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Abstract

Background: Enhanced prediction of progression in secondary progressive multiple sclerosis (SPMS)

could improve clinical trial design. Machine learning (ML) algorithms are methods for training predic-

tive models with minimal human intervention.

Objective: To evaluate individual and ensemble model performance built using decision tree (DT)-

based algorithms compared to logistic regression (LR) and support vector machines (SVMs) for pre-

dicting SPMS disability progression.

Methods: SPMS participants (n¼ 485) enrolled in a 2-year placebo-controlled (negative) trial assessing

the efficacy of MBP8298 were classified as progressors if a 6-month sustained increase in Expanded

Disability Status Scale (EDSS) (�1.0 or �0.5 for a baseline of �5.5 or �6.0 respectively) was observed.

Variables included EDSS, Multiple Sclerosis Functional Composite component scores, T2 lesion

volume, brain parenchymal fraction, disease duration, age, and sex. Area under the receiver operating

characteristic curve (AUC) was the primary outcome for model evaluation.

Results: Three DT-based models had greater AUCs (61.8%, 60.7%, and 60.2%) than independent and

ensemble SVM (52.4% and 51.0%) and LR (49.5% and 51.1%).
Conclusion: SPMS disability progression was best predicted by non-parametric ML. If confirmed, ML

could select those with highest progression risk for inclusion in SPMS trial cohorts and reduce the

number of low-risk individuals exposed to experimental therapies.
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Date received: 17 May 2019; Revised received: 23 August 2019; accepted: 9 October 2019

Introduction

The ability to accurately predict disability progres-

sion may lead to an improved understanding of mul-

tiple sclerosis (MS) pathogenesis, facilitate faster

treatment development, and inform both patient

and physician treatment decisions. Selecting individ-

uals predicted to be at high risk of progression

within the near future for clinical trials may allow

for shorter trial durations as well as reduce the

number of individuals exposed to experimental ther-

apies. This is particularly important in secondary

progressive multiple sclerosis (SPMS), where

disability progression is independent of relapses

and treatment options are limited.1

Machine learning (ML) algorithms are data science

approaches to building predictive models that are able

to learn patterns and relationships within data while

requiring minimal human intervention. In MS, the

application of ML thus far has mainly been for classi-

fying participants into the different disease stages (e.g.

clinically isolated syndrome (CIS), relapsing–remitting

multiple sclerosis (RRMS), and SPMS),2–4 or for pre-

dicting transition from CIS to clinically definite MS,5–7

and less for predicting disability progression. One study
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showed that an ensemble of 10 support vector machines

(SVMs) outperformed logistic regression (LR) for pre-

dicting disability progression (defined by an Expanded

Disability Status Scale (EDSS) increase of 1.0) within 5

years in individuals with EDSS <4.8 SVMs map the

original data to a higher dimension so that it is more

linearly separable by a decision plane; linear SVMs

(LSVMs) used in the aforementioned study maps

data to a higher dimension using a linear transforma-

tion. Unlike LR, which fits a linear model to all data

points, the decision plane of SVMs is defined by a

subset of the data and does not require distributional

assumptions.9

A benefit of ML is that it can more flexibly model

nonlinear relationships. Whereas parametric models

like LR and LSVMs place assumptions on the char-

acteristics of the input data, non-parametric models

such as the decision tree (DT) do not. Starting from a

labeled set of data (parent node), decision rules are

learned to split the data into groups (child nodes)

that are each “purer” in class composition than the

parent node.10 Each child node then becomes a

parent node and the process is repeated until stop-

ping criteria are met. To classify new data using

DTs, the learned decision rules are applied.

Ensemble models combine the predictions of multi-

ple models to produce a weighted prediction, similar

to humans seeking multiple opinions before making

a decision.11 As a result, ensemble models are less

prone to overfitting and generalize better to new

data. The random forest (RF) is an ensemble of

DTs trained on randomly selected subsets of features

from the original dataset.12 AdaBoost-DT (AdB) is a

DT-based ensemble model trained using the

AdaBoost algorithm which sequentially trains a set

of weak models with class weights determined by

misclassifications of the preceding model.13 The

purpose of this study was to evaluate the predictive

performance of individual (DT) and ensemble non-

parametric (RF and AdB) models trained using the

DT algorithm, compared to the individual and

ensemble models trained using LR and LSVM algo-

rithms, for prediction of EDSS progression in SPMS

on data withheld from model training (i.e. general-

izability) and to establish a starting point for predict-

ing SPMS progression using several ML methods.

Materials and methods

Study population

A 2-year randomized, double-blind, placebo-con-

trolled phase III study with participation from 47

centers across 10 countries evaluated the efficacy

and safety of MBP8298 in participants diagnosed

with SPMS.14 Of the 612 randomized participants,

539 (88%) completed the study. MBP8298 did not

provide a clinical benefit when compared to placebo.

EDSS score was collected every 3 months for

24 months to identify progression, and baseline

Multiple Sclerosis Functional Composite (MSFC)

component scores – the 9-Hole Peg Test (9HP),

Timed 25-Foot Walk (T25W), and Paced Auditory

Serial Addition Test (PASAT) – were used. The

MSFC component Z-scores were standardized to

the Task Force Dataset.15 T2 lesion volume

(T2LV) and brain parenchymal fraction (BPF)

were extracted by blinded radiologists and technol-

ogists from magnetic resonance imaging (MRI)

studies.

Data from both control and treatment arms of the

MBP8298 study was filtered to remove participants

with multiple missing visits or data entries at any

given visit. These include participants that did not

have a complete set of baseline clinical scores

(EDSS, MSFC, 9HP, T25W, PASAT) or missing

baseline T2LV or BPF. Imputation was not per-

formed for participants missing multiple data entries

for several reasons. Imputation would require

assumptions on the underlying population distribu-

tion. Additionally, within a short time-frame, longi-

tudinal clinical and MRI measurements are noisy.

Therefore, imputing missing temporal values is

unlikely to accurately approximate the true value.

Participants were categorized as either having con-

firmed disability progression (CDPþ) or not

(CDP�). Individuals were classified as having con-

firmed disability progression only if and only if a

6-month sustained-increase in EDSS (�1.0 or �0.5

for baseline EDSS �5.5 or �6.0 respectively) was

observed. As the study concluded at 24 months, par-

ticipants with an EDSS increases between 18 months

and 24 months could not be verified at 6 months for

sustained increase and were classified as non-

progressors.

Study design

Predictors of progression. Baseline clinical predic-

tors included T25W, 9HP, and PASAT, standardized

to the Task Force Dataset,15 and EDSS.

Demographic variables included disease duration

(time since first MS diagnosis), age, and sex.

Baseline MRI variables included T2LV (mm3) and
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BPF. Longitudinal data was available but the time

points overlapped with our prediction target window

and was therefore not included.

Tenfold cross-validation. Generalizability was esti-

mated using tenfold stratified cross-validation

(10-CV) to train and evaluate the performance of

each model. For each 10-CV, the data was split

into 10 non-overlapping subsets that had approxi-

mately the same prevalence of progression as the

original sample; this allowed for 10 cycles of train-

ing and validation. In each cycle, nine subsets (90%)

were used for training the model (training data)

while the remaining subset (10%) was used to

assess model performance (validation data).

Data processing. Individual features in each 10-

CV cycle’s training data were scaled using an

approach robust to outliers by first removing the

feature’s median, then scaling the feature by its

interquartile range. Input features in the validation

data of each 10-CV cycle were then transformed in

the same manner using the statistics of the training

data. Scaling of the data was necessary to allow for

comparison of predictor importance in LR and SVM

using their model coefficients which would other-

wise be affected by differing feature magnitudes.

Class imbalance. The dataset has more CDP�
than CDPþ. To prevent models from preferentially

predicting non-progression, random under-sampling

was applied to the training data in each 10-CV cycle

to balance class representation. Random under-

sampling randomly selects CDP- participants to

exclude from training so that data presented to the

model has equal class representation. Random

under-sampling was not applied to the validation

data – this allowed for models to be evaluated on

datasets that reflected the prevalence of progression

in the study population. Independent models were

trained on one randomly under-sampled training

set, while individual classifiers of each ensemble

model were trained on a different, randomly under-

sampled training set.

Models for predicting disability progression. We

evaluated the performance of independent models

trained using two parametric algorithms, LR and

linear kernel SVM, and one non-parametric algo-

rithm, the DT. Additionally, we evaluated ensemble

models constructed with the aforementioned algo-

rithms: an ensemble LR (ensLR), ensemble LSVM

(ensLSVM), RF, and AdB. All models were

trained and validated using Scikit-learn 0.20.2 in

Python 3.6.16

Hyperparameters used for training the individual

models were chosen using a fivefold nested cross

validation; a fivefold cross-validation grid search

within each training dataset of the 10-CV cycles

identified ten ideal sets of generalizable hyperpara-

meters that minimized overfitting. Bootstrapping

(n¼ 2000) was then applied on each hyperparameter

to select the final value used for model training.

The penalty parameter for the individual LSVM was

chosen to be 0.81 from a linear search grid from 0.01

to 1.00 with steps of size 0.01. DT node splitting

required each child node to contain a minimum of

5% of the total number of training samples and was

chosen from 5%, 10%, or 15%.

Ensemble models were constructed using hyperpara-

meters chosen for the individual models. The

number of classifiers in each ensemble was selected

from three possible choices (2, 5, or 10) classifiers

using the same fivefold nested cross-validation and

bootstrapping procedure. The final ensLR was con-

structed with two LR classifiers, and the ensLSVM

was constructed using 10 LSVMs. All three choices

for RF (using up to a maximum of eight randomly

selected input features) and AdB yielded similar per-

formance and so the simplest models (two-classifier

ensembles) were chosen.

Evaluation of model performance

Identifying progressors and non-progressors. The

ability of each algorithm’s trained model to identify

progressors and non-progressors can be assessed

using sensitivity (true positive rate) and specificity

(true negative rate) metrics that are defined as

follows:

Sensitivity ¼ True Positives

True Positives þ False Negatives

Specificity ¼ True Negatives

True Negativesþ False Positives

A tradeoff exists between sensitivity and specificity

that can be visualized in a model’s receiver operat-

ing characteristic (ROC) curve. The ROC curve

plots sensitivity versus 1� specificity and is useful

for determining the optimal threshold for classifica-

tion.17 The area under the ROC curve (AUC) is a

Law et al.
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better measure of performance than accuracy partic-

ularly in class-imbalanced problems,18 and was used

as the primary outcome for algorithm comparison.

An AUC of 50% indicates no better than random

separation, AUC of 0% indicates inversed class sep-

aration (i.e., all CDPþ classified as CDP�, and vice

versa), while an AUC of 100% indicates perfectly

separated classes.

In order to compare the sensitivity and specificity of

the various algorithms, models were first optimized

using the ROC convex hull method to identify the

thresholds that best balanced the sensitivity-

specificity trade-off with respect to the training

data.19 Probabilistic predictions made on the valida-

tion data were then converted to binary predictions

using the identified thresholds to compute sensitivity

and specificity.

Predicting progression and non-progression. To

assess predictive performance for both progression

and non-progression, predictive values and change

in pre- to post-test probabilities were used. Positive

predictive value (PPV) and change in pre- to post-

positive test predictive value (DPPV) are defined as:

PPV ¼ True Positives

True Positives þ False Positives

DPPV ¼ PPV� PrevalenceCDPþ

PPV describes the probability of progression when

an individual is predicted to progress. The DPPV
shows the change in probability that an individual

predicted to progress will progress compared to the

baseline likelihood defined by the prevalence of

progression.

Model performance in predicting non-progression

was evaluated using the negative predictive value

(NPV) and change in pre- to post-negative test prob-

abilities (DNPV), defined as follows.

NPV ¼ True Negatives

True Negativesþ False Negatives

DNPV ¼ NPV� PrevalenceCDP�

NPV is the proportion of predicted non-progressors

that did not progress. DNPV is the change in prob-

ability that an individual predicted to be CDP� does

not progress compared to the baseline likelihood of

non-progression defined by the prevalence of non-

progression.

Predictor contribution to model training

In addition to model performance on predicting pro-

gression, we examined whether there were qualita-

tive differences in predictor contributions for each

trained model as well as the variance in predictor

importance across the cross-validation folds. The

contribution C of each predictor x in individual

and ensemble LR and LSVM models were calculat-

ed from the model coefficients c and represented as a

percentage:

CðxÞ ¼ jcxjX8

i¼0
jcij

� 100%

RF and AdB predictor contributions were deter-

mined by the impact of each predictor on decreasing

the impurity at each node; this was extracted from

the model at the end of training.

Statistical analysis

Comparison of AUC was performed using Sun and

Wu’s fast implementation of DeLong’s algorithm for

comparing correlated AUCs with generalized U-sta-

tistics.20,21 Sensitivity and specificity were com-

pared using the McNemar v2 test.22 PPV and NPV

of each algorithm were compared by their predictive

values relative to the other models.23 Changes in

pre- to post-positive and negative test probabilities

were compared to positive and negative prevalence

using one-sample tests of proportions. A signifi-

cance threshold of 0.05 was used for all compari-

sons. All analyses were performed in MathWorks

MATLAB R2018a.

Results

Study demographics and predictor characteristics

A total of 54 participants (10%) were removed from

our study due to missing data, resulting in a study

cohort of 485 SPMS participants. The missing diagno-

sis duration for one participant was replaced by the

mean duration of the study cohort. Of the 485 partic-

ipants, 415 participants experienced an EDSS increase,

but only 115 were CDPþ. Overall, 370 (76.3%) were

CDP- and 115 (23.7%) were CDPþ. The baseline

characteristics for the final 485 participants in our

study population can be found in Table 1.

Multiple Sclerosis Journal—Experimental, Translational and Clinical
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Table 1. Baseline predictor characteristics of the study sample.

CDPþ (n¼ 115) CDP� (n¼ 370) Overall (n¼ 485)

Demographical features

# of females 74 (64.3%) 237 (64.1%) 311 (64.1%)

Mean age [years] (SD) 50.3 (8.2) 51.1 (7.9) 50.9 (8.0)

Mean durationa [years] (SD) 9.1 (4.4) 9.3 (5.1) 9.3 (5.0)

Clinical features

Median EDSS (25th, 75th %tile) 6.0 (4.5, 6.0) 6.0 (4.5, 6.5) 6.0 (4.5, 6.5)

Mean T25Wb [Z] (SD) 0.08 (1.52) 0.05 (1.54) 0.06 (1.54)

Mean 9HPb [Z] (SD) �0.02 (0.93) 0.07 (0.95) 0.05 (0.95)

Mean PASATb [Z] (SD) 0.05 (1.02) 0.01 (1.00) 0.02 (1.01)

MRI biomarkers

Median T2LV [mm3]

(25th, 75th %tile)

10,403.9

(3392.5, 19796.4)

9012.0

(3730.3, 19889.3)

9321.4

(3621.6, 19872.8)

Mean BPF (SD) 0.7559 (0.0473) 0.7520 (0.0474) 0.7530 (0.0476)

aDisease duration (time since first MS diagnosis).
bStandardized to the Task Force Dataset.14

Note. Bold face highlights the statistically significant p < 0.05 findings.
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Figure 1. Training receiver operating characteristic curve for individual and ensemble models using logistic regression

and linear SVM, and decision tree algorithms
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ROC curves

Parametric models and their ensemble counterparts

did not fit the training data as well as the non-

parametric models did (Figure 1). This was reflected

in model validation ROC curves (Figure 2).

Overall model performance

AUCs summarizing the validation ROC curves

in Figure 2 can be seen in Table 2. All non-

parametric models outperformed parametric

models. No differences were observed between the

parametric models or between the non-parametric

models.

Optimal classification thresholds were identified to

be 49.8%, 50.0%, 49.8%, and 50.0% for LR,

ensLR, LSVM, and ensLSVM, and 53.7%, 53.1%,

and 52.7% for DT, RF, and AdB. Sensitivity and

specificity can be seen in Tables 3 and 4, respective-

ly. Trade-offs between sensitivity and specificity are

noticeable in the parametric models, with the model

either identifying more CDPþ and less CDP� (as in

the ensLR and LSVM) or vice versa (in LR and

ensLSVM).

Predicting progression and non-progression

Non-parametric DT models outperformed solo and

ensemble LSVM and LR models in PPV. No signif-

icant DPPV was observed in any parametric models

while all DT-based models achieved significant pre-

to post-positive test probabilities. These findings are

summarized in Table 5.

For NPV, only DT and RF performed significantly

better than parametric models. The only parametric

model with a significant DNPV was LSVM. All the

non-parametric models DT, RF and AdB achieved

significant DNPVs. These findings are summarized

in Table 6.

Predictor contribution to model training

Qualitative differences were found in predictor

importance between the parametric models and

non-parametric DT models. Most notably, T25W
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Figure 2. Validation receiver operating characteristic curve for individual and ensemble models using logistic regression

and linear SVM, and decision tree algorithms
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contributed very little to the training of parametric

models (<3%) while contributing much more to

DT models (>15%). Sex contributed more to para-

metric model training (>9%) than non-parametric

models – only contributing 0.8% to DT training,

0.4% to RF training and 1.0% to AdB training.

Table 7 summarizes the findings. A plot of the

feature contributions to the training of each

model is shown in Figure 3 and illustrates the dif-

ference in T25W and sex predictor importance on

the models examined.

Discussion

In our study population of 485 SPMS participants,

we found that DT-based non-parametric models out-

performed LR typically seen in data science and

linear kernel SVM in separating CDPþ from CDP-

(AUC), CDPþ predictive accuracy (PPV), and

CDP� predictive accuracy (NPV). In fact, the

ROC curves show that both parametric models did

not fit the training data well, with LR having iden-

tified less than half of progressors and non-

progressors.

We observed that there were no significant differ-

ences in performance between ensLSVMs, an inde-

pendent LSVM, and LR. These findings are

consistent with those by Zhao et al. when using

only baseline features.8 DT-based models were not

restricted to linear relationships and outperformed

individual and ensemble LR and LSVMs in predic-

tive accuracies. No statistically significant differen-

ces were observed between the non-parametric

methods examined. All DT-based models achieved

positive pre- to post-test probabilities.

Despite improvements in PPV and NPV demonstrat-

ed by DT-based models, significant improvements

over parametric models were observed in specificity

measures but not sensitivity measures. This may be

due to both the sensitivity-specificity trade-off, and

Table 2. Area under the curve (AUC) of individual and ensemble models constructed using logistic regression, SVM, DT

algorithms, and comparisons to other models.

Reference

model

AUC

% AUC differencea

(p-value)b

[95% confidence interval]

Comparison Model

% SD ensLR LSVM ensLSVM DT RF AdB

LR 49.5 3.1 1.7

(0.595)

[�1.9, 5.3]

2.9

(0.107)

[�2.6, 8.4]

1.6

(0.612)

[�2.2, 5.3]

12.3

(0.002)

[10.2, 14.4]

11.2

(0.006)

[9.1, 13.3]

10.7

(0.007)

[9.3, 13.1]

ensLR 51.1 2.7 1.2

(0.703)

[�2.2, 4.7]

�0.1

(0.965)

[�3.4, 3.1]

10.6

(0.008)

[10.6, 10.6]

9.5

(0.019)

[9.3, 9.8]

9.0

(0.0251)

[8.2, 9.8]

LSVM 52.4 3.1 �1.4

(0.653)

[�5.1, 2.4]

9.4

(0.022)

[7.8, 11.1]

8.3

(0.043)

[6.4, 10.2]

7.8

(0.058)

[5.9, 9.7]

ensLSVM 51.0 2.7 10.7

(0.005)

[9.2, 12.3]

9.7

(0.012)

[7.9, 11.5]

9.2

(0.015)

[7.0, 11.3]

DT 61.8 3.0 �1.1

(0.460)

[�6.6, 4.4]

�1.6

(0.487)

[�6.6, 3.4]

RF 60.7 3.1 �0.5

(0.843)

[�5.4, 4.3]

AdB 60.2 3.1

aDifference is comparison model AUC minus reference model AUC.
bP-value obtained using DeLong’s algorithm for comparing AUC.20,21

Law et al.
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relatively small validation sets (approximately 48

samples per validation dataset) generated by 10-CV.

LR continues to be the standard approach in model-

ing binary disability progression in MS, evaluated

based on goodness of fit and not on generalizability.

However, our findings suggest that the linear

assumption for modeling disability progression in

SPMS should be questioned and non-parametric

methods should be further explored.

Analyzing predictor contributions to parametric

model training, we can see that T25W contributed

the least to parametric model training. This leads us

to hypothesize that there may be a nonlinear rela-

tionship present between T25W and progression

which cannot be modeled using linear models, par-

ticularly since non-parametric models performed

better with greater contributions from T25W.

Additionally, we found that sex as a predictor had

a near-zero contribution on the better-performing

nonlinear models.

In most studies of prognostic factors for disability

progression, predictive models use statistical

approaches such as linear regression for continuous

response prediction or LR for binary response pre-

diction,24 and Cox regression or Kaplan–Meier anal-

yses for survival analysis.25 Unfortunately, these

analyses do not provide any estimation of their gen-

eralizability on samples not used for model fitting.

For example, LR was used to evaluate brain atrophy

and lesion load as prognostic factors for predicting

EDSS score at 10 years.26 R2 values were reported

for model goodness of fit to the data, but no estima-

tion of how the model would perform on data not

used for model fitting was provided. Our study eval-

uated model performance based on their estimated

generalizability by validating models on data with-

held from training in each cycle of 10-CV.

Table 3. Sensitivity performance at optimal classification thresholds of individual and ensemble models constructed using logistic

regression, LSVM, DT algorithms, and comparisons to other models.

Reference

model

Sensitivity

% Sensitivity differencea

(p-value)b

[95% confidence interval]

Comparison model

% SD ensLR LSVM ensLSVM DT RF AdB

LR 49.6 4.7 4.3

(0.377)

[�5.1, 13.8]

19.1

(<0.001)
[11.9, 26.3]

�3.5

(0.500)

[�13.4, 6.4]

8.7

(0.193)

[�4.2, 21.6]

9.6

(0.162)

[�3.6, 22.8]

3.5

(0.576)

[�8.6, 15.5]

ensLR 53.9 4.6 14.8

(0.010)

[3.9, 25.6]

�7.8

(0.133)

[�17.8, 2.2]

4.3

(0.512)

[�8,5, 17.2]

5.2

(0.427)

[�7.5, 18.0]

�0.9

(0.896)

[�13.7, 12.0]

LSVM 68.7 4.3 �22.6

(0.001)

[�32.3, 212.9]

�10.4

(0.111)

[�23.0, 2.2]

�9.6

(0.141)

[�22.1, 3.0]

�15.7

(0.014)

[�27.8, �3.5]

ensLSVM 46.1 4.6 12.2

(0.053)

[0.1, 24.3]

13.0

(0.048)

[0.4, 25.7]

7.0

(0.262)

[�5.0, 18.9]

DT 58.3 4.6 0.9

(0.815)

[�6.2, 7.9]

�5.2

(0.265)

[�14.2, 3.8]

RF 59.1 4.6 �6.1

(0.200)

[�15.2, 3.0]

AdB 53.0 4.7

aDifference is comparison model sensitivity minus reference model sensitivity.
bP-value obtained using the McNemar v2 test.22

Multiple Sclerosis Journal—Experimental, Translational and Clinical

8 www.sagepub.com/msjetc



While the models developed from this study provide

an improvement in performance over the conven-

tional LR model, LSVMs and prevalence-based

baseline performance, additional work is required.

Progression defined by an increase in EDSS is

weighted towards physical impairment. Using a

broader or more comprehensive definition that

includes changes in cognition may provide different

results. As a ML experiment, our sample of 485 is

considered small and demonstrates a difficulty in

training ML models – the need for large amounts

of data. We hypothesize that in a larger dataset,

the improvements in PPV and NPV would be

better reflected in model sensitivity and specificity.

We used a small set of predictors in this preliminary

study. The improvement in performance using non-

linear models may be amplified by the inclusion of

additional predictors with nonlinear relationships

with. This includes experimenting with automated

feature detection from MRIs using an advanced

ML method known as deep learning which has

been used to predict progression in RRMS by ana-

lyzing MRIs.27 In our study, AdB was constructed

using simple DTs; we hypothesize that the use of

random trees to construct the AdaBoost ensemble

could increase predictive performance.

Our work is one of many steps required to develop a

clinically-usable prognostic tool. In its current form,

the models developed in this study are not clinically

useful for prognosticating an individual’s disease

course. Despite this, the improvements seen in

non-parametric algorithms may aid in streamlining

clinical trial recruitment and suggest that non-

parametric algorithms may be better suited for eval-

uating the prognostic value of factors of progression.

In the design of clinical trials and statistical testing,

balanced designs are preferred over unbalanced

design when possible. Balanced designs result in

tests with greater statistical power as they give the

maximal information regarding treatment

Table 4. Specificity performance at optimal classification thresholds of individual and ensemble models constructed using logistic

regression, LSVM, DT algorithms, and comparisons to other models.

Reference

model

Specificity

% Specificity differencea

(p-value)b

[95% confidence interval]

Comparison model

% SD ensLR LSVM ensLSVM DT RF AdB

LR 51.1 2.6 �2.7

(0.355)

[�8.4, 3.0]

�14.1

(<0.001)
[�18.2, �9.9]

4.9

(0.081)

[�0.57, 10.3]

11.1

(0.002)

[4.0, 18.1]

10.0

(0.005)

[3.1, 16.9]

11.4

(0.002)

[4.3, 18.4]

ensLR 48.4 2.6 �11.4

(<0.001)
[�17.1, �5.6]

7.6

(0.011)

[1.8, 13.3]

13.8

(<0.001)
[6.8, 20.7]

12.7

(0.001)

[5.7, 19.7]

14.1

(0.001)

[7.3, 20.8]

LSVM 37.0 2.5 18.9

(<0.001)
[13.3, 24.5]

25.1

(<0.001)
[18.2, 32.1]

24.1

(<0.001)
[17.1, 31.0]

25.4

(<0.001)
[18.3, 32.5]

ensLSVM 55.9 2.6 6.2

(0.083)

[�0.8, 13.2]

5.1

(0.159)

[�2.0, 12.2]

6.5

(0.066)

[�0.4, 13.4]

DT 62.2 2.5 �1.1

(0.500)

[�4.2, 2.0)

0.3

(0.920)

[�4.9, 5.5]

RF 61.1 2.5 1.4

(0.621)

[�4.0, 6.7]

AdB 62.4 2.5

aDifference is comparison model specificity minus reference model specificity.
bP-value obtained using the McNemar v2 test.22
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Table 5. Positive predictive value, relativity to other models, and change in pre- to post-positive test probabilities at optimal

classification thresholds of individual and ensemble models constructed using logistic regression, LSVM, DT algorithms, and

comparisons to other models.

Reference

model

PPV

Relative PPVa

(p-value)b

[95% confidence interval] Pre- to

post-positive

test probability

(p-value)c

Comparison Model

% SD ensLR LSVM ensLSVM DT RF AdB

LR 23.9 1.9 1.02

(0.780)

[0.88, 1.20]

1.06

(0.328)

[0.95, 1.18]

1.02

(0.790)

[0.86, 1.23]

1.35

(0.001)

[1.13, 1.62]

1.34

(0.002)

[1.11, 1.61]

1.27

(0.011)

[1.06, 1.54]

0.2

(0.899)

ensLR 24.5 2.0 1.03

(0.679)

[0.88, 1.21]

1.00

(0.989)

[0.84, 1.20]

1.32

(0.002)

[1.11, 1.57]

1.31

(0.002)

[1.10, 1.55]

1.24

(0.023)

[1.03, 1.50]

0.8

(0.696)

LSVM 25.3 2.8 0.97

(0.711)

[0.82, 1.14]

1.28

(0.003)

[1.09, 1.50]

1.27

(0.003)

[1.08, 1.48]

1.20

(0.035)

[1.01, 1.43]

1.6

(0.559)

ensLSVM 24.5 1.7 1.32

(0.003)

[1.10, 1.58]

1.31

(0.005)

[1.08, 1.58]

1.24

(0.028)

[1.02, 1.51]

0.8

(0.636)

DT 32.4 2.0 0.99

(0.858)

[0.90, 1.09]

0.94

(0.448)

[0.81, 1.10]

8.7

(<0.001)

RF 32.1 2.1 0.95

(0.521)

[0.82, 1.11]

8.4

(<0.001)

AdB 30.5 1.6 6.8

(<0.001)

arelative PPV ¼ comparison PPV
reference PPV

.
bP-value obtained using Moskowitz and Pepe’s algorithm.23

cP-value obtained using one-sample test of proportion of reference model compared to positive prevalence of 23.7%.

Table 6. Negative predictive value, relativity to other models, and change in pre- to post-negative test probabilities at optimal

classification thresholds of individual and ensemble models constructed using logistic regression, LSVM, DT algorithms, and

comparisons to other models.

Reference

model

NPV

Relative NPVa

(p-value)b

[95% confidence interval] Pre- to

post- negative

test probability

(p-value)c

Comparison model

% SD ensLR LSVM ensLSVM DT RF AdB

LR 76.5 1.9 1.01

(0.758)

[0.96, 1.06]

1.03

(0.177)

[0.98, 1.09]

1.01

(0.826)

[0.96, 1.06]

1.08

(0.014)

[1.02, 1.15]

1.08

(0.016)

[1.01, 1.15]

1.06

(0.054)

[1.00, 1.12]

0.2

(0.905)

ensLR 77.2 1.8 1.03

(0.472)

[0.96, 1.10]

1.00

(0.922)

[0.95, 1.05]

1.07

(0.032)

[1.01, 1.14]

1.07

(0.030)

[1.01, 1.14]

1.05

(0.126)

[0.99, 1.12]

0.9

(0.628)

(continued)
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differences.28 In unbalanced randomized control

trials (RCTs), results often favor new treatments

when compared to balanced trials.29 While control/

treatment groups can be balanced, unforeseen group

imbalances may arise over the duration of the trial.

The ideal RCT should consider time-dependent

changes (i.e. progression) in the cohort and reduce

potential group imbalances. The identification of

those most at risk of disability progression during

a trial and most likely to benefit from treatment

would improve the efficiency of the trial and the

power associated with treatment effect findings.

Table 7. Contribution of predictors on the training of logistic regression, ensemble SVM, random forest, and AdaBoost models.

Reference

model

Mean % feature contribution to algorithm traininga

(SD)

Demographic features Clinical features MRI features

Age Sex Duration EDSS T25W 9HP PASAT T2LV BPF

LR 8.7 (5.2) 9.8 (6.4) 4.6 (3.5) 25.4 (5.3) 2.6 (2.9) 17.7 (6.5) 5.8 (5.8) 7.6 (5.3) 17.6 (6.9)

ensLR 9.2 (5.9) 9.6 (9.7) 4.5 (2.7) 28.6 (4.7) 2.2 (1.5) 23.0 (6.1) 8.0 (5.3) 7.1 (4.3) 7.8 (5.1)

LSVM 7.5 (3.7) 10.6 (6.2) 5.4 (4.1) 26.2 (4.6) 2.4 (3.1) 18.1 (5.4) 6.9 (5.6) 6.2 (3.7) 16.6 (6.5)

ensLSVM 7.9 (3.9) 11.5 (21.9) 5.5 (2.8) 17.3 (8.9) 1.4 (0.6) 22.4 (8.5) 5.7 (3.9) 10.0 (9.0) 18.3 (5.9)

DT 10.0 (8.7) 0.8 (2.5) 7.4 (7.7) 24.6 (8.4) 30.2 (8.7) 8.5 (8.6) 3.5 (5.4) 9.9 (5.8) 5.2 (4.4)

RF 10.6 (7.5) 0.4 (1.3) 7.7 (8.3) 23.3 (7.1) 25.7 (9.2) 8.7 (9.1) 5.8 (5.1) 12.1 (6.3) 5.6 (3.3)

AdB 11.8 (4.5) 1.0 (1.8) 8.3 (4.5) 15.0 (5.4) 18.3 (5.7) 14.7 (6.7) 8.5 (6.2) 10.6 (6.0) 11.8 (3.6)

aMean of feature contribution to model training across 10-fold cross validation.

Table 6. Continued

Reference

model

NPV

Relative NPVa

(p-value)b

[95% confidence interval] Pre- to

post- negative

test probability

(p-value)c

Comparison model

% SD ensLR LSVM ensLSVM DT RF AdB

LSVM 79.2 1.4 0.97

(0.371)

[0.91, 1.03]

1.04

(0.240)

[0.97, 1.12]

1.05

(0.234)

[0.97, 1.12]

1.02

(0.527)

[0.95, 1.10]

2.9

(0.034)

ensLSVM 77.0 2.1 1.08

(0.013)

[1.02, 1.14]

1.08

(0.017)

[1.01, 1.14]

1.05

(0.068)

[1.00, 1.11]

0.7

(0.749)

DT 82.7 1.8 1.00

(0.969)

[0.97, 1.03]

0.98

(0.312)

[0.94, 1.02]

6.4

(<0.001)

RF 82.8 1.7 0.98

(0.311)

[0.94, 1.02]

6.5

(<0.001)

AdB 81.1 1.9 4.8

(0.012)

arelative NPV ¼ comparison NPV
reference NPV

bP-value obtained using Moskowitz and Pepe’s algorithm.23

cP-value obtained using one-sample test of proportion of reference model compared to negative prevalence of 76.3%.
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ML applications in Alzheimer’s disease for clinical

trial enrichment and design have been shown to

enable smaller trials with high statistical power by

selecting participants at higher risk of cognitive

decline.30,31 Based on our results, the use of the

AdB model would hypothetically reduce the imbal-

ance between progressors and non-progressors by

identifying eight more progressors and six fewer

non-progressors in every 100 individuals screened

for study eligibility. The incorporation of predictive

ML models into SPMS clinical trial design may

allow those at highest risk of disease worsening to

access experimental therapies and yield treatment

findings with acceptable statistical power using a

smaller study cohort.
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