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Copper is essential for life processes like energy metabolism, reactive oxygen species
detoxification, iron uptake, and signaling in eukaryotic organisms. Mitochondria gather
copper for the assembly of cuproenzymes such as the respiratory complex IV, cytochrome
c oxidase, and the antioxidant enzyme superoxide dismutase 1. In this regard, copper
plays a role in mitochondrial function and signaling involving bioenergetics, dynamics, and
mitophagy, which affect cell fate by means of metabolic reprogramming. In mammals,
copper homeostasis is tightly regulated by the liver. However, cellular copper levels are
tissue specific. Copper imbalances, either overload or deficiency, have been associated
with many diseases, including anemia, neutropenia, and thrombocytopenia, as well as
tumor development and cancer aggressivity. Consistently, new pharmacological
developments have been addressed to reduce or exacerbate copper levels as
potential cancer therapies. This review goes over the copper source, distribution,
cellular uptake, and its role in mitochondrial function, metabolic reprograming, and
cancer biology, linking copper metabolism with the field of regenerative medicine and
cancer.
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INTRODUCTION

Mitochondria behave as biological microchips and constitute an integrated metabolic circuit that
receives, processes, and transmits various signals to manage cell fate, that is, cellular proliferation,
differentiation, and death. Beyond ATP and heat generation, mitochondria are directly involved in
the epigenetics and transcriptional control of gene expression to rewire cell metabolism to new
environmental conditions (Anderson et al., 2019; Hu et al., 2020).

The power of mitochondria and their ability to control cell metabolism and fate are based on the
generation of the proton motive force (PMF) by the electron transport chain (ETC), which localizes
in the inner mitochondrial membrane (IMM). The ETC is composed of the respiratory complex I
(CI) NADH dehydrogenase, complex II (CII) succinate dehydrogenase, complex III (CIII) ubiquinol
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cytochrome c reductase, complex IV (CIV) cytochrome c oxidase,
and the mobile electron carriers: coenzyme Q and cytochrome c.
The ETC can be found in different configurations or arrays,
varying from individual complexes to supramolecular
associations, called supercomplexes or respirasomes, that are
typically built of a monomer of CI, a dimer of CIII, and up to
four monomers of CIV (I1III2IV0-4) (Schagger and Pfeiffer 2000;
Boekema and Braun 2007; Huttemann et al., 2007; Acin-Perez
et al., 2008; Dudkina et al., 2008). Unknown factors regulate the
ratio between individual and assembled complexes, but it is likely
to be dependent on cell physiology and energetic needs (Dudkina
et al., 2008).

The proper assembly and functioning of the ETC is copper
dependent (Kim et al., 2008; Turski and Thiele 2009). This
transition metal is a prosthetic group of CIV and plays a
direct role in the generation of the PMF. Furthermore, copper
is a cofactor of the copper/zinc superoxide dismutase (SOD1), a
protein located in both the cytosol and the mitochondrial inner
membrane space to relieve the ETC-generated ROS (for the
mitochondrial matrix ROS, there is an Mn-superoxide
dismutase, SOD2) (McCord and Fridovich 1969; Yonashiro
et al., 2009; Mondola et al., 2016). The indirect role of copper
on mitochondrial function is related to the mitochondrial iron
uptake since it is a cofactor of ferroxidases (Xu W. et al, 2013;
Vallières et al., 2017). Iron transport is the key for iron–sulfur
(FeS) cluster assembly and heme biosynthesis (Lill and Freibert
2020).

Hallmarks of dysfunctional copper metabolism are Wilson’s
and Menkes diseases which are inherited disorders. Patients with
Wilson’s disease accumulate copper in the liver due to the
defective protein transporter, ATP7B. Copper overload
produces liver cirrhosis, neurodegeneration, and anemia
mostly via the exacerbation of hydroxyl radical production by
the Fenton and Haber–Weiss reactions. Copper toxicity decreases
mitochondrial respiration and induces apoptosis (Medeiros and
Jennings 2002; Su et al., 2011; Jia et al., 2012). On the other hand,
Menkes disease features mutations in the transporter ATP7A
which affect the release of copper from the enterocyte to the
bloodstream, causing a severe copper deficiency that in most of
cases results in death due to CIV and SOD1 dysfunction (Rossi
et al., 2004; Horn and Barrientos 2008; Kim et al., 2008; Turski
and Thiele 2009). Common clinical manifestations of copper
deficiency are anemia, bone marrow dysplasia, neutropenia, and
neuromyelopathy (Gregg et al., 2002; Fong et al., 2007;
Bolamperti et al., 2009; Jaiser and Winston 2010), and the
appearance of enlarged mitochondria. These giant
mitochondria or mega-mitochondria have been described in
early precursors of the bone marrow, hepatocytes, and
myocardium under copper deprivation, copper chelator
treatments, and starvation in humans and rats (Dallman and
Goodman 1970; Goodman et al., 1970; Gallagher et al., 1973;
Wakabayashi 2002; Bustos et al., 2013; Ruiz et al., 2014). A mild
copper deficiency in a murine model evoked mitochondrial
adaptive responses involving the oxidative phosphorylation
system (OXPHOS) remodeling and mitochondrial dynamic
alterations, with upregulation of fusion proteins MFN-2 and
OPA1 associated with a particular big mitochondrial

morphology including normal and swollen mitochondria (Ruiz
et al., 2014). Also, the generation of bigger mitochondria after
copper deficiency in erythropoietic cells, cell line K562 and
primary human CD34+, was related to the induction of
mitochondrial fusion through upregulation of MFN-2 and
OPA1 (Bustos et al., 2013).

Although heavy copper deficiency and overload have been
associated with exacerbated ROS production and cell death due to
mitochondrial dysfunction, noncytotoxic variations of the
cellular copper levels may influence cell proliferation or
differentiation through the reprogramming of mitochondrial
metabolism, which can manage the balance between glycolysis
and oxidative phosphorylation as well as the production of ROS,
making the cellular environment oxidative (Bustos et al., 2013;
Ruiz et al., 2016; Jensen et al., 2019). This exciting topic links
copper metabolism with the field of regenerative medicine and
cancer. In this review, we analyzed the acquisition of copper by
the organisms and cells and the role of copper on mitochondrial
function involving bioenergetics, dynamics, and mitophagy, and
how this affects cell fate through metabolic reprogramming.

COPPER UPTAKE AND PHYSIOLOGY

Copper is mainly obtained from solid foods (Supplementary
Table S1, Supplementary Material) and drinking water (Council
et al., 2000). The recommended intake of copper in humans
should be less than 1.5 mg/d since 0.8 mg/d is enough to regulate
and maintain copper status in the body. After the digestion of
foods in the stomach and duodenum, copper is absorbed by cells
of the intestinal mucosa, the enterocytes, which are also
responsible for releasing copper into the blood plasma. When
in excess, the ingested copper will be directly excreted through the
feces, but when in lack, cellular mechanisms will be activated to
allow greater intestinal uptake (Turnlund et al., 1998; Larin et al.,
1999). The uptake efficiency of this metal is high, reaching
55–75% in adults (Johnson et al., 1992). Of note, copper
concentration is tissue-dependent, varying between 3 mg
(kidneys) and 46 mg (skeleton) (average adult ≈70 kg) (Linder
1991). Thus, the use of copper is different for each cell, and the
effects produced by the imbalances of this metal will be
tissue-specific. SupplementaryTable S1 (Supplementary
Material) shows the amount of copper found in different
kinds of food.

There are two phases for copper distribution into the organism
(Owen 1971). Phase one: from food to the liver and kidneys via
albumin and transcuprein. Phase two: from liver to other tissues
and organs, such as heart, lungs, brain, and others via
ceruloplasmin. The excess of copper must return to the liver,
where it is again processed and incorporated into the bile which is
the primary pathway for copper elimination from the body.
However, some other fluids may transport copper to the
intestine for excretion, such as the gastric and duodenal fluid.
SupplementaryTable S2 (Supplementary Material) shows the
concentrations of copper present in human fluids. Bile has the
highest level of copper after blood. Copper entering the digestive
tract through bile and other fluids becomes almost five times
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greater than copper consumed in the diet. However, only about
0.5–1.0 mg Cu is excreted. Most of it, about 4.5–5.5 mg Cu, is
reabsorbed to maintain homeostasis of this metal (Linder and
Roboz 1986).

Copper is transported inside the cell by the CTR1
(copper transport protein) transporter and then delivered to
ATOX1 (antioxidant 1 copper chaperone) and CuL (low
molecular weight copper ligand). The latter transports
copper into mitochondria, specifically to COX17 (copper
chaperone of cytochrome C oxidase [COX]) and CCS1
(copper chaperone of SOD1) (Puig and Thiele 2002).
Figure 1 shows the mechanisms of intracellular copper
transport in human cells.

GETTING COPPER INTO MITOCHONDRIA

Mitochondria need copper mainly for complex IV (COX) and
SOD1 among other proteins (Table 1). CIV has two copper ions
and is involved in the generation of the PMF and the complete
reduction of oxygen to water in the ETC; SOD1 has one copper
ion and is an antioxidant enzyme dealing with anion superoxide.
In eukaryotes, mitochondrial copper is stored in the cytosolic
anionic ligand (CuL) complex, and its release requires high
regulation for the efficient metalation of COX and SOD1. This
highly regulated mechanism is probably due to the limited
availability of this ion in the cytosol and the need for an

immediate source of copper for the assembly of COX (Leary
et al., 2009b).

Copper delivery into mitochondria is performed by the CuL,
which is a non-proteinaceous low molecular weight complex
found in the cytosol and the mitochondrial matrix (Leary et al.,
2009b; Vest et al., 2013). The biochemical properties of the CuL
are conserved from yeasts to humans (Cobine et al., 2004),
debating that its functional significance started early in
evolution (Leary et al., 2009b). It is currently thought that the
binding of copper (copper-free) to the CuL in the cytosol triggers
its translocation to the mitochondrial intermembrane space
(IMS) by means of the solute carrier family 25 member 3
(SLC25A3), the mammalian homolog of yeast Pic2 (Leary
et al., 2009b; Vest et al., 2013; Baker et al., 2017; Boulet et al.,
2018; Cobine et al., 2021). CuL in the matrix is finally translocated
across the IMM to IMS by an unknown transporter to metalate
SOD1 and COX (Leary et al., 2009b; Baker et al., 2017).

In the mitochondrial matrix, copper is present in much higher
quantities than required for metalation of COX and SOD1,
suggesting that the matrix copper pool would represent a
storage reserve for delivery to the IMS (Cobine et al., 2004).
The ability of the CuL to increase or decrease its size due to
changes in cellular copper levels (Cobine et al., 2004) indicates
that the CuL may be a dynamic regulator that responds to
changes in cellular copper concentrations (Leary et al., 2009b).
This function allows mitochondria to assure the presence of a
constant supply and reserve of copper for metalation of their

FIGURE 1 |Mechanisms of intracellular copper transport. After Cu is delivered to CTR1 by transcuprein/albumin/ceruloplasmin, it is translocated to cytosol, where
it can be transferred either to mitochondria by copper ligand CuL or incorporated into ATOX1. ATOX1 can translocate into nucleus, by a copper-mediated mechanism,
and deliver its copper to ATP7A/B. Left panel: mechanisms of copper transport for most cells (except hepatocytes). ATOX1 delivers Cu to ATP7A which in turn
transports it to the TGN or transfers it into vesicles to be excreted out of the cell. During copper deficiency and excess, metallothioneins MT-I and MT-II regulate
ATP7A trafficking and control cell viability (Gudekar et al., 2020).Right panel: mechanisms of copper transport for hepatocytes. ATOX1 donates copper to ATP7Bwhich
transports it to the trans-Golgi network (TGN) for incorporation into ceruloplasmin. ATP7B is also responsible for the transport of Cu to the cellular periphery to be
incorporated into the bile (main incharge of copper excretion). Also, we can observe the routes affected by the diseases of Wilson and Menkes in the green and light blue
rectangles, respectively. Modified from the study by Fischer and Goode (1994), Puig and Thiele (2002), Cobine et al. (2006a), Cobine et al. (2006b), and Qin et al. (2008).
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biological targets, under different physiological processes (Leary
et al., 2009b). The proper functioning of this signaling pathway
also depends on proteins or secondary messengers that monitor
and report the functional status of mitochondrial inner
membrane proteins capable of sensing stimuli and transducing
signals, such as copper-binding integral inner membrane
proteins: COX11, SCO1, and SCO2 (Leary et al., 2009a; Leary
et al., 2009b). Also, the COX assembly factors which are located in
the IMS are soluble cysteine-rich proteins: COX17, COX19,
COX23, and PET191 (Leary et al., 2009b). As a potential
mechanism to stimulate OXPHOS metabolism, copper may
directly act on the ETC to modulate the assembly or
disassembly of respiratory complex IV. Indeed, complex IV

serves as a metal sensor in the regulation of respiratory rates
(Desler et al., 2012). Supporting this mechanism, copper
deficiency reduces the expression and activity of complex IV
(Dallman and Goodman 1970; Chen et al., 2002; Medeiros and
Jennings 2002; Chen et al., 2005; Zeng et al., 2007; Ruiz et al.,
2014), but not the other respiratory complexes (Zeng et al., 2007;
Bustos et al., 2013). Regarding copper overload, the current
results showed an increase in complex IV protein expression
(Ruiz et al., 2016). Complex IV is made up of 11 protein subunits
and requires 18 assembly factor proteins for accurate assembly
(Koopman et al., 2012). A recent report showed that copper is
able to rescue complex IV assembly in the mutant mouse deficient
in the cytochrome assembly factor, COA6 (Ghosh et al., 2014).

TABLE 1 | Copper binding and copper-dependent proteins key for the mitochondrial homeostasis.

Protein Function Subcellular localization References

Cu/Zn SOD (SOD1) Superoxide dismutase (SOD) catalyzes the reaction of superoxide
to hydrogen peroxide and requires copper and zinc as cofactors

Mitochondria, cytosol and nucleus McCord and Fridovich (1969); Yonashiro
et al. (2009); Mondola et al. (2016)

Cytochrome c
oxidase (COX)

The terminal enzyme in the mitochondrial respiratory chain
catalyzes the reduction of dioxygen to water. Subunits 1–3 form
the functional core of the enzyme complex. COXI is the catalytic
subunit of the enzyme. Electrons originating in cytochrome c are
transferred via copper a center of subunit 2 and heme a of subunit
1 to the bimetallic center formed by heme A3 and copper B

Inner Mitochondrial Membrane Kadenbach and Hüttemann (2015)

COX17 Copper chaperone for COX. COX17 is a specific copper donor to
Sco1 and Cox11, which donate copper to the CuB and CuA sites
of cytochrome oxidase, respectively

Mitochondrial Intermembrane
Space

Inesi (2016)

PIC2 A copper importer in the yeast mitochondrial matrix by the
mitochondrial carrier family (MCF). Orthologues in humans
SLC25A3 (copper/phosphate carrier protein, mitochondrial)

Inner Mitochondrial Membrane Vest et al. (2013); Cobine et al. (2021)

MRS3 Yeast iron transporter, involved in mitochondrial copper
homeostasis. Copper importer under copper-limiting conditions
or in the absence of Pic2. Orthologues in humans SLC25A37
(mitoferrin-1) and SLC25A28 (mitoferrin-2)

Inner Mitochondrial Membrane Vest et al. (2016)

SCO1 Metallochaperones whose principal function is to add two copper
ions to the CuA site in the catalytic core of COX. There is a
functional connection between SCO1 and CTR1: the high-affinity
transporter that imports Cu into the cell. CTR1 degrades rapidly in
the absence of SCO1 protein, suggesting a posttranslational
mechanism to regulate CTR1-dependent Cu import into the cell
through SCO1

Inner Mitochondrial Membrane Hlynialuk Christopher et al. (2015);
Morgada et al. (2015)

SCO2 Metallochaperones whose principal function is to add two copper
ions to the CuA site in the catalytic core of COX. Copper-
dependent thiol reductase of the cysteine ligands in the oxidase.
Copper binding to Sco2 is essential to elicit its redox function and
as a guardian of the reduced state of its cysteine residues in the
oxidizing environment of the mitochondrial intermembrane space

Inner Mitochondrial Membrane Morgada et al. (2015)

COA6 It is involved in the copper-dependent biogenesis of COX2. It can
bind copper and can associate with newly translated COX2 and
the mitochondrial copper chaperone SCO1

Mitochondrial intermembrane
space

Stroud et al. (2015); Soma et al. (2019);
Pacheu-Grau et al. (2020)

MIA40 Mitochondrial import and assembly protein, oxidoreductase of the
mitochondrial disulfide relay, catalyzes disulfide bond formation in
proteins in the IMS. By using copper-binding protein Cox17 as a
natural substrate. Ccs1 shows interaction with Mia40. Mia40-
mediated oxidative folding of domain I of Ccs1 may control the
cellular distribution of Ccs1 and, consequently, active SOD1

Mitochondrial intermembrane
space

Klöppel et al. (2011); Koch and Schmid
(2014)

PARK7 Cu-dependent peptidase, function as a sensor of oxidative stress Mitochondria, nucleus,
endoplasmic reticulum and cytosol

Björkblom et al. (2013); Blockhuys et al.
(2017)
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Therefore, copper helps to assemble complex IV to respond to
energy demands. More complex IV assembly will enhance other
complex assemblies, as has been reported for complex I (Diaz
et al., 2006).

Copper deficiency, on the other hand, interferes with COX
biosynthesis, producing a decrease in mitochondrial ATP
production, which causes remodeling of ETC complexes,
represses respiration, and creates a reduction in the efficiency
of oxygen utilization (Kopp et al., 1983; Bode et al., 1992; Zeng
et al., 2007; Shoubridge 2012; Bustos et al., 2013; Ruiz et al., 2014;
Jensen et al., 2019). It has been observed that as COX biosynthesis
increases, other complexes tend to increase, such as complex I
(Diaz et al., 2006). In our laboratory, we observed that there is a
considerable increase of all ETC complexes by adding a
noncytotoxic copper concentration to K562 cells (Ruiz et al.,
2016).

COPPER HAS A KEY ROLE IN CU/ZN SOD1
AND COX ASSEMBLY

SOD enzymes have the primary responsibility for the dismutation
of superoxide anions to hydrogen peroxide in cells. They have
copper and zinc as a metal cofactor (SOD1 and SOD3), although
there also exist variations with manganese in eukaryotes (SOD2)
and with iron and nickel in bacteria and protists. In humans,

there are three isoforms, that is, SOD1, SOD2, and SOD3. SOD1
is mostly located in the cytosol, but 5–10% can be found in the
mitochondria. SOD2 localizes in the mitochondrial matrix and
SOD3 in the extracellular fluid. Although SOD2 is the

FIGURE 2 | (A) Schematic of Cu/Zn-SOD1 metalation in CCS1
mitochondria. CuL transfers a copper ion to CCS1 in the intermembrane
space. The incorporation of zinc may be during or before metalation with
copper by CCS1. SOD1 is metalated in the intermembrane space (IMS)
of mitochondria and then enters the matrix (Cobine et al., 2006a; Cobine et al.,
2006b; Robinson and Winge 2010; Fukai and Ushio-Fukai 2011). (B)
Metalation of COX copper centers (CuA and CuB sites). COX is assembled in
parts that are then merged to produce the matured holoenzyme complex. The
COX1 subunit contains the CuB site, and the COX2 subunit, the CuA site.
After entering mitochondria, CuL donates two copper ions to the copper
chaperone COX17 which in turn transfers the copper ions to COX11 and
SCO2. COX11 metalates the CuB site of the subunit COX1, and SCO2, the
CuA site of subunit COX2 by delivering two copper ions in a SCO1-mediated
process (Robinson and Winge 2010; Jett and Leary 2018).

FIGURE 3 | Copper protein network in mitochondria–STRING
interaction network. The interaction network was created with the STRING
(Search Tool for the Retrieval of Interacting Genes/Proteins) database version
11.0. A medium confidence cutoff of 0, 7 was implemented in this work.
The resulting protein association network for copper was visualized by a
Cytoscape v3.8.2. Proteins are presented as nodes (circles) connected by
lines (Edge) whose thickness represents the strength of the connection based
on the STRING database. For example, in the network’s inferior part, three
nodes (“SLC25A28,” “SLC25A37,” and “SLC25A37”) are not connected to
the network. The node “CCS” is connected to “COX11,” “COX17,” and
“SOD1” nodes. The edge (line) that connected “CCS” with “SOD1” is thicker
than the edge between “CCS” and “COX11,” and nodes (shared named,
Stringdb canonical name, display name, neighborhood connectivity—number
of neighbors). COX17 (9606. ENSP00000261070, Q14061, COX17, 7);
COX11 (9606. ENSP00000299335, Q9Y6N1, COX11, 7); SURF1 (9606.
ENSP00000361042, Q15526, SURF1, 8); PET191 (9606.
ENSP00000330730, Q86WW8, COA5, 8); SCO1 (9606.
ENSP00000255390, O75880, SCO1, 8); MT-CO2 (9606.
ENSP00000354876, P00403, MT-CO2, 8); COA6 (9606.
ENSP00000355572, Q5JTJ3, COA6, 8); MIA40 (9606. ENSP00000295767,
Q8N4Q1, CHCHD4, 8); COX19 (9606. ENSP00000342015, Q49B96,
COX19, 9); SCO2 (9606. ENSP00000444433, O43819, SCO2, 9); MT-CO1
(9606. ENSP00000354499, P00395, MT-CO1, 9); COX23 (9606.
ENSP00000306425, Q9BUK0, CHCHD7, 8); COX20 (9606.
ENSP00000406327, Q5RI15, COX20, 9); SOD1 (9606. ENSP00000270142,
P00441, SOD1, 9); MT-CO3 (9606. ENSP00000354982, P00414, MT-CO3,
9); CCS (9606. ENSP00000436318, O14618, CCS, 6); PARK7 (9606.
ENSP00000418770, Q99497, PARK7, 4); SLC25A3 (9606.
ENSP00000228318, Q00325, SLC25A3, 0); SLC25A28 (9606.
ENSP00000359526, Q96A46, SLC25A28, 0); and SLC25A37 (9606.
ENSP00000429200, Q9NYZ2, SLC25A37, 0). In Supplementary Material
additional data of the copper protein interaction network can be found.
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predominant superoxide dismutase in the mitochondrial matrix,
SOD1 is critical to the control of oxidative stress in the
mitochondrial intermembrane space (Zelko et al., 2002; Fukai
and Ushio-Fukai 2011). The relevance of the antioxidant proteins
and SODs is given by the control of ROS, which are known to
regulate cell signaling (Wang et al., 2018).

SOD1 is a homodimer having a binuclear copper and zinc site
in each subunit, which forms a narrow channel where the
dissociation of 2O2

− to H2O2 is carried out (Rhee et al., 2005).
SOD1 is mostly metalated in the cytosol and remains in the
cytosol. However, mitochondria-targeted SOD1 must first enter
as an apoprotein (without copper) to be metalated in the IMS by
CCS1 (Cobine et al., 2006a). CCS1 is a small polypeptide with
three domains; domains 1 and 3 bind copper, while domain 2 is
the key to the interaction with SOD1 (Lamb et al., 2000). The
transient interaction is mediated by domains 2 and 3 of CCS1
(Robinson andWinge 2010). Figure 2 shows the place where CuL
delivers copper to CCS1 inside the mitochondria.

COX is the terminal enzyme of the ETC and catalyzes the
reduction of oxygen to water. It consists of 13 subunits. COX1
(MT_CO1), COX2 (MT-CO2), and COX3 are encoded in the
mitochondrial DNA and form the COX catalytic center. The
nuclear genome encodes the remaining ten subunits. The
catalytic center of the enzyme contains 3 copper ions located
in 2 copper centers, 2 copper ions in the CuA center, and 1 in the
CuB center. Furthermore, two heme groups (α and α3) are also
needed. The catalytic core is responsible for the oxidation of
cytochrome c and the reduction of oxygen to water (Horn and
Barrientos 2008; Leary et al., 2009b).

COX17 initiates the copper transfer reactions for COX
metalation in the IMS, which acquires copper from the CuL
and requires additional COX11, SCO1, SCO2, and COA6.
COX11 metalates the CuB site in COX1, and SCO1, SCO2,
and COA6 metalate the CuA site in COX2. Once copper
redox cofactors and heme groups are added into COX1 and
COX2, the remaining subunits are added for final maturation
(Figure 2) (Jett and Leary 2018; Robinson and Winge 2010).
COA6 enables COX biogenesis as a thiol-reductase for copper to
reduce disulfide bridges of critical cysteine residues in SCO1 and
SCO2 metallochaperones in mitochondria (Pacheu-Grau et al.,
2020; Soma et al., 2019). In this review, we analyzed the
protein–protein interactions (PPIs) of the copper network in
mitochondria with the Search Tool for the Retrieval of Interacting
Genes/Proteins (STRING). The PPI network consisted of 20
nodes and 57 edges. The neighborhood connectivity of the
nodes has an average of 7 neighbors (Figure 3). The
interaction network shows that assembly and copper
metalation of COX and SOD1 in mitochondria are very
intricate. When COX1 is inserted in the mitochondrial
membrane, SURF1 adds the heme group into COX1, and
COX11 facilitates the formation of the CuB site. Copper for
CuB is donated to COX11 by COX17 at the COX11 binding site
right after cysteine sulfides are reduced by COX19. On the other
hand, COX2 facilitates the maturation of the CuA site when it is
bound to a protein complex composed of COX20, COA6, SCO1,
and SCO2. Copper is required to be transferred from COX17 to
SCO1 where the oxidoreductase activity of SCO2 on COX2

cysteine is considered fundamental. Likewise, these reactions
are associated with COA6 which reduces COX2 and SCO1,
allowing copper binding (Cobine et al., 2021). The network
suggests that the interaction of COA6 with COX17, SURF1,
SCO1, SCO2, and MIA4 (CHCHD4) appears to be the entry
point for cysteine-containing chaperones such as COA6, COX17,
and COX19.

ROLE OF COPPER ON MITOCHONDRIA
AND CELL FATE DETERMINATION

Hematopoietic stem cells (HSCs) and their fate are highly
dependent on the mitochondrial metabolism. Mitochondria
are responsible for metabolic reprograming needed for the
commitment and differentiation of HSCs into different cell
lineages, beyond energy production. In erythropoiesis,
mitochondria are also involved in heme and hemoglobin
biosyntheses (Fontenay et al., 2006; Kim et al., 2008; Chung
et al., 2012). Typical mammalian HSCs remain quiescent in the
hypoxic zone of the bone marrow (endosteal niche) to favor self-
renewal, a process governed by the stabilization of the hypoxia-
inducible factor-1 alpha (HIF-1α) protein and consequent
heterodimerization with HIF-1ß to activate transcription in
many target genes, including glycolytic enzymes (Takubo
et al., 2010). Thus, HSCs and embryonic stem cells have a
minimal basal metabolism relying mainly on glycolysis, while
mitochondrial respiration is low to avoid the generation of
reactive oxygen species (ROS) (Zhang et al., 2011; Xu X. et al,
2013; Bigarella et al., 2014). Transition from glycolysis to
OXPHOS and then from self-renewal to differentiation is
dependent on the presence of oxygen (Piccoli et al., 2005;
Piccoli et al. 2006; Piccoli et al. 2013), mitochondrial
respiratory substrates (Zhang et al., 2011; Vozza et al., 2014),
and the generation of mitochondrial ROS (Maryanovich and
Gross 2013; Bigarella et al., 2014). Furthermore, the participation
of mitochondrial fusion and fission events, the so-called
mitochondrial dynamics (MtDy) (Wanet et al., 2015;
Luchsinger et al., 2016; Gonzalez-Ibanez et al., 2020), and the
mitochondrial permeability transition pore (mPTP) (Folmes
et al., 2012) have been involved in this metabolic reprogramming.

Since respiratory complex IV has two copper sites that are
essential for its function, its activity can be easily
manipulated by either copper removal/chelation or copper
overload, affecting the overall purpose and assembly of the
ETC. Thus, managing the cellular copper level seems a simple
way for metabolic reprograming switching from glycolysis to
OXPHOS, and vice versa, to control cell fate. In this regard,
copper imbalances cause anemia, neutropenia,
thrombocytopenia (decreased blood platelets),
myelodysplastic syndrome, and leukemia due to alterations
in the differentiation process of the hematopoietic progenitor
cells (Zidar et al., 1977; Goyens et al., 1985; Hirase et al., 1992;
Gregg et al., 2002; Fong et al., 2007; Halfdanarson et al., 2008;
Griffith et al., 2009; Gletsu-Miller et al., 2011; Gabreyes et al.,
2013). In hematopoietic stem cells (HSCs), low copper
delayed differentiation and stimulated cell expansion.
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Since the lack of copper promotes cell expansion, it has been
proposed to be useful for ex vivo stem cell expansion which is
yearned for cell therapy (Peled et al., 2002; Huang et al.,
2009; Dahlberg et al., 2011). At the mitochondrial level, the
use of copper chelators results in decreased COX levels and
mitochondrial and cellular ROS levels, the activation of
glycolysis, and the appearance of giant mitochondria in
erythropoietic cell lines and primary EPO-induced
CD34 + cell differentiation (Dallman and Goodman 1970;
Wakabayashi et al., 1975; Kim et al., 2010; Bustos et al., 2013;
Ruiz et al., 2014; Jensen et al., 2019). This metabolic change
could allow their survival and cellular proliferation while
awaiting the ideal conditions to continue their
differentiation (Bustos et al., 2013; Jensen et al., 2019).
Copper deficiency alters metabolic reprogramming in
differentiating HSCs, reversing to an immature phenotype
related with erythroid progenitor cell expansion, with low
oxygen consumption, low ROS generation, and high
membrane potential (Jensen et al., 2019). In addition,
copper deficiency has been associated with increased
expression of the mitochondrial fusion proteins such as
MFN1, MFN2, and OPA1 (optic atrophy 1) (Yoon et al.,
2003; Chang and Blackstone 2010), and increased
mitochondrial membrane potential in K562 and EPO-
induced CD34 + cells (Bustos et al., 2013; Jensen et al.,
2019). In our laboratory, we generated a model of copper
deficiency in C57 black mice with a BCS treatment that
showed mild signs of anemia (Ruiz et al., 2014) and reduced
the expression of ceruloplasmin, ATP7B, and CIV, as
previously reported by other groups (Liebes and Medeiros
1997; Medeiros et al., 1997; Rossi et al., 1998; Cerone et al.,
2000; Getz et al., 2011; Gupta et al., 2011; Lassi and Prohaska
2012; Ruiz et al., 2014). Also, the BCS-treated mice had more
oxidized proteins, upregulation of the MFN2 protein,
OXPHOS remodeling from supercomplexes to individual
complexes, and higher oxygen consumption rates (Ruiz
et al., 2014). Besides, the liver showed large mitochondria
with a mix of average, balloon, and butternut squash
mitochondria (Ruiz et al., 2014). The butternut squash
mitochondria showed features between normal and
swollen mitochondria, which are likely an intermediate
state between the two phenotypes (Ruiz et al., 2014). It
has also been reported that copper depletion with TEPA
(tetraethylenepentamine) favored the maintenance and
expansion of HSCs for erythroid differentiation (Huang
et al., 2009).

On the other hand, individuals with high levels of copper in
their blood showed altered hematological parameters with an
increased number of proerythroblasts (early stage of
erythropoietic differentiation) and a decreased number of
orthochromatophilic erythroblasts (advanced phase of
erythropoietic differentiation) (Gregory and Eaves 1978). High
copper content has been associated with hemolysis because of its
direct effect on the ETC and increased generation of oxidative
stress (Fibach and Rachmilewitz 2008; Ruiz et al., 2016). This
could trigger a compensatory mechanism by accelerating the
erythropoietic process and releasing immature cells into the

bloodstream (Wagner et al., 2000). High copper levels are
then associated with mitochondrial dysfunction and cell
death. However, noncytotoxic copper overload has been
described to improve mitochondrial function by
stimulating the biogenesis and assembly of complex IV
along with the generation of a physiological amount of
ROS in the erythropoietic cell line K562. This process
stimulated mitochondrial turnover by mitophagy and
mitochondrial biogenesis, resulting in highly active
mitochondria overpacked with OXPHOS proteins for
ATP synthesis (Ruiz et al., 2016). Thus, physiological
ROS generation has been considered an adaptive response
to produce adjustments in signaling pathways related to
proliferation, metabolic adaptation, cell motility,
adaptations to hypoxia, and angiogenesis (Wang et al.,
2018).

Cellular copper levels, either in excess or lack, altered
mitochondrial function in stem cells and many other cell
types having an impact on either proliferation or
differentiation. Figure 4 represents the metabolic
reprogramming of HSCs toward expansion or
differentiation according to intracellular copper levels. A
lack of copper will induce cell expansion, a noncytotoxic
copper overload, and differentiation. Furthermore, Tables 2,
3 show several primary cells and cell lines that have been
exposed to different copper concentration or chelators and
assayed for cell proliferation or differentiation.

FIGURE 4 | Metabolic reprogramming induced by copper in
hematopoietic stem cells. Noncytotoxic copper overload induces both the
complex IV assembly and ROS generation, which promote mitochondrial
turnover and biogenesis. As a result, more active and oxidative
mitochondria are produced, which promote cell differentiation in HSCs. A
decrease in copper concentration will down regulate the expression of
complex IV, making mitochondria less oxidative. Since mitochondria will not
be able to satisfy energy demands, the energy metabolism switches to
glycolysis, which in turn will promote cell proliferation (adapted from Jensen
et al., 2019 and Ruiz et al., 2016).
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COPPER ROLE IN CANCER

Metabolic reprogramming can go from differentiated to
proliferative cells as it happens in cancer cells and induced
pluripotent stem cells (iPSCs), where the cell metabolism
switches from OXPHOS to aerobic glycolysis (Warburg effect).
Regarding mitochondria in cancer cells, they displayed a stem
cell-like phenotype, that is, low oxygen consumption and low
ROS, although they displayed higher membrane potential than
healthy cells (Bonnet et al., 2007; Hanahan and Weinberg Robert
2011; Schulze and Harris 2012; Wanet et al., 2015).

The remarkable change in the metabolism that occurs in
cancer cells has been associated, among other factors, with the
management of copper and proteins that use it (Gupte and
Mumper 2009). An example of this is obtained by observing
the high levels of ceruloplasmin found in various forms of cancer,
such as lymphomas, breast cancer, and gastrointestinal cancer
(Scanni et al., 1977; Ungar-Waron et al., 1978; Linder and Roboz
1986; Gupte and Mumper 2009), and ceruloplasmin levels have
been found to be increased 4 to 8 times during malignant
progression, returning to normal levels after tumor regression
(Brem et al., 1990; Brem 1999). Copper levels increase three times
in blood plasma, relating to tumor burden, progression,
incidence, invasion, and reoccurrence of the disease
(Goodman et al., 2004; Gupte and Mumper 2009). The human
Cu proteome, with 54 Cu-binding proteins, are up- or
downregulated in 18 cancer types (thymus, head and neck,
esophagus, adrenal gland, bladder, stomach, soft tissue, kidney,

pancreas, bile duct, liver, prostate, cervix, breast, uterus, thyroid,
colorectal, and lung), showing intricate patterns (Blockhuys et al.,
2017).

Angiogenesis is the development of new blood vessels which
are required for tumor growth (Folkman and Klagsbrun 1987).
Cancer cells have developed ways to synthesize and release their
own angiogenic stimulants or to recruit endothelial cells for the
same purpose (Goodman et al., 2004; Lowndes and Harris 2004;
Lowndes and Harris 2005; Gupte and Mumper 2009).

Copper is a potent stimulator of the angiogenic process by the
activation of angiogenic factors like the interleukin (IL)-1, IL-6,
and IL-8; tumor necrosis factor alpha (TNF-α); angiogenin; the
basic fibroblast growth factor (bFGF); fibronectin; and the
vascular endothelial growth factor (VEGF), which are critical
for tumor angiogenic developments (Li 2020). Copper sulfate
(CuSO4) combined with increasing doses of VEGF or FGF-2
revealed synergistic effect in endothelial cells grown in a 3D
culture system with enhanced collagen fiber deposition providing
complexity of angiogenic networks (Gérard et al., 2010). Copper-
coated disks inserted subcutaneously in rats stimulated a high and
extended-release of interleukin-1α (IL-1α) and low quantities of
IL-1β by recruited cells (Suska et al., 2003). HIF-1 transcriptional
activity requires the accumulation of HIF-1α following inhibition
of prolyl hydroxylases. This inhibition is generated by hypoxia,
and chemical hypoxia can be generated by cobalt. Copper
chelation with tetraethylenepentamine alters the transcriptional
activity of HIF-1α, decreasing the mRNA and protein expression
of VEGF, which is rescued by 25 μM CuSO4. Also, CCS1 gene

TABLE 2 | Effect of copper increase on proliferation and differentiation in different cell types.

Cells [Cu] Features Proliferation Differentiation References

Studies in primary cells

MSC (mesenchymal
stem cells)

50 µM Cu-His Present in the mesodermal germinal
layer

↓ ↑ into osteoblasts or
adipocytes

Rodríguez et al. (2002)

MEFs (Mouse
embryonic fibroblasts)

10 µM CuCl2 Synthesize fibers andmaintain matrix ↑ − Itoh et al. (2008)

HUVEC 500 µM CuSO4 Human umbilical vein endothelial
cells

↑ − Hu (1998)

HPC (CD34+) 10 µM CuCl2 Hematopoietic progenitor cells ↓ ↑ Peled et al. (2002);
Peled et al. (2005)

HSC 10 µM CuCl2 Hematopoietic stem cells ↓ ↑ Huang et al. (2009)
RIP1–Tag2 mice 20 µM Cu via drinking water

from 4 to 15 weeks of age
Tumorigenetic mouse model of
pancreatic islet cell carcinoma

↑ promotes tumor
growth

− Ishida et al. (2013)

Astrocytes 30 μM CuCl2 Astroglia from rat cerebral cortex ↑ − Hu et al. (2016)
BMECs 30–120 µM CuCl2 Brain microvascular endothelial cells

from rat
↑ − Wang et al. (2016)

Studies in cell lines from cancer

HepG2 64 µM CuSO4 Human liver hepatocellular cells ↓ − Aston et al. (2000);
Arnal et al. (2012)

K562 95 µM CuCl2 Human erythroleukemia cell line ↑ ↓ Ruiz et al. (2016)
A-549 80 µM Cu Adenocarcinomic human alveolar

basal epithelial cells
↓ − Arnal et al. (2012)

HL-60 12 μM Cu(NO3)2 Human promyelocytic leukemia cells ↓ ↑ Bae and Percival (1993)
Huh-7 and OUMS29 300 µM CuSO4 Human hepatoma cell lines ↓ − Oe et al. (2016)
A-549 5–15 µM CuCl2 Adenocarcinomic human alveolar

basal epithelial cells
↑ − Zhang et al. (2016)

↑: increase; ↓: decrease.
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silencing blocked VEGF expression, revealing copper
requirement for cobalt-activated transcriptional activity of
HIF-1α in promoting the expression of VEGF (Qiu et al.,
2012). Angiogenin-bound copper is a strong inducer of blood-
vessel development, and it binds to endothelial cell receptors and
extracellular matrix components (Soncin et al., 1997). In vitro,
copper sulfate incubation stimulates human umbilical vein
endothelial cell proliferation and migration (Hu 1998). In
vitro, copper salts could induce the synthesis of the fibronectin
matrix associated with angiogenesis (Kochi et al., 1983; Gullino
1986). The study of the mechanism of angiogenesis in the adult
organism, through a rabbit cornea model, implanted with
10–75°μg of copper sulfate pellets in the corneal stroma,
induced long-lasting and dose-dependent neovascularization,
showed that copper directly stimulates angiogenesis, and it is

helpful in the evaluation of antiangiogenic agents (Parke et al.,
1988). The expression of some angiogenic growth factors and
cytokines is reduced when copper levels are decreased (Brem
et al., 1990; Brem 1999). Cerebral neoplasms sequester copper,
utilizing a rabbit brain tumor model, and showed that
normocupremic animals formed big vascularized VX2
carcinomas, while in copper depleted by diet- and
penicillamine (CDPT)-treated rabbits, the tumors developed
were small, circumscribed, and relatively avascular. Metabolic
and pharmacologic removal of copper overcomes cerebral tumor
angiogenesis (Brem et al., 1990).

With these antecedents, the concept of antiangiogenic
therapies as cancer treatments has begun, although a phase
two trial of copper depletion by diet and penicillamine as
antiangiogenic therapy of glioblastoma multiforme did not

TABLE 3 | Effect of copper decline on proliferation and differentiation in different cell types.

Cells [Chelator] Features Proliferation Differentiation References

Studies in primary cells

Human fibroblast 100 µM D-penicillamine and 8 µM
CuSO4

Synthesize fibers and maintain the
extracellular matrix of tissues

↓ − Matsubara and
Hirohata (1988);
Goodman et al. (2004)

HSC 40 µM Tepa Hematopoietic stem cells ↑ ↓ Huang et al. (2009)
HPC 40 µM Tepa Hematopoietic progenitor cells ↑ ↓ Peled et al. (2002);

Peled et al. (2005);
Huang et al. (2009)

CD34 +

hematopoietic stem
cells

10, 20, or 30 µM BCS during 6 days of
culture 1 × 10−4% or 5 × 10−4% sodium
azide during 6 days of culture

HSC possesses multipotentiality,
enabling them to self-renew and to
produce mature blood cells, such as
erythrocytes, leukocytes, platelets,
and lymphocytes

↑ ↓ Jensen et al. (2019)

Lymphocyte T 25 μg/ml D- penicillamine and 2 μg/ml
CuSO4

Immune system cell ↓ − Lipsky and Ziff (1980);
Lipsky (1984)

HUVEC Inhibition of Cu transporter Ctr1 Human umbilical vein endothelial cells ↓ ↑ Narayanan et al.
(2013)

RIP1–Tag2 mice Tetrathiomolybdate 1 mg daily for up to
3 weeks

Tumorigenetic mouse model of
pancreatic islet cell carcinoma

↓ ↓ reduction in the
number of

angiogenic islets

Ishida et al. (2013)

βTC3 10 µM tetrathiomolybdate Derived from RIP1–Tag2 tumors ↓ − Ishida et al. (2013)
Tumor endothelia Penicillamine (2000 µg per dose per

mouse) Trientine (700 µg per dose per
mouse)

Derived from mesothelioma tumors in
mice

↓ − Crowe et al. (2013)

A549 xenograft Curcumin (U0126) Tumor xenograft model ↓ − Zhang et al. (2016)

Studies in cell lines from cancer

K562 10 µM BCS Human erythroleukemia cell line ↓ ↓ Bustos et al. (2013)
9L Gliosarcoma rat
model

2 mg D- penicillamine orally, once daily,
on the 3 days before and after
implantation

Brain Glial cell ↓ − Yoshida et al. (1995)

U937 5 μmol/L tet (2,3,2-tetraamine) Human promonocytic cells ↓ ↓ Huang and Failla
(2000)

A2780 10 µM tetrathiomolybdate Human ovarian carcinoma cells ↓ − Ishida et al. (2013)
A375 Sulfur nanoparticles (Nano-S) Malignant melanoma ↓ − Liu et al. (2016)
MCF-7 Nano-S Breast cancer cells ↓ − Liu et al. (2016)
H1299 DC_AC2, DC_AC30, DC_AC49,

DC_AC50, DC_AC61, DC_AC71
Lung cancer cells ↓ − Wang et al. (2015)

212LN DC_AC2, DC_AC30, DC_AC49,
DC_AC50, DC_AC61, DC_AC71

Head and neck cancer cells ↓ − Wang et al. (2015)

MB231 DC_AC2, DC_AC30, DC_AC49,
DC_AC50, DC_AC61, DC_AC71

Breast cancer cells ↓ − Wang et al. (2015)

↑: increase; ↓: decrease.
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improve survival in patients (Brem 1999; Brem et al., 2005).
Since it was discovered that tumor development is dependent
on the formation of new blood vessels, the mechanisms that
regulate angiogenesis continue to be investigated (Tisato
et al., 2010).

Many angiogenic promoters appear to be dependent on
copper concentrations. They control various endogenous
stimulators by acting as a cofactor, leading to the use of
copper chelators as therapeutic strategies with antiangiogenic
function. The most used copper chelators in tests are D-Pen
(D-penicillamine) and TM (tetrathiomolybdate). D-Pen is an
effective copper chelator and has antiangiogenic properties. In
addition, it can inhibit essential growth factors (VEGF and FGF),
requiring copper as a cofactor (Brem et al., 1990; Brem 1999;
Gupte and Mumper 2009). However, in the phase two trial, two-
month treatment with a copper-deficient diet combined with
D-pen as antiangiogenic therapy for glioblastoma did not
significantly increase the patients’ survival, despite effective
hypocupremia (Brem et al., 2005).

On the other hand, trials in rodents showed that by
decreasing copper levels using TM, there was a sharp
decrease in angiogenesis (Brewer 2001). A phase two trial
with TM in patients with advanced kidney cancer concluded
that this treatment was well tolerated, decreased copper
concentrations in all patients, and that 31% of patients
showed stability in the disease for at least 6 months
(Redman et al., 2003). TM reduces the secretion of IL-6
and bFGF by head and neck SCC (HNSCC) cell lines
in vitro. Also, in a rat aortic ring assay, the HNSCC cell
lines treated with TM decreased endothelial cell chemotaxis,
tubule formation, and neovascularization (Teknos et al.,
2005). TM induced mild copper deficiency in the phase I
clinical trial in patients with metastatic cancer treated with a
dose of 120 mg/day, followed by ceruloplasmin decrease to
20% baseline without toxicity (Brewer et al., 2000). Then, a
phase II clinical trial in patients with malignant pleural
mesothelioma received TM at 180 mg/day, starting
4–6 weeks post-surgery for 15 months. After 34 days, this
dosage decreased ceruloplasmin levels from 45 mg/dl to
13 mg/dl. This mild copper deficiency decreases VEGF
levels in the serum from an average of 2086 to 1,250 pg/
ml, and patients showed encouraging results about overall
survival (Pass et al., 2008). There must be several mechanisms
by which the decrease of copper using TM inhibits tumor
angiogenesis. For example, TM-treated SUM149
(inflammatory breast cancer cell line) cells released
significantly lower amounts of 5 angiogenic factors (VEGF,
FGF, IL1, IL6, and IL8) than untreated cells. TM has also
shown to inhibit endothelial cell differentiation and to
suppress NFκB protein levels and its transcription (NFκB
is known to regulate many genes involved in tumor invasion,
angiogenesis, and metastasis) (Pan et al., 2002; Brewer 2003;
Brewer et al., 2003).

In the murine HCC (human hepatocellular carcinoma)
xenograft model, tumor development and angiogenesis were
suppressed by trientine, a copper-chelating agent. Trientine
treatment in combination with a copper-deficient diet caused a

noticeable inhibition of neovascularization and increased
apoptosis in the HCC tumor (Yoshii et al., 2001).

The depletion of mitochondrial copper induces a metabolic
reprogramming that shifts from oxidative to glycolytic
metabolism and reduces energy production. The above is an
effective therapy against cancer types that depends on OXPHOS.
Copper-depleting nanoparticle (CDN) targeted on mitochondria
causes a metabolic shift from respiration to glycolysis in triple-
negative breast cancer (TNBC). CDNs are composed by a copper-
depleting moiety (CDM) and a semiconducting polymer
nanoparticle (SPN). The CDM is composed of N,N-Bis (2-
pyridinylmethyl)-1,2-ethanediamine linked to tricarbocyanine.
SPN consists of semiconducting polymers and phospholipid-
polyethylene glycol (PEG). CDN administration inhibits tumor
growth and improves survival of three mouse models of TNBC
(Cui et al., 2021).

Abnormal copper accumulation in cancer cells can help to
distinguish transformed cells from healthy ones and can be used
as targets for novel chemotherapeutic agents (Daniel et al., 2004),
such as the use of organic copper compounds in antitumor
treatments has been investigated as cytotoxic agents and
showed antitumor activity, such as Cu(II) thiosemicarbazide
complexes, Isatin–Schiff base Cu(II) complexes [(4,7-dimethyl-
1,10-phenanthroline) (glicinate)], Cu(II) nitrate complex,
Casiopeina II-gly, and imidazole, benzimidazole, and pyrazole
Cu(II) complexes. The mode of action of these compounds is
through producing high levels of ROS, mitochondrial toxicity,
and DNA interactions, inhibiting cell proliferation and producing
apoptosis. For example, Casiopeínas® are mixed chelate copper
(II) compounds ([Cu(N-N) (O-O)]NO3 or [Cu(N-N) (O-N)]
NO3) with antitumor potential. Casiopeínas® alter mitochondria
bioenergetics, with reports of inhibition of respiration and ATP
synthesis, mitochondrial swelling, loss of mitochondrial
membrane potential, and cytochrome c release (Ruiz-Azuara
and Bravo-Gomez 2010). Another example of this is found in
the use of D-Pen together with cupric sulfate. This mixture was
able to cause a dose-dependent cytotoxicity in human cancer
cells. (Gupte and Mumper 2009).

Cancer cells are sensitive to proteasome inhibition, suggesting
good potential as anticancer agents for copper complexes (Zuo
et al., 2013). Amino acid Schiff base–copper (II) complexes
inhibit the chymotrypsin-like activity of the proteasome,
producing a buildup of proteasome target proteins Bax and
IκB-α, therefore inducing growth inhibition and apoptosis.
Cyclic dithiocarbamate (DTC) ligands, such as the neutral
Cu(II) derivatives of the type [Cu(DTC)2], show remarkable
anticancer activity (IC50≤1 µM) (Brustolin et al., 2018). Cu(II) ion
increases the activity of 8-hydroxyquinoline derivatives in inhibiting
the chymotrypsin-like activity of the proteasome and induces growth
inhibition and apoptosis (Oliveri et al., 2017). The Cu(II) ion complex
with glycoconjugate DTC shows potential applications in targeted
chemotherapy; in particular, the CuGlu ([CuII(DTC-β-D-glucose)2])
revealed an exciting IC50 (2.0± 0.1 µM) value for theHCT116 human
colorectal carcinoma cell line (Pettenuzzo et al., 2019). Estrogen-
functionalized Cu(II) complexes are potent anticancer agents with low
IC50 values. Their cellular uptake occurred via passive diffusion, and
their mechanisms involved high DNA intercalation, intense DNA
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cleaving activity, and stimulation ROS production (Barrett et al.,
2020). [Cu(L-proline methyl ester DTC)2] copper compounds into
micelles with a cancer-targeting biomolecule are presented as a proper
“Trojan Horse” strategy for the delivery of Cu-DTC
chemotherapeutics (Brustolin et al., 2020).

MECHANISMS OF COPPER ACTION ON
TUMOR DEVELOPMENT

It has been shown that exposure to high levels of copper in water
(1.3 mg/L maximum levels allowed in public water supplies)
(Council et al., 2000) can enhance tumor progression but not
of forming new tumors and decreasing the intake of this metal
stops the development of the disease, indicating that copper is not
capable of producing transformation but is a necessary nutrient
for these cells. That is why copper has been described as a
stimulator of tumor development and not an initiator of
transformation, as it promotes several processes related to
cancer (Ishida et al., 2013).

Several types of cancer cells possess very high levels of the
transmembrane transporter CTR1, explaining how these cells
obtain the high concentrations of copper. Cancer cells treated
with copper chelator treatments have dramatically decreased
ATP production even when there is an increase in glycolysis,
indicating that these cells still rely on OXPHOS. Thus, these
elevated levels of copper can regulate the production of ATP by
OXPHOS to meet the demands of the accelerated proliferation
found in solid cancers, indicating that copper may be a limiting
nutrient for tumor development (Ishida et al., 2013). The high
copper content could be activating the function as a transcription
factor of ATOX1, further enhancing cell proliferation (Itoh et al.,
2008).

ATOX1 is established to perform a vital function in copper
homeostasis (Hatori and Lutsenko 2016). Moreover, ATOX1
shows high expression in different cancers (Cai and Peng
2013; Blockhuys et al., 2017) and has been described to
present a critical function in angiogenesis (Chen et al., 2015).
Remarkably, ATOX1 is a copper-dependent transcription factor
(requires copper binding) that stimulates the expression of
NADPH oxidase p47phox and Cyclin D1, relating to increased
ROS generation and proliferation, respectively (Hamza et al.,
2001; Itoh et al., 2008; Chen et al., 2015). The nuclear localization
of ATOX1 is associated with the severity of metastatic colorectal
cancer. Stimulation of colon cancer metastasis with activin A
promotes ATOX1 nuclear translocation in metastatic SW620 and
nonmetastatic SW480 colon cancer cell lines. Knockdown of
ATOX1 in SW620 decreased ROS generation and colony
formation through a decreased expression of NADPH oxidase
p47phox and Cyclin D1 (Jana et al., 2020). Individual cell
migration is an early step in breast cancer metastasis; thus,
ATOX1 silencing decreases the breast cancer cell migration
velocity via coordinated copper transport in the ATP7A-LOX
(proenzyme of lysyl oxidase) axis (Blockhuys et al., 2020).

Considering possible copper effects on tumor development,
the gene TP53—which encodes for the tumor suppressor protein
p53—should be mentioned, as it is the most frequently mutated

protein in human cancers (Kastenhuber and Lowe 2017). The
protein p53 is a transcription factor that possesses a single zinc
ion near its DNA-binding interface, and deficient zinc through
competition with copper causes p53 to misfold, which results in
functional loss of transcriptional activity (Loh 2010; Formigari
et al., 2013).

Other mechanistic insight about copper action in cancer
would be the oncogenic BRAFV600E that phosphorylates and
activates the MEK1 and MEK2 kinases, which in turn
phosphorylates and activates ERK1 and ERK2 kinases,
stimulating the MAPK (mitogen-activated protein kinase)
pathway to promote cancer. Alterations of the MEK1
interaction with copper and decrease of copper influx shooting
down CTR1 decrease BRAFV600E driven signaling and
tumorigenesis (Brady et al., 2014).

Moreover, the autophagy signaling is implicated in cellular
proliferation, and copper is necessary for the activity of the
ULK1 and ULK2 (ULK1/2) autophagic kinases, by directly
binding Cu to ULK1/2. Elevated intracellular copper levels
are related to starvation-induced autophagy and are enough
to upregulate the ULK1 kinase activity and autophagic flux
(Tsang et al., 2020). Copper-treated K562 cells showed reduced
levels of protein P62, indicating an increased autophagic flux
and mitochondrial fusion, which is restored to basal levels by
TBAP (antioxidant molecule that mimics SOD2) treatment,
suggesting that copper-induced ROS speeds up mitochondrial

FIGURE 5 |Mechanisms of copper action in cancer. (A) The high energy
demand found in these cells decreases the oxygen concentrations, producing
hypoxia; this causes an increase in the transmembrane transporter CTR1,
which causes an increase of the intracellular concentrations of copper.
The levels of this metal together with the reduced concentration of oxygen can
stabilize and activate the HIF-1 transcription factor, triggering the activation of
genes related to growth and tumor development. On the other hand, the high
copper content promotes the assembly of complex IV (COX1) which is
followed by the upregulation of OXPHOS. A higher oxygen demand will induce
the upregulation of HIF1-alpha, creating a virtuous cycle for tumor growth.
Excess of copper will also up regulate ATOX1 expression to promote cell
proliferation as well. HRE: hypoxia-response Element. EMT:
epithelial–mesenchymal Transition.
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turnover (Ruiz et al., 2016). The loss of the copper transporter
CTR1 decreased the growth and survival of KRASG12D-driven
lung tumors, which are reliant on Cu-ULK1 binding and are
coupled to reduced autophagy and signaling. This work
established the molecular basis of copper chelation to prevent
autophagy signaling, copper-dependent ROS generation
(Fenton reaction), and glycolytic metabolism from limiting
proliferation and improving cancer patients’ survival (Tsang
et al., 2020).

Interestingly, copper also has a role in regulating the
programmed death ligand 1 (PD-L1), which is overexpressed
by cancer cells to protect themselves from antitumor immune
responses. Copper supplementation in cancer cells enhanced PD-
L1 expression, driving cancer immune evasion, while copper
chelation promoted ubiquitin-mediated degradation of PD-L1
and increased the number of tumor-infiltrating CD8+T and
natural-killer cells (Voli et al., 2020).

The presence of significant high serum copper levels in
nonalcoholic fatty liver disease (NAFLD) in cirrhotic patients
increased cell growth, migration, and invasion of liver cancer cells
through the modulation of the MYC/CTR1 axis (MYC proto-
oncogene, bHLH transcription factor/copper transport protein)
(Porcu et al., 2018). Figure 5 summarizes the main findings of
copper action in cancer.

FINAL THOUGHTS

As largely discussed in this review, cellular copper concentration
has a direct impact on cell proliferation, differentiation, or cell
death. Copper property to control cell fate has been exploited by
modern medicine in the field of stem cell–based regenerative
medicine as well as in the fight against cancer. The main action
of copper is at the level of mitochondrial function and metabolism
because copper is a prosthetic group of respiratory complex IV.
Copper bioavailability has been shown to regulate both expression
and activity of complex IV and then the balance between glycolysis
and OXPHOS. Copper deficiency will favor glycolysis and cell
proliferation, and a noncytotoxic copper overload, OXPHOS, and
cell differentiation. However, the final outcome will be tissue- or
cell-specific. Changes in mitochondrial metabolism also impact the
amount intermediate metabolites, such as acetyl-CoA, citrate,
α-ketoglutarate, ROS, and NAD+/NADH among others, which
have a direct effect on the transcriptional and epigenetic regulation
of cells, by means of mitochondria–nucleus retrograde
communication. Copper-induced transcriptional regulation also
occurs via ATOX1, a copper-dependent transcription factor
associated with angiogenesis and tumor development. On the
other hand, an excessive copper overload will induce a massive
amount of ROS, due to Fenton andHaber–Weiss reactions, causing
cell death via apoptosis or necrosis. Thus, copper action involves
either going from mitochondrial-induced metabolic

reprogramming to genetic reprogramming to change cellular
phenotype, or cell death.

Pharmacological modulation of intracellular copper
concentrations is effective to control stem cell expansion and/
or differentiation for regenerative medicine as well as to control
tumor growth and cancer development. Cancer cells have been
shown to accumulate more copper than healthy cells and to be
sensitive to proteasome inhibition. Therefore, many copper-
based pharmacological strategies have been developed to
eliminate cancer cells. Those include copper chelators, copper-
depleting nanoparticles, and copper-based compounds which
have been shown to be successful both in vitro and in vivo.
Nevertheless, more basic and clinical research is still needed
regarding cell-specific targeting and delivery of those copper
compounds.

The study of copper on mitochondrial function and
metabolism has opened a powerful and novel route for drug
discovery and nanobiotechnology, not only for treating
catastrophic diseases like cancer but also for protecting and/or
improving mitochondrial activity and capacity. Remarkably,
proper mitochondrial function is associated with healthy aging
and the delay of aging-associated diseases.
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