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Recommender systems attempt to identify and recommend the most preferable item
(product-service) to individual users. These systems predict user interest in items based on
related items, users, and the interactions between items and users. We aim to build an
auto-routine and color scheme recommender system for home-based smart lighting that
leverages a wealth of historical data and machine learning methods. We utilize an
unsupervised method to recommend a routine for smart lighting. Moreover, by
analyzing users’ daily logs, geographical location, temporal and usage information, we
understand user preferences and predict their preferred light colors. To do so, users are
clustered based on their geographical information and usage distribution. We then build
and train a predictive model within each cluster and aggregate the results. Results indicate
that models based on similar users increases the prediction accuracy, with and without
prior knowledge about user preferences.
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1 INTRODUCTION

The technological revolution has facilitated the rise of smart ecosystems where every aspect of
everyday life such as transportation, agriculture, logistics, and healthcare are automated and can be
controlled and managed in the context of smart cities Ahad et al. (2020). Smart cities, assisted by
modern digital technologies, are a potential solution to enhanced quality and performance of urban
service Sikder et al. (2018).

The introduction of Internet-of-Things (IoT) in smart cities brings opportunities to
interconnect different applications using information and communication technology. One of
the many important implementations of IoT systems is lighting systems. Lighting systems account
for approximately one-third of electricity usage in commercial buildings Ryckaert et al. (2010).
One of many potentials of smart lighting systems is energy saving capabilities. Systems with
integrated energy saving light control systems can have 17–90% energy savings over traditional
lighting systems Von Neida et al. (2001). Beyond energy, smart lighting can be used to increase
light quality and have a positive impact on productivity Karlicek (2012), and circadian rhythm Oh
et al. (2014).

Light emitting diodes (LEDs) can be used for illumination and decoration purposes, and dimming
capability provides greater control over the light product. Furthermore, LEDs have low power
consumption and long lifespans, making them ideal for multi-channel lighting systems. The future of
smart lighting research is multi-disciplinary with potential improvements in energy efficient
buildings, building management systems, smart cities, human health, and psychology. The
application of smart lighting and control systems has been widely analyzed in industrial settings;
however, the application and usage in household residencies are relatively new. Smart lighting has
potential for improving house lighting; however, there are barriers to the adoption rates among
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potential users due to the initial investment cost. There is
room for improving the functionality of smart lighting
systems to increase the attractiveness to current users and
potential buyers. It has been shown that ease of use and
control-ability are important contributing factors among
people who purchased smart lighting products Zarindast et al.
(2021a) and among potential smart lighting customers Shin et al.
(2018).

Recent advancements in artificial intelligence, computational
power, storage capacity, and edge computing has made it
possible to leverage historical and real-time information to
learn patterns and provide solutions including recommender
systems. Recommender systems can be used to improve user
satisfaction, increase usability, and improve the control-ability of
smart products. These systems account for user preferences
based on historical and real-time information. In this paper, we
introduce a light routine and color recommendation system for
household residents. This recommendation system is intended
as an add-in feature to current and future smart lighting
systems. For this purpose, we develop a machine learning
model that leverages historical log data to learn and propose
personalized recommendations. We then built a context-aware
predictive model based on geographical, temporal, and usage
data of lights in households using machine learning. The end
product of this system is a light color recommendation, defined
as “scene”. These models are based on worldwide user logs of a
smart lighting system. The accuracy and robustness of the
system was tested using data from users across multiple
countries. Our solution is robust by sampling a diverse and
wealthy amount of data in terms of time period and number of
households as its metrics show low bias and high confidence
levels.

2 LITERATURE REVIEW

The literature review is separated into two categories of research,
namely light control systems and recommendation systems. This
paper proposes a data-driven personalized light recommendation
system in a smart lighting device adjusted to residential
requirements. There are numerous studies conducted on light
control systems for office requirements that may not suit
household needs due to the differences in intended uses and
needs of the lighting systems.

2.1 Light Control Systems
Lighting can contribute to improve mood and productivity
while maintaining comfort and increasing satisfaction Juslén
et al. (2007); Van Den Wymelenberg and Inanici (2014); Boyce
et al. (2000). A significant amount of people’s time is spent
indoors; hence, one of the main objectives of building control
systems should be to provide indoor comfort. However,
building control systems usually neglect to directly consider
occupant satisfaction in lighting design criteria Park and Nagy
(2018). One aspect of comfort is defined as having control over
the indoor environment while interacting with the system Nagy
et al. (2016).

Occupant based control systems are a feasible solution for
automated control systems in work places. There are several
occupancy based light control system studies that focus
specifically on workplaces. For example, Caicedo et al. (2011)
suggested a light control system that considers occupancy and
locations of the occupants to provide optimum brightness levels.
Peruffo et al. (2015) proposed a wireless network lighting system
with multiple sensors that determines daylight levels and
occupancy along with a central controller. The control
system’s output is a dimming level for lights based on
occupancy and daylight. Gunay et al. (2017) proposed a
lighting and blind control algorithm for office environment.
Moreover, they analyzed occupant behavior with different
scenarios and simulations. These models automatically control
lighting systems but neglect human perception, mood, comfort
and other occupant preferences. Given the importance of user
satisfaction and comfort, research on both comfort and control
systems has emerged Heydarian et al. (2015); de Korte et al.
(2015).

Recent studies have evaluated lighting control systems based
on occupancy and have considered occupant comfort in their
modeling for office layouts. Nagy et al. (2015) introduced an
occupancy based lighting control system based on statistical
analysis of sensor data. They identified minimum and
maximum brightness threshold levels by interacting with the
user based on statistical data analysis. Cheng et al. (2016)
proposed a closed loop satisfaction based Q-learning control
system that receives users’ perception as feedback signals. In
the proposed Q-learning based system, users’ explicit feedback
and interaction with the system is required. User feedback is a
useful source for modeling but is not always practical to
incorporate into the system. Users may not be willing to take
the time to give feedback for the system, particularly in home
based environment. Therefore, implicit understanding of user
preferences while interacting with the system is a more practical
and feasible solution in residential settings.

Zou et al. (2018) proposed a smart lighting control system that
adjusts the brightness level of lamps based on real time occupancy
data to minimize energy consumption. They included
personalization by an app control feature that enables the
occupant to adjust the brightness level of a nearby lamp. They
conducted an experiment over a 24 weeks’ time period and
evaluated the performance based on occupancy detection
accuracy and energy savings. In their proposed model, the
desired brightness level of each occupant is a given parameter
to an optimization problem and does not reflect the dynamics in
mood, individual preferences, and changing requirements for
different activities. Park et al. (2019) introduced a reinforcement
learning based control system for office location that is based on
occupancy. They collected data from five offices over an 8 week
period. All of the above mentioned studies propose a control
system for a business framework that would not be suitable for
household requirements yet are helpful to understand.

2.2 Recommendation Systems
Recommendation systems can be defined as systems that attempt
to identify and recommend the most preferable item (product-
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service) to individual users. These systems predict user interest in
items based on related items, users, and the interactions between
items and users (Lu et al., 2015). Commonly used
recommendation techniques include collaborative filtering
Burke (2000) which suffers from sparseness, scalability and
cold start problems Adomavicius and Tuzhilin (2005); and
content based Pazzani and Billsus (2007) techniques which
have overspecialized recommendation applications. Content
based filtering primarily extracts the content as a basis for
item prediction and attempts to build a user profile using
preference indicators van Capelleveen et al. (2019). There are
numerous examples of recommender system applications
including E-library Porcel and Herrera-Viedma (2010),
E-commerce Lawrence et al. (2001), movie, video Lee et al.
(2010) and TV program Kwon and Hong (2011)
recommenders. To date, however, no studies have provided
recommendation systems or investigated machine learning to
recommend residential light usage routines and scenes.

One of the challenges for recommendation systems is the cold-
start problem due to a lack of prior knowledge specific to an
individual new user. To deal with the cold-start problem,
researchers have recently considered social media as a source
of understanding customer characteristics and traits. Cho et al.
(2020) included what is called lifelog information in smart
lighting control system. Lifelogs include personal information
related to a user’s activities, biometrics and environmental
information. They included the user’s message, app location,
activity, and weather data in their analysis and introduced a
lighting control system. Their system was developed for a single
household using an infrastructure consisting of motion sensor,
pressure sensor on seats, an IoT camera in the kitchen for taking
pictures of the food consumed by the user. Moreover, to
understand the user’s emotions, they utilized text message
analysis. Although lifelog information can provide a
customized and personalized setting for each user, it has
several limitations: 1) it has to be compiled for each user
separately, 2) it may have scalability issues due to large-scale
implementation of such infrastructure not always being practical,
3) there may be privacy issues related to gathering this kind of
information, as users may not feel comfortable with being
monitored at this level. Therefore, a more generic personalized
system is needed to propose personalized recommendations that
respect user privacy and do not require complex infrastructure for
implementation.

This paper, investigates the application of historical usage logs
to build a data-driven recommender system for household
lighting systems. The aim is to increase the utility of the
lighting system and introduce advanced smart lighting features
that can learn from household users’ past behaviors and
incorporate user preferences in the recommender system. User
perceptions are investigated implicitly by leveraging past
historical data. In this manner, our system applies an implicit
understanding of user behaviors and preferences to take charge of
their environment via increased control over the lighting system.
Recommended preferences and increased control over the

lighting system has the potential to improve the user
experience Zarindast et al. (2021a).

3 METHODOLOGY

3.1 Data Abstraction
The mathematical abstraction for describing the data is presented
in this section. The data set is based on actions (e.g., turn on/off,
color change, rule setting, etc.,) and each observation defines an
order that targets a smart light bulb. Light orders can come from
various sources such as app, buttons, and switches. All the orders
go through a device called a hub which is responsible for the light-
user interactions and for saving the communications between
light bulb and the hub as log entries. Important features of each
order considered in this analysis include timestamp associated
with each order, color dimension features (saturation, brightness,
color coordinates (x,y), color temperature, color mode, light id,
group id that defines room type, and hub id which is the unique
identification of a household, city and country. Overall this results
in a 5th order tensor:

X � {xt1,d,r,b,s, xt2 ,d,r,b,s, . . . , xtN,d,r,b,s} (1)

Where x is a Boolean variable (on/off), ti denotes the ith time
instance in which T � { ti|i ∈ N }, s ∈{S} denotes scenes, d ∈{D}
denotes days, r ∈{room1, room2} denotes room type, b ∈{B}
denotes households.

3.2 Routine Recommender
Our framework is separated into two major sub-systems, namely 1)
routine and 2) scene recommenders. The routine recommender is
based on the frequency of light usage in each room type. We utilize
an unsupervised learning method to select highly used periods of
time. The frequency of use in each timestamp is defined using Eq. 2
and is shown in Figure 1. Using the elbow cutoff method, as
described in previous studies Zarindast et al. (2021b) (submitted);
Zarindast (2019) , shown in Figure 1A we define the margin in
which the lights are highly used throughout the time period. The
horizontal line in Figure 1 represents the margin identified by the
elbow cutoff point, and the timestamps that have a frequency above
the threshold point are the desired period of time based on usage. For
instance, the recommended routine for this particular user in this
room type occurs in the 7–10 PM time slot.

avg light on frequency �
∑
D

d�1
on

D
,∀ti ∈ N (2)

3.3 Scene Recommender
The scene recommendation methodology is shown in Figure 2.
In the scene recommender system, we cluster users based on
similar characteristics and identify the most probable used scene
in each hour based on the user clusters. Our sample consists of
users located in four different countries across the world. We
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consider two highly used room types. We first cluster the users
into groups based on their usage patterns and geographical
location. Then, using those groups, we train our machine
learning model to predict the scene usage within each group
of similar users. Finally, we report the overall prediction accuracy
via a weighted average over all clusters. We use multiple machine
learning algorithms to explore the method before and after the
clustering described above, and we present detailed descriptions
of the methods in each section below.

3.4 Data Description and User Clustering
Our sample includes a total of 578 households located in
United States and abroad b ∈ B. This analysis considers two
highly used room types as r � {r|r ∈ (room1, room2)} . The

analysis is at the room level and therefore, all the scheduling, color
recommendations and predictions are done at the room level for
each room type. As a result, each household can have a maximum
of two room types in our analysis. Our period of study was the
2019 calendar year, and the analysis is based on eight predefined
color environments referred to as “scene” in this analysis s ∈ S .
Clustering of similar users is based on usage characteristics and
geographical locations for each room type. We consider
(0.15–0.85) quantiles values of “avg turn on frequency”
defined in Eq. 2, a vector of [1440 p 1] dimension (for 24 h*
60 min) and one-hot encoding of country and room types as
features for clustering. The number of clusters is defined using the
elbowmethod over inertia values, which resulted in three clusters,
corresponding to elbow point in Figure 3.

FIGURE 1 | Usage distribution and cutoff point.
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Later, to show the effectiveness of the clustering method, The
distribution of system usages in each household and room type is
plotted. The CDF plots in Figure 4 show the effectiveness of the
method, as CDF lines are close to each other within each cluster
and are separated from the other clusters.

3.5 Features
Considering the methodology presented in Figure 2, a numerical
description of the features are presented in Table 1. The
importance of each feature is presented in Figure 5. The
description of features used in both Figure 5; Table 1 are as
follows:

1 Monthly turn on: the unique number of days that light was
on in a given hour for a given room type and a particular
household.

2 Avg turn on: normalizes monthly turn on by dividing it to
the number of days available in 1 month.

3 Quarterly turn on: the unique number of days light was on in
a given quarter in a given hour for a given room type and
particular household.

4 Avg turn on quarterly: normalized quarterly turn on divided
by the number of days available in a quarter.

5 Yearly turn on: the unique number of days light was on at a
given hour for a given room type and particular household.

6 Yearly avg turn on: normalized yearly turn on divided by the
total number of days in the year.

We also consider temporal characteristics such as “month,”
“hour” and “period factor.” Geographical features are presented
as “city factor” and “country factor.” Finally “class factor” defines
the room type in this analysis.

3.6 Training and Prediction
We utilize random forest, KNN, and XGBoost to compare the
prediction performance across different classes. Random
forest is a tree-based meta estimator that fits an estimator
on various sub samples, reduces the prediction variance and
prevents overfitting by averaging over the models trained on
the sub samples. Sub sample size is controlled with the
bootstrap option. XGBoost is an ensemble method of
gradient boosted trees, and it works by combining weak
predictive tree models and learning from them. KNN
implements k nearest neighbors and voting among
neighbors. In this study, the above mentioned methods’
parameters were optimized based on grid search on the
following hyperparameters: number of trees, max depth of
trees, and number of neighbors. We split the data to train-test
split and use independent test and cross validation for
evaluating the predictions.

3.7 Evaluation
Here we analyze the performance of different algorithms
described in the methodology, before and after the clustering.
Using data described in section 3.4 and features described in
section 3.5 we aim to provide a personalized scene
recommendation. To do so, we first compare different
algorithms and their prediction performance for each of our
classes (colors). We used precision, recall, F-score, accuracy and

FIGURE 2 | Proposed methodology for scene prediction.

FIGURE 3 | Optimum value of number of cluster.
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balanced accuracy in our framework for evaluation purposes in
Equations (recall-balanced ac).

• (TP):True Positive
• (TN):True Negative
• (FP):False Positive
• (FN):False Negative

Recall � TP

TP + FN
(3)

Specificity � TN

TN + FP
(4)

Precision � TP

TP + FP
(5)

Accuracy � TP + TN

TP + FP + TP + TN
(6)

F1 − score � 2 p(Precision pRecall)
Precision + Recall

(7)

Balanced Accuracy � Recall + Specificity

2
(8)

4 RESULTS AND DISCUSSION

4.1 General Recommendation
In this study, we analyzed the performance of each category
(color) in our multi category classification problem. We then
provided a summary result for each method, both in terms of
accuracy and balanced accuracy. Later, by selecting the algorithm,
we compared the performance of the algorithm for the two phases
of before and after clustering. Moreover, we analyzed the
accuracy and balanced accuracy within each separate cluster.
The results of our model are described in this section in three
stages: First, prior to clustering, we set a benchmark by analyzing
different algorithms and their performance on our set up. Second,
we summarized the results of classifier estimates into two single

FIGURE 4 | CDF plots for each household-room type colored by cluster number.

TABLE 1 | Numerical description of features.

month hour Monthly
turn on

Avg turn
on

monthly

Quarterly
turn on

Avg turn
on quarterly

Yearly
turn on

Yearly
avg

turn on

Mean 5.83 11.5 22.1 0.74 61.52 0.68 219.26 0.68
Std 3.09 6.92 8.42 0.28 23.64 0.26 71.19 0.22
Min 1 0 1 0.03 1 0.01 1 0.00
25% 3 6 16 0.53 44 0.49 170 0.52
50% 6 12 25 0.83 65 0.72 228 0.70
75% 8 18 30 1 84 0.93 283 0.87
Max 11 23 31 1.03 92 1.02 324 1
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metrics of accuracy and balanced accuracy. Third, we trained our
algorithm on each cluster separately, reported the accuracy and
balanced accuracy results, and aggregated them.

In the first stage, we randomly split the data into train and test
(90–10%) sets.Table 2 shows the results of different algorithms in
terms of recall, precision, and F-score metrics on our test set using
each of the classification methods discussed in section 3.6.

The scene prediction problem is a multi category classification
problem and, therefore, classifier performance should be judged
based on each separate category. The category prediction results
presented in Table 2 confirmed that there was no crucial
imbalance in the prediction. Moreover, performance was
relatively robust with respect to each category. In the second
stage, classifier estimate results provided for each category in

Table 2 were summarized into two single metrics (accuracy and
balanced accuracy) as shown in Table 3.

In the third stage, using features and methods described in
section 3.4, we group our sample into three clusters. Considering
F1-score and accuracy, we used random forest as our classifier.
Within each cluster, we split our data into train-test (90–10%)
sets and reported the results in terms of accuracy, balanced
accuracy and weighted average accuracy over the clusters
populations in Table 4. As shown in Table 4, the overall
weighted average has a meaningful increase both in terms of
accuracy and balanced accuracy. This indicates that training
within similar users enhances the recommendation system by
0.72 percent in terms of accuracy.

4.2 Cold Start
The lack of prior knowledge on individual user preferences causes
recommendation systems to face a problem known as cold start.
Here we analyze cold start in our scene prediction problem and
we report our efforts to cope with this issue. We show that
clustering can increase the prediction accuracy in a cold start
context. Figure 6 shows the effect of sampling size on model
performance when facing cold start. The train and test sets

FIGURE 5 | Feature importance.

TABLE 2 | Performance metrics in different algorithms (test set).

Precision Recall F-score

Class/method RF KNN XGBoost RF KNN XGBoost RF KNN XGBoost

0 0.97 0.94 0.92 0.97 0.96 0.95 0.97 0.95 0.93
1 0.97 0.94 0.93 0.91 0.94 0.93 0.94 0.94 0.93
2 0.94 0.90 0.94 0.88 0.87 0.88 0.91 0.89 0.91
3 0.96 0.93 0.96 0.99 0.91 0.91 0.97 0.92 0.93
4 0.96 0.87 0.95 0.94 0.81 0.94 0.95 0.84 0.95
5 1.00 0.92 0.96 1.00 0.81 1.00 1.00 0.86 0.98
6 0.97 1.00 0.97 0.89 1.00 0.91 0.93 1.00 0.94
7 1.00 0.84 1.00 1.00 0.79 1.00 1.00 0.82 1.00
8 1.00 0.71 1.00 0.87 0.71 1.00 0.93 0.71 1.00

TABLE 3 | Test accuracy before clustering (test set).

Method Accuracy Balanced accuracy

RF 0.965 0.939
KNN 0.9312 0.86
XGboost 0.928 0.946
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include different households and therefore, it reflects the condition
of no prior knowledge on specific household preferences.

We investigated three test sets with different sample sizes as
follows: In scenario 1, we reserved 10% of households for the test set
and trained on 90%. In scenario 2, we tested on 25% of households
and trained on 75%. In scenario 3, we reserved 40%of households for
the test set and trained on 60%. We ran 20 randomly sampled
iterations using this set up for each scenario and reported cross
validation averaged accuracy on train and test sets. In addition, we
obtained independent test prediction accuracy as shown in Figure 6.
The average accuracy over the independent test prediction and test
cross validation increase by increasing the sample size. Moreover, the
increase in training sample size results in lower deviation in test
accuracies for both cross validation and independent test prediction.
Cross validation shows better performance in terms of average test
set accuracy in the first scenario where the test size is smaller. As with
smaller datasets it is better to do cross validation and train on the
entire dataset. On the other hand, when running independent testing,
the average accuracy increases by increasing the training sample size.
As such, by increasing the test sample size to 40%we achieved amore
robustmodel. Overall, the comparison of cross validation accuracy in
train sets in the three scenarios suggests that havingmore data would
result in better performance in terms of accuracy and with smaller
dataset deviation as prediction accuracy increases.

Table 5 shows the effect of clustering on how well we can
predict the preferences in scene recommendations for the cold
start problem. As shown, after clustering, accuracy has a
meaningful increase and is beyond the classifier’s deviation. It
is notable that accuracy in clustering method is reported by a
weighted average over the population of each cluster.

It should be noted that many personal and environmental
factors affect lighting needs and preferences in each room type
and household. The personal factors include mood, general
activity, personality, and living style while the environmental
factors include design of building for each room type, apartment
level, window size and direction, and level of daylight for each
room. When there is no prior knowledge of users’ environmental
and personality factors, a time-location based prediction of users’
desired light color can be challenging. Thus a more accurate
prediction would require access to personal information that
could interfere with user privacy.

5 CONCLUSION AND FUTURE WORK

Energy consumption is a crucial factor in house lighting products,
and smart lighting has a high potential for energy saving Von
Neida et al. (2001). However, a recent study showed that energy
consumption was not an influential factor among smart lighting
users Zarindast et al. (2021a) and they consider ease of use as an
important contributing factor Zarindast et al. (2021a). Moreover,
ease of use and perceived usefulness are significant factors in smart
lighting purchase intention Shin et al. (2018). As a result, since a
personalized recommendation feature in smart lighting products
can contribute to the ease of use aspect of lighting systems, it can
contribute to the adoption rate of smart lighting products.

To increase the functionality of the smart lighting system for
households, ease the use of the system and increase the control
ability of the system, this paper introduced a light routine and color
recommendation system for household residents. This problem
consisted of two subproblems: light schedule and color, which we
dealt with as routine and scene recommendations. We proposed
separate frameworks for each subproblem as follows: For routine
recommendation, we used an unsupervised clustering method
based on the frequency of light usage in each minute of the
period of analysis. The most frequently used time period would
be suggested as a light routine to the user. We did feature
engineering and trained and predicted light color using random
forest, KNN and XGboost. Based on users’ usage characteristics
and geographical location, we clustered them and used these
clusters to train our machine learning algorithms. We

TABLE 4 | Weighted test accuracy after clustering.

Cluster number Balanced accuracy Accuracy Cluster population

0 0.98 0.987 133
1 0.93 0.972 259
2 0.94 0.965 263
Overall weighted average 0.944 0.972 655

FIGURE 6 | Random sampling on household separation result.

TABLE 5 | Cold start problem and clustering.

Clustering Metric Mean Standard deviation

Before CV test 0.41 0.03
After CV weighted average 0.44 0.02
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considered the scene recommendation problem as amulti-category
classification problem. We leveraged historical data from
households located in different geographical locations worldwide
for 1 year to develop personalized recommendations. We utilized
clustering to enhance our system’s prediction performance and we
analyzed the performance of our classifier on two different settings
(with and without prior knowledge of household preferences).
Results revealed that training on similar users enhanced our
classifier’s prediction performance on generic and cold start
recommendations.

Mood and emotion affect how humans perceive and interact
with lighting systems. Therefore, identifying human mood,
behavior, psychology, and emotions at each time period using
other sources and associating those pieces of information with a
recommendation system is a promising line of future research
work. Another potentially useful line of research would be
investigating and quantifying the effect of smart lighting on
human psychology, building management systems, etc.
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