �∗‖ < ε | X
)
� pr{ f ∈ F : d( f, f ∗) > δ | X} → 0

by Theorem 2.

Proof of Remark 1

As KL( f0||
∑

πk fk) is globally convex with respect to �, the minimum divergence is achieved when
all first-order derivatives are zero. Fix π3, . . . , πK , and let π1 = a and π2 = 1 − a −∑K

k=3 πk for 0 � a �
1 −∑K

k=3 πk . Let

f (a) = a f1 +
(

1 − a −
K∑

k=3

πk

)
f2 +

K∑
k=3

πk fk .

Then
∂

∂a
KL( f0|| f (a)) = −

∫
∂

∂a
log( f (a)) f0 = −

∫
f1

f (a)
f0 +

∫
f2

f (a)
f0.

Hence, ∂ KL( f0|| f (a))/∂a = 0 implies that∫
f1

f (a)
f0 =

∫
f2

f (a)
f0.

An analogous result holds for any πi and π j with i |= j . Therefore, if f ∗ = arg min f ∈F
KL( f0|| f ) with

π∗
k > 0 for all k, then ∫

f1

f ∗ f0 = · · · =
∫

fK

f ∗ f0.

If π∗
k = 0 for some k, a similar argument shows that

∫
( fk/ f ∗) f0 must be equivalent for all π∗

k > 0.

Proof of Theorem 3

Let C indicate group membership, so that the generative distribution for xn ∈ {X (0), X (1)} is

g( f (0), f (1), C) ∼
{

f (0), C = 0,

f (1), C = 1.
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Note that

KL{g( f̂ (0), f̂ (1), C) || g( f (0), f (1), C)} =
∫

(1 − C) f (0) log
f (0)

f̂ (0)
+
∫

C f (1) log
f (1)

f̂ (1)

= λ0KL( f̂ (0)|| f (0)) + (1 − λ0)KL( f̂ (1)|| f (1)).

So, for ( f̂ (0), f̂ (1)) ∈ F
2, the divergence with the generative distribution is minimized at f̂ (0) = f ∗(0) and

f̂ (1) = f ∗(1). As P0 < 1, the prior has positive support over F
2 and so the concentration conditions of

Theorem 2 are satisfied. It follows from Corollary 3 that

pr(‖�̂(0) − �∗(0)‖ � ε | X) → 0, pr(‖�̂(1) − �∗(1)‖ � ε | X) → 0, ε > 0. (A1)

Assume that f ∗(0) |= f ∗(1) and fix ε < ‖�∗(0) − �∗(1)‖. From (A1), pr(‖�̂(0) − �̂∗(1)‖ < ε | X) → 0.

This implies that pr(H0 | X) → 0, as pr(H0 | X) < pr(‖�̂(0) − �̂∗(1)‖ < ε | X).
Assume that f ∗(0) = f ∗(1) = f ∗, where f ∗ has weights �∗. Let

Aδ = {�(0),�(1) : ‖�(0) − �∗‖ < δ, ‖�(1) − �∗‖ < δ}.
Let fα be the density for a Dir(α) distribution and let f (x | �) =∑K

k=1 πk fk . For large N ,

pr(Aδ, X | H1) =
∫∫

�(0),�(1)∈Aδ

N0∏
i=1

f (xi | �(0))

N1∏
j=1

f (x j | �(1)) fα(�(0)) fα(�(1))

�
∫∫

�(0),�(1)∈Aδ

N0∏
i=1

f (xi | �(0))

N1∏
j=1

f (x j | �(0)) fα(�(0)) fα(�(1))

= pr(Aδ, X | H0) pr(Aδ | H0),

and so

pr(H1 | Aδ, X) = pr(H1) pr(Aδ, X | H1)

pr(H1) pr(Aδ, X | H1) + P0 pr(Aδ, X | H0)

� pr(H1) pr(Aδ | H0)

pr(H1) pr(Aδ | H0) + P0
.

Clearly pr(Aδ | H0) → 0 as δ → 0, and therefore

pr(H1 | Aδ, X) → 0, δ → 0. (A2)

Result (A1) implies that for all δ > 0,

pr( Āδ | X) → 0, N → 0. (A3)

Fix ε > 0. It follows from (A2) and (A3) that we may take δ sufficiently small to ensure that

pr(H1 | X) = pr( Āδ | X) pr(H1 | Āδ X) + pr(Aδ | X) pr(H1 | Aδ X) < ε

for large N . Therefore, pr(H0 | X) → 1 as N → ∞.
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