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Abstract: In this study, we present a systematic scheme to identify the material parameters in
constitutive model of hyperelastic materials such as rubber. This approach is proposed based on the
combined use of general regression neural network, experimental data and finite element analysis. In
detail, the finite element analysis is carried out to provide the learning samples of GRNN model, while
the results observed from the uniaxial tensile test is set as the target value of GRNN model. A problem
involving parameters identification of silicone rubber material is described for validation. The results
show that the proposed GRNN-based approach has the characteristics of high universality and good
precision, and can be extended to parameters identification of complex rubber-like hyperelastic
material constitutive.

Keywords: general regression neural network (GRNN); hyperelastic material model; parameters
identification

1. Introduction

Hyperelastic materials have advantages of high elasticity, shock resistance, wearability
and many other excellent properties, and can be capable of undergoing large deforma-
tion. In real engineering application, many materials show hyperelastic properties, such
as rubbers, gels, insulation of solid rocket motor and soft tissue (arteries, muscles, and
skin). During the past years, from the perspective of studying the mechanical behavior of
hyperelastic materials, some scholars focused on how to use theoretical models to predict
and describe the experimental phenomenon [1–3]. In addition, technological workers
also paid attention to the numerical simulations of the complex response of devices with
hyperleastic property based on specific experimental data [4,5]. It can be claimed that the
establishment of hyperelastic materials constitutive model is a key problem of common
concern to researchers.

Research shows that the hyperelastic material has the characteristics of nonlinear,
large deformation, and its constitutive properties entirely depend on its strain energy
function [6,7]. Following this idea, several hyperelastic constitutive models have been
proposed to provide a suitable strain energy density for a given hyperelastic material
through appropriate theories and methods, such as the Mooney–Rivlin model [8,9], Ogden
model [10], Gent model [11,12], Gent–Thomas model [13] and Carroll model [14], etc.
According to the characteristics of deformation, these models can be roughly divided
into four categories, including constitutive models of compressible, incompressible, full
deformation range and various deformation modes. Among them, the study on the
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strain energy density of incompressible hyperelastic models become a basic and important
work since the incompressible conditions greatly simplify the theoretical research and
engineering application of hyperelastic material properties [15,16], and for the further
application of rubber-like hyperelastic materials or structures, there is a recognized need for
further investigation of the hyperelastic model [17,18]. Thereby, we focus on the parameter
identification of the incompressible constitutive model in the present study.

At the present stage, the common known approaches for determining hyperelastic
material parameters, namely the strain energy density function coefficient, mainly include
experiments [19–21], numerical calculation [22,23] and artificial intelligence methods [24,25].
In particular, artificial intelligence methods can predict the related parameters, which
cannot be obtained directly or are difficult to obtain through experiment and simulation,
and have received widespread attention in recent years. They are capable of establishing
the relationship among variables based on the existing data, which is different from the
traditional mechanical analysis method. Artificial intelligence has shown its advantages
in the prediction of mechanical parameters, optimization of mechanical models, health
monitoring and many other aspects [26–30], and has become the focus of many researchers
and the trend of development. For instance, Nair et al. [30] inversed the constitutive
parameters of soft biological materials based on genetic algorithm, numerical simulation
and experimental testing deformation. By using the back propagation neural network
optimized with genetic algorithm, Li et al. [31] predicted the values of dynamic stiffness
and loss factor varied with the different frequency and discussed the frequency dependence
of rubber bushing.

As one kind of artificial intelligence-based approach, GRNN is a special form of radial
basis function neural network [32–36], and has been widely applied to many fields [37–39].
Compared with the current popular feedforward neural network, it has a number of
advantages. Firstly, the network structure of GRNN is relatively simple. Except the input
and output layers, only two hidden layers, mode layer and summation layer are included
generally, and the number of hidden units in the mode layer is equal to the number of
learning samples. Otherwise, the training of the GRNN model is undemanding. As
soon as the learning samples pass through the hidden layer, the training of the GRNN
model is immediately completed, which does not require very long training time and high
computational cost. In addition, due to its simple network structure, there is no need to
estimate the numbers of hidden layers and hidden units. Only one free parameter, i.e., the
smoothing factor of radial basis function, is required for GRNN learning, for which the
optimization value can be easily obtained by the cross validation method. Moreover, it is
worth emphasizing that the results of the GRNN calculation have good global convergence,
and are better than the results of standard feedforward neural networks [39], which often
fail to achieve global convergence and stop at local convergence.

The main aim of this paper is to develop a convenient and effective GRNN-based
approach to identify the model parameters of hyperelastic material. This GRNN-based
approach consists of experiments, numerical simulations, and GRNN learning, which are
relatively easy to operate and obtain. The remainder of this paper is organized as follows.
The theoretical basis and architecture of GRNN are explained in Section 2. The application
of the GRNN-based approach in determining material parameters is performed in Section 3,
including a brief introduction of the hyperelastic model, a prediction scheme of M-R model
parameters based on GRNN, uniaxial testing and finite element analysis, and an example
of validation using rubber material (see Section 3.3). Details on the prediction results of
model parameters are contained and discussed in Section 4. Finally, the paper is concluded
with remarks and a discussion of the proposed GRNN-based approach.

2. GRNN Method
2.1. Theoretical Basis of GRNN

On the basis of kernel non-parametric regression, GRNN has taken the sample data
as a posteriori probability to implement non-parametric estimation, and the correlation



Materials 2022, 15, 3776 3 of 15

density function between a dependent variable and an independent variable is calculated
from the learning samples, so as to obtain the regression value of a dependent variable
relative to an independent variable. A detailed description of the GRNN model is presented
as below.

Assuming that x and y are the input vector and output variable of the sample data,
respectively, when the observed value of x is set as x0, i.e., the commonly known target
value, then the regression value y with respect to the input vector x is obtained by

y(x0) =

∫ 0
−∞ y f (x0, y)dy∫ 0
−∞ f (x0, y)dy

, (1)

Here, f (x0, y) represents the probability density function. Using Parzen non-parametric
estimation [40], the Gaussian kernel function is selected as the kernel function, and then
the density function f (X, Y) can be calculated based on the sample data {Xi, Yi}n

i=1, shown
as below

f (X, Y) =
1

(2π)(
l+1

2 )k(l+1)n
·

n

∑
i=1

exp

[
− (X−Xi)

T(X−Xi)

2k2

]
· exp

[
− (Y−Yi)

2

2k2

]
, (2)

where k, n, and l represent the smoothing factor, numbers of learning samples, and the
dimension of the input vector, respectively.

Combining Equations (1) and (2), we obtain

Y(X0) =
∑n

i=1 Yi exp
[
− (X−Xi)

T(X−Xi)
2k2

]
∑n

i=1 exp
[
− (X−Xi)

T(X−Xi)
2k2

] , (3)

Equation (3) is the final expression of the GRNN model. It is worth noting that the
value of the smoothing factor k has a great impact on the performance of the neural network,
which needs to be optimized. As the smoothing factor approaches zero, the predicted value
will be very close to the sample value, resulting in an over-fitting phenomenon. However,
if the smoothing factor is very large, the predicted value will approximate the average of
all samples.

2.2. Architecture of GRNN

GRNN is a kind of radial basis function (RBF) neural network, which has been pro-
posed by Specht [32]. It is a feedforward neural network, which means the data feedback
process is not contained and each layer is passed through forward computation. Different
from the traditional three-layer architecture of RBF neural network, i.e., input, hidden, and
output layers, the architecture of GRNN has four main layers. An additional summation
layer is contained in hidden layer of GRNN, while the input and output vectors remain
unchanged. In the following, the feature of each layer in the GRNN model is described
briefly.

(1) Input layer

The number of neurons at the input layer is equal to the dimension l of the input vector
of the learning sample. Each neuron is a simple and individual unit, which can directly
transfer input variables to the pattern layer.
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(2) Pattern layer

The number of neurons at the pattern layer is the same as the number of learning
samples n, that is, each neuron corresponds to a specific learning sample. The transfer
function of neuron at the pattern layer is expressed by

Pi = exp

[
− (X0 −Xi)

T(X0 −Xi)

2k2

]
, i = 1, 2 . . . , n (4)

(3) Summation layer

The summation layer uses two types of neurons for summation. The first kind of
neuron considers the arithmetic sum of all neurons at the pattern layer. At this time, the
link weight between the pattern layer and each neuron is defined as one, and the transfer
function is

SD =
n

∑
i=1

Pi (5)

The second type of neuron carries out weighted summation of all neurons at the
pattern layer. Specifically, the connection weight between the ith neuron at the pattern layer
and the jth neuron at the summation layer is the jth element of output variable Yj in the ith
learning sample, the corresponding transfer function is

SNj =
n

∑
i=1

YijPi (6)

(4) Output layer

Similarly, the number of neurons at the output layer is equal to the dimension of the
output vector in the learning sample. The value of jth neuron corresponds to the jth element
of the predicted Y(X), which is given as

Yj =
SNj

SD
(7)

3. Application of GRNN for Determining the Hyperelastic Model Parameters
3.1. Hyperelastic Material Model

Hyperelastic material is a kind of nonlinear elastic material with large deformation
capacity, and its material mechanical characteristics are completely described by its strain
energy function [41]. Thus, for the investigation of hyperelastic material, the first key is to
find appropriate theories and methods to determine its strain energy function.

In the past, several hyperelastic constitutive models have been established [8,10,14].
Among them, the phenomenological constitutive models based on the continuum mechan-
ics have been widely used for numerical calculations and implemented through software,
such as ABAQUS. The strain energy function W of the phenomenological constitutive
model is usually a function of invariants of deformation tensors (I1, I2 and I3) or principal
extension ratios (λ1, λ2 and λ3), that is, W = W(I1, I2, I3) or W = W(λ1, λ2, λ3).

It has been found that most hyperelastic materials have features of very small volume
change [14], and thus the strain energy functions with incompressible conditions have been
developed by some scholars, such as in the Mooney–Rivlin model [8,9] and the Ogden
model [14], etc. These models have their own advantages for different application cases.
For instance, the Mooney–Rivlin model is applicable to analyze the small deformation and
medium large deformation problems of hyperelastic materials. It is also the most widely
used model in describing isotropic hyperelastic material behavior. The Ogden model can
reflect the mechanical behavior under multi-axial states, such as uniaxial, biaxial and planar
shear loads.
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In the present study, three strain energy functions, including the Mooney–Rivlin
(abbreviated as M–R) model and the polynomial model with N = 2, and the Ogden model
with N = 3, which can provide an excellent simulation of hyperelastic mechanical behavior,
are considered for the purpose of validating the accuracy and effectiveness of a GRNN-
based approach. The definitions of strain energy for these three models are given below.

• The M–R model can be defined by two parameters, C10 and C01, shown as below,

W1 = C10(I1 − 3) + C01(I2 − 3), (8)

where C10 and C01 are model parameters which need to be determined.

• The formulation of polynomial model (N = 2) is given by,

W2(I1, I2) =
2

∑
i+j=1

Cij(I1 − 3)i(I2 − 3)j (9)

where Cij is the corresponding model parameter, including C01, C10, C20, C11 and C02.

• Based on the principal extension ratio, the strain energy of the Ogden model can be
defined as,

W =
N

∑
i=1

µi
αi

(
λ

αi
1 + λ

αi
2 + λ

αi
3 − 3

)
+

N

∑
i=1

1
Di

(J − 1)2i (10)

where N is the order the model (N = 3 in the present study). µi and αi are material
parameters related to temperature. Di = 0 for incompressible strain energy, while J is the
elastic volume ratio. Thereby, six parameters, i.e., µ1, α1, µ2, α2, µ3, and α3, are the unknown
parameters for the definition of the Ogden model.

3.2. The Parameter Identification Methodology for a Hyperelastic Model Based on Finite Element
Analysis, Experiment and GRNN

See Figure 1, the parameter identification methodology for the M–R model based on
finite element analysis (FEA), experiment and GRNN learning is presented as follows:

(a) Prepare the target values of the GRNN model. For this case, experiments, e.g., uniaxial
tensile, are needed to be carried out for the purpose of obtaining the experimental
force-displacement curve (i.e., target curve);

(b) Provide the learning samples of the GRNN model. The corresponding simulation
models of the experiments are required to establish the same boundary and the initial
conditions are considered. Next, several sets of material parameters (i.e., C10 and C01
for M-R model) will be predefined to produce different force-displacement curves. For
the GRNN model, the sets of the material parameters can be taken as output vectors,
and the corresponding force-displacement curves are input vectors. In this way, the
learning samples of the GRNN model are given by FEA;

(c) Obtain the identified material parameters. Through the GRNN learning model, when
the results of force-displacement calculated by FEA meet the requirements of accuracy,
the corresponding output value at this moment is what we want.

3.3. An Example of GRNN-Based Approach Application
3.3.1. Uniaxial Tensile Test with Hyperelastic Rubber Specimen

As mentioned in Section 3.2, in order to obtain the target value of the GRNN model, a
uniaxial tensile test is constructed to measure the force-displacement curve of hyperelastic
material. It should be noted here that the present GRNN-based approach is a kind of
artificial intelligence method, and its architecture can be satisfied for both tensile and shear
load conditions. In detail, no matter the tensile test or simple shear experiment [42], the
experimental force-displacement curve can be obtained easily to provide the target value
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of the GRNN model. The experiment is implemented with silicone rubber (Hg6-678-74),
which has been widely used in many fields, such as aviation, automobile, machinery,
medicine and medical, etc. Silicone rubber has shown good low temperature resistance
and can work at −55 ◦C. Meanwhile, silicone rubber is also outstanding in heat resistance,
since it can work at 180 ◦C for a long time, and keep elastic at higher temperature (e.g.,
slightly higher than 200 ◦C) for a few weeks. In addition, silicone rubber also has good air
permeability and its oxygen permeability is the highest among the synthetic polymers.

Figure 1. The scheme of the topological structure of a GRNN-based approach for the prediction
of model parameters of M–R model. Nomenclature: u displacement; F reaction force; n number
of learning samples; exp experimental results; j the cycle number of the GRNN model; s the given
accuracy requirement.

A strip specimen is adopted in the present uniaxial tensile test, as depicted in Figure 2.
The geometry dimensions of the strip specimen are 160 mm × 20 mm × 1.0 mm, including
100 mm for the tensile test part, and 30 mm for the clamps at both ends of the specimen.
Considering the thickness of the silicone rubber specimen is relatively thin, four aluminum
sheets are bonded with 502 adhesive at the clamping region of tensile test machine to avoid
local fracture at the clamping position, and the surface of the aluminum sheet is polished.
All aluminum sheets have the same size, i.e., 30 mm × 20 mm × 1.5 mm. The test is carried
out with MTS-858/2.5T torsion testing machine (SVL, Xi’an Jiaotong University) in air at
room temperature, as shown in Figure 3. The test is performed in displacement-controlled
mode with a constant loading rate of 20 mm/min.
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Figure 2. The specimen and its geometry employed in a uniaxial tensile test: (a) The image of silicone
rubber specimen with bonded aluminum sheets; (b) The dimensions of silicone rubber specimen and
aluminum sheets.

Figure 3. The experimental device of a uniaxial tensile test.

The force-load displacement curve collected by the experiment is presented in Figure 4.
It can be seen that rubber shows obvious nonlinear characteristics. In detail, force varies
linearly with the increasing displacement when the displacement is small, approximately
8 mm in present experiment, and the relation of force and displacement is in line with
Hooke’s law. This is due to the rubber showing evident hyperelasticity during the large
deformation. The slope of the force-displacement curve decreased slowly with the in-
crease in displacement, and gradually tended toward a linear change again. The nominal
stress–strain curve is obtained by processing the data of uniaxial tensile testing, as shown
in Figure 5.

3.3.2. FEA Calculation with Same Experimental Condition

In this section, finite element simulation is carried out to obtain the learning samples of
the GRNN model. Referring to the experimental conditions and geometry of the specimen, a
numerical model is proposed. The silicone rubber specimen with bonded aluminum sheets
is simplified to a rectangular geometry with a dimension of 100 mm × 20 mm × 1.0 mm.
As depicted in Figure 6, one side of the strip specimen is fixed, and the other side is
subjected to a uniaxial tensile displacement load of u3 = 20 mm over a time period of 60 s.
The finite element mesh applied in this case consists of eight-node 3D stress elements with
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hybrid formulation (i.e., C3D8H). The mesh size is controlled by a global size of 0.5 mm. In
special, a reference point is introduced to acquire the variations in force and displacement
during the step time. So then, the displacement loading will be applied at the reference
point, and transmitted through a reference point to the surface of the strip specimen.

Figure 4. The experimental force-displacement curve of the uniaxial tensile test.

Figure 5. Nominal stress–strain curve under uniaxial tensile.

Figure 6. Finite element mesh and boundary conditions of silicone rubber specimen.

In order to prepare the learning samples of GRNN, predefined material parameters
are required to calculate several force-displacement curves. A widely used mathematical
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tool in data processing such as error estimation, system identification and prediction, i.e.,
least-squares fit, is built in software and can provide an initial set of model parameters,
i.e., C10 = 0.0385 and C01 = 0.4052 for M-R model, C10 = −2.1506, C01 = 2.7355, C20 = 2.1308,
C11 = −6.7135 and C02 = 6.3381 for polynomial model (N =2), µ1 = −3.9450, α1 = −2.3031,
µ2 = −0.3774, α2 = −1.3540, µ3 = 5.4133 and α3 = −3.8436 for Ogden model (N = 3). Using
these three sets of model parameters, the corresponding force-displacement curves are
calculated and compared with the experimental force-displacement curve, as shown in
Figure 7. It can found that there are significant differences between the least-squares fit
result of the M–R model and experimental data when the deformation is larger than 10mm.
For the polynomial model (N = 2), although the least-squares fit result is much better than
the M–R model, the error becomes markedly more prominent as the deformation increases,
and there is still room for improvement of accuracy.

Figure 7. Results comparisons of: (a) M-R model; (b) polynomial model (N = 2); and (c) Ogden model
(N = 3) fitted by least-squares with experimental data.

Referring to the model parameters fitted by the least-squares method, the next five
sets of model parameters, symbolled as sample-1, sample-2, sample-3, sample-4, and
sample-5, are user-defined to calculate different force-displacement curves for the M–R
model, the polynomial model (N = 2), and the Ogden model (N = 3), and finally six sets
of model parameters are listed in Table 1. The numerical results of the corresponding
force-displacement curves using the M-R model and polynomial model (N = 2) are plotted
and compared with the experimental curve in Figure 8. Subsequently, the results of these
force-displacement curves can be taken as input variables in GRNN learning, and the
corresponding sets of parameters will be used as input vectors.

Figure 8. Numerical results of force-displacement curves and experimental curve: (a) M–R model
results for learning samples of GRNN; (b) Polynomial model (N = 2) results for learning samples of
GRNN; (c) Ogden model (N = 3) results for learning samples of GRNN.
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Table 1. User-defined model parameters.

Model Parameters Least-Squares Method Sample-1 Sample-2 Sample-3 Sample-4 Sample-5

M-R model
C10 0.0385 0.0510 0.0210 0.3160 0.2898 0.2898
C01 0.4052 0.5270 0.4052 0.0420 0.0395 0.0455

Polynomial model
(N = 2)

C10 −2.1506 −1.2904 −2.7958 −2.1506 −2.1506 −1.9506
C01 2.7355 1.6413 3.5562 2.7355 2.7355 2.2535
C20 2.1308 1.2785 2.7700 2.1308 2.1308 2.1308
C11 −6.7135 −4.0281 −8.7276 −6.8000 −7.0000 −6.7135
C02 6.3381 3.9029 8.2395 6.5000 6.8000 6.2530

Ogden model
(N = 3)

µ1 −3.9450 −3.4560 −4.7340 −3.1560 −4.7340 −3.9513
α1 −2.3031 −2.7637 −1.8425 −1.8425 −2.7637 −2.3068
µ2 −0.3774 −0.3019 −0.4529 −0.4529 −0.4529 −0.3780
α2 −1.3540 −1.6248 −1.0832 −1.6248 −1.6248 −1.3520
µ3 5.4133 4.3306 6.4960 4.3306 6.4960 5.4057
α3 −3.8436 −4.6123 −3.0749 −3.0749 −−4.6123 −3.8382

4. Results and Discussion

By substituting the different learning sample into the GRNN model implemented by
the MATLAB code, and setting the accuracy requirement, the model parameters of the
M–R model, the polynomial model (N = 2) and the Ogden model (N = 3) can be predicted
through a series of sequential processing steps, including the cycle approximation of
selection samples, FEA calculation, parameter optimization and GRNN-based learning. As
listed in Table 2, the model parameters of the M–R model, the polynomial model (N = 2)
and the Ogden model (N = 3) obtained from a GRNN-based approach and least-squares
method are compared. In the following, the performances of a GRNN-based approach on
parameter identification and optimization of the M–R model, the polynomial model (N = 2)
and the Ogden model (N = 3) are discussed.

Table 2. Parameters obtained by GRNN-based approach and least-squares method.

Model Parameters GRNN-Based Approach Least-Squares Method

M-R model
C10 0.2393 0.0385
C01 0.1134 0.4025

Polynomial model
(N = 2)

C10 −2.1505 −2.1506
C01 2.7354 2.7355
C20 2.1006 2.1308
C11 −6.6185 −6.7135
C02 6.2484 6.3381

Ogden model
(N = 3)

µ1 −3.9516 −3.9450
α1 −2.3069 −2.3031
µ2 −0.3780 −0.3774
α2 −1.3507 −1.3540
µ3 5.4001 5.4133
α3 −3.8342 −3.8436

(a) M–R model;

Using the different M–R model parameters predicted by a GRNN-based approach (red
curve) and least-squares (black curve), the corresponding force-displacement curves are
numerically calculated and compared with the experimental data (blue curves), as shown
in Figure 9a. It can be seen that there are many interactions among blue, red and black
curves, thus the comparison of results for GRNN, least-squares and experiment cannot be
directly observed. In this subsection, the error bars represented standard deviations (see
Figure 9b,c) and are firstly introduced to describe the accuracy of GRNN-based prediction.
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The length of the error bar corresponds to the value of the standard deviation, which means
the difference between mean value and sample data.

Figure 9. Results obtained by using M–R model.

Here, if the mean value of least-squares and the experimental data is defined as
MV1, then, the differences between MV1 and force-displacement data fitted by least-
squares, marked as standard deviation 1 (black square), can reflect the closeness of the
least-squares results to the experimental data. Similarly, the values of standard deviation
2 (magenta triangle) represent the difference between MV2 (the mean values of GRNN-
based prediction and experimental data) and GRNN-based prediction. The smaller the
standard deviation (one or two) value, the closer the sample results (least-squares or GRNN-
based prediction) and experimental data. Furthermore, from the partial enlargement
presented in Figure 9c, it is clear to see that the lengths of the error bars associated with
least-squares are obviously longer than those calculated by GRNN-based prediction, that is,
the values of standard deviation 1 are larger than standard deviation 2, e.g., the maximum
values of standard deviation 1 and 2 are 0.9912 and 0.5366, respectively. The results
indicate that the force-displacement curve obtained from GRNN-based prediction is closer
than those fitted by least-squares method to the experimental force-displacement curve.
Additionally, we introduce the mean square error (the average value of the squared errors
between the estimator variables, e.g., experimental data, and the variables being estimated,
e.g., GRNN-based prediction or least-squares), and the mean absolute error [43] (the
average distance between each experimental data and the GRNN-based prediction value



Materials 2022, 15, 3776 12 of 15

or least-squares value) to evaluate the accuracy of the proposed method. The values of the
mean square error and the mean absolute error of the GRNN-based prediction are 0.0215
and 0.1120, respectively. The results are obviously smaller than those of least-squares, i.e.,
0.0721 (mean square error) and 0.1994 (mean absolute error). In other words, the results
predicted by the GRNN-based approach can provide more precise M–R model parameters
compared with those from the least-squares method, thus the material mechanical response
can be analyzed more effectively. Therefore, it can be concluded that the GRNN-based
approach is acceptable to be used as an effective method for parameter identification of the
hyperelastic model.

(b) Polynomial model (N = 2);

Similarly, the force-displacement curves associated with polynomial model (N = 2)
obtained from least-squares (black curve), GRNN-based prediction (red curve) and ex-
perimental data (blue curve) are plotted in Figure 10. Intuitively, it is seen that the force-
displacement curve calculated with GRNN-based prediction parameters is much closer
to the experimental values than those resulted from least squares and is easy to analyze
directly. In the present case, the corresponding values of the mean square error and mean
absolute error for the GRNN-based approach are obtained as 0.5177 and 0.0954, which are
less than those produced by least-squares, i.e., 0.6050 (mean square error) and 0.2385 (mean
absolute error). It means that the GRNN-based prediction provides a better fit result than
the simple fitting method, e.g., least-squares. For instance, the partially enlarged views of
different deformation stages in Figure 10b are presented for different deformation stages. It
can be concluded that the prediction results of the GRNN-based approach can maintain a
relatively high accuracy for both small deformation and large deformation stages. In this
model, the accuracy even increases with the displacement increasing within a certain range.
In particular, from Figure 10, we can see the red curve (GRNN-based prediction) getting
closer to the blue curve (experimental data) when the deformation varies from 8 to 40 mm.

Figure 10. (a) Results obtained by using polynomial model (N = 2); (b) The partially enlarged views
for specific deformation stages based on polynomial model (N = 2).

(c) Ogden model (N = 3);

The results of force-displacement curves obtained by least-squares (black curve),
GRNN-based prediction (red curve) and experimental data (blue curve) with Ogden model
(N = 3) are presented for comparison in Figure 11. Similar to the results of the polynomial
model (N = 2), the accuracy of the force-displacement curve of GRNN-based prediction
can be directly observed and evaluated by the value of the mean square error and mean
absolute error. For instance, the values of mean square error and mean absolute error
of the GRNN-based approach are 0.0214 and 0.1120, while the mean square error and
mean absolute error of least-squares are equal to 0.0722 (>0.0214) and 0.1994 (>0.1120),
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respectively. The results show that the proposed GRNN-based approach can work well in
Ogden’s model. In addition, we would like to emphasize that the present method is a kind
of machine-learning method; no matter whether the parameters of strain-energy density
appear in a linear or nonlinear fashion, the architecture of the proposed GRNN-based
approach is generic.

Figure 11. (a) Results obtained by using the Ogden model (N = 3); (b) The partially enlarged views
for specific deformation stages based on Ogden model (N = 3).

Based on the above discussion, it is indicated that the prediction of model parameters
for the M–R model, the polynomial model (N = 2) and the Ogden model (N = 3) can
be made more accurate with the GRNN-based approach. However, although all results
calculated by the above three hyperelastic models can meet the accuracy requirements, the
force-displacement curve obtained by the Ogden model is the closest to the experimental
data, compared with those fitted by the M–R model and polynomial model (N = 2). Thus,
the Ogden model (N = 3) is suggested to characterize the mechanical properties of the
present silicone rubber.

5. Conclusions

Through a combination of experiment, numerical simulation, and GRNN, an effec-
tive and convenient GRNN-based approach for parameters identification of rubber-like
hyperelastic material has been designed in the present study. In detail, the experiment is
used to provide the target values of a GRNN model, the numerical model corresponding to
experimental conditions is calculated to achieve the learning samples of a GRNN model,
and the final identification of parameters is carried out in the main structure of GRNN.
An example of parameters identification is performed by using uniaxial tensile testing of
silicone rubber specimen. The results have shown that this GRNN-based approach can
improve the accuracy and calculation efficiency of parameters identification for commonly
used hyperelastic models, e.g., M–R model, polynomial model (N = 2), and is expected
to be universal for other multi-parameter identification problems, e.g., the Ogden model
(N = 3). The study implies that the GRNN-based approach is an excellent forecasting tool,
which can predict and optimize the material parameters conveniently and automatically.
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