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Abstract

Resilience is a system’s ability to withstand a disruption and return to a normal state

quickly. It is a random variable due to the randomness of both the disruption and resilience

behavior of a system. The distribution characteristics of resilience are the basis for resil-

ience design and analysis, such as test sample size determination and assessment model

selection. In this paper, we propose a systematic resilience distribution identification and

analysis (RDIA) method based on a system’s performance processes after disruptions.

Typical performance degradation/recovery processes have linear, exponential, and trigo-

nometric functions, and they have three key parameters: the maximum performance deg-

radation, the degradation duration, and the recovery duration. Using the Monte Carlo

method, these three key parameters are first sampled according to their corresponding

probability density functions. Combining the sample results with the given performance

function type, the system performance curves after disruptions can be obtained. Then the

sample resilience is computed using a deterministic resilience measure and the resilience

distribution can be determined through candidate distribution identification, parameter

estimation, and a goodness-of-fit test. Finally, we apply our RDIA method to systems with

typical performance processes, and both the orthogonal experiment method and the con-

trol variable method are used to investigate the resilience distribution laws. The results

show that the resilience of these systems follows the Weibull distribution. An end-to-end

communication system is also used to explain how to apply this method with simulation or

test data in practice.

Introduction

Ideally, systems are designed with the expectation that they will run smoothly and sustainably.

However, a system often faces various disruptions including an external disruption (such as

natural disaster and malicious attack) or the internal failure of the system itself. Disruption

will reduce the system performance or cause system failure, or even a domino effect. Thus, a
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system should have the ability to withstand disruption and return to a normal state quickly,

i.e., resilience, to prevent and minimize the losses from disruption.

The term “resilience” originates from the Latin word resiliere, which means to bounce back

[1]. It was first proposed in ecology and was later applied to other fields such as communica-

tions systems and power systems. So far, the study of resilience has attracted great attention.

Some scholars have concentrated on how to quantify system resilience [2–5], and some have

discussed how to maintain and enhance system resilience [6–9]. Researchers also found that

resilience was an internal property of a system, and claimed that it should be considered in the

early design and development stages of systems [10, 11].

As a random variable due to the randomness of both the disruption and the system’s

response to it, resilience distribution characteristics are the basis for system resilience design

and analysis. These characteristics are useful in understanding system resilience from a statisti-

cal perspective, and they can be further used in resilience index determination, resilience test

program design, and resilience assessment model selection. For different distribution types,

the corresponding resilience index, test program and assessment model are different. For

example, for system resilience with normal distribution and exponential distribution, when

engineers determine the resilience index (e.g., the expected resilience), they will consider

whether the resilience distribution is symmetric or skewed. In industry, for systems with simi-

lar resilience distributions, unified test and assessment specifications can be formulated for the

convenience of engineers. As is known, for system characteristics with different types of distri-

butions, the sample sizes and the assessment methods are very different.

However, to the best of our knowledge, few studies have analyzed resilience distribution,

and only some research has provided resilience analysis results using distribution forms. For

example, Ouyang et al. [12] calculated the resilience distribution of a power transmission grid

for different hazard scenarios. Pant et al. [13] obtained the cumulative density function (CDF)

of a container terminal’s resilience using a simulation for given recovery orders and recovery

probability distributions. Ba-Alawi et al. [14] conducted a resilience assessment of the mem-

brane bioreactor in a wastewater treatment plant based on the performance curves, with the

assumption that the distribution of the failure data followed a lognormal distribution. Zinetul-

lina et al. [15] proposed a quantitative resilience assessment for chemical process systems with

normally distributed variables such as timing and precision. On the other hand, some

researchers analyzed the resilience laws of complex networks such as transportation systems,

water supply systems, and electric power systems. For example, Orosz et al. [16] explored the

relationship between resilience and the minimal production flow rate of a process network.

Mou et al. [17] found that the resilience of a crude oil transportation network decreased at a

steady rate during random attacks and decreased sharply during deliberate attacks. They also

found that the density and centrality of the network were negatively correlated with resilience,

while the connectivity and size of the network were positively correlated with resilience.

Table 1 summarized these related works, and one can find that how to analyze the system resil-

ience distribution is still a problem.

In this study, we first summarize the system’s possible behavior after a disruption and pro-

pose our resilience distribution identification and analysis (RDIA) method. Then, using this

method, the resilience distribution for some typical performance processes is analyzed. The

results show that the resilience of these systems follows the Weibull distribution.

Problem description

A system’s resilience is determined by its possible response after a disruption. To find the resil-

ience distribution, we analyze the system’s response first.
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After a disruption, the system may experience three main phases: i) degradation phase, ii)

recovery phase, and iii) new steady phase, as shown in Fig 1. In the beginning, the system runs

normally. Then, a disruption occurs at time t0, and the system performance begins to degrade

and enters the degradation phase. Then the recovery actions are taken to cope with the disrup-

tion and the system begins to recover and enters the recovery stage. The performance degrada-

tion time and the recovery time are denoted as Td and Tr, respectively, and the maximum

performance degradation is denoted as QL.
The system’s ability to absorb, adapt, and recover from the disruption determines its perfor-

mance degradation and recovery process. Cimellaro et al. [18] proposed three types of perfor-

mance recovery functions, i.e., linear, exponential, and trigonometric functions. Similarly,

these functions were also used to describe the performance degradation processes (see [19–

21]). For those systems that can be fully recovered, these functions are as follows:

Table 1. Comparison of related works.

Source Disruption type Application area Comparisons

Ouyang et al.

[12]

Hurricane and random

hazards

Power and other

infrastructure systems

The distributions of hazard occurrence rate and intensity are modeled with historical

data, and the system’s resilience distributions was obtained by simulation. The resilience

distribution type was not further analyzed.

Pant et al. [13] Terminal closure and crane

outage

Container terminals The randomness of repair arrival rate is considered, and the system resilience

distribution is analyzed. Also, the resilience distribution type was not further analyzed.

Ba-Alawi et al.

[14]

Basic events that may cause

system failure

Wastewater treatment

plant

The failure time distribution is considered, and the system resilience is computed for

four different seasons. The resilience distribution is not analyzed.

Zinetullina

et al. [15]

Unprecedented disruption Chemical process systems The randomness of the failures is considered, and the system’s resilience profile can be

obtained as a probabilistic and time-dependent evolution of a system’s functionality

state. The resilience distribution is not analyzed.

Orosz et al. [16] Expected or unexpected

failures

Processing systems The system resilience is analyzed with different redundancy configurations, and how

redundancy effects on system resilience is studied.

Mou et al. [17] Random and intentional

attacks

Crude oil transportation

network

How attack type and network topology characteristics effect on network resilience is

studied.

https://doi.org/10.1371/journal.pone.0276908.t001

Fig 1. A typical performance process after a disruption.

https://doi.org/10.1371/journal.pone.0276908.g001
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1. Degradation function (from time t0 to t1)

QdðtÞ ¼

1 � QL
t � t0
Td

� �

; ðlinearÞ

1 � QL

exp � b
Td � t þ t0

Td

� �

� expð� bÞ

1 � expð� bÞ
; ðexponentialÞ

1 � 0:5QL 1 � cos p
t � t0
Td

� �� �

; ðtrigonometricÞ

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð1Þ

2. Recovery function (from time t1 to t2)

QrðtÞ ¼

1 � QL 1 �
t � t1
Tr

� �

; ðlinearÞ

1 � QL

exp � b
t � t1
Tr

� �

� expð� bÞ

1 � expð� bÞ
; ðexponentialÞ

1 � 0:5QL 1þ cos p
t � t1
Tr

� �� �

; ðtrigonometricÞ

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð2Þ

where b represents the scale parameters in the exponential function and determines the

extent to which the exponential function deviates from linearity (b> 0). The three types of

performance process functions are shown in Fig 2, and they can be used in the following

situations:

1. The linear function is suitable for systems with a constant performance change rate. It is

generally used when there is limited information regarding emergency preparation, avail-

able resources, and the system’s response to the disruptions.

Fig 2. Typical system performance process functions.

https://doi.org/10.1371/journal.pone.0276908.g002

PLOS ONE System resilience distribution identification and analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0276908 November 3, 2022 4 / 21

https://doi.org/10.1371/journal.pone.0276908.g002
https://doi.org/10.1371/journal.pone.0276908


2. The exponential function can be applied for systems with a ‘first slow then fast’ perfor-

mance degradation process or with a ‘first fast then slow’ recovery process. A larger b indi-

cates a more significant deviation from the linear function and a more obvious change rate.

• An exponential degradation process indicates that the system can resist the disruption at

the beginning, and the degradation increases over time because all possible resistance strat-

egies have been used.

• An exponential recovery process implies that the system’s performance is restored quickly

after the recovery action starts, and the speed slows down later. This phenomenon may be

caused by a repair sequence in which those actions with a large recovery effect are taken

first.

3. The trigonometric function is suitable for systems with slower performance degradation/

recovery at both the beginning and the end of the process, but with a faster performance

change rate in the middle.

• A trigonometric degradation process means that the disruption has a slight impact on the

system in the initial stage, but its impact increases along with the disruption intensity. At

the end of the process, the performance is not easily affected, and the degradation speed

slows down.

• A trigonometric recovery process represents the fact that the system lacks or has limited

resources at the beginning. Once the resource is obtained, the recovery speed increases

quickly, as those actions that have a large recovery effect on the system are taken first.

Therefore, the recovery speed increases at the beginning and then slows down slightly at

the end.

There are three key parameters in the performance degradation and recovery process after

a disruption, including the maximum performance degradation QL, the degradation duration

Td, and the recovery duration Tr. Usually, QL is determined by the system redundancy and the

disruption severity, and Td and Tr are affected by the recovery strategies such as resource allo-

cation and repair sequences. Researchers have also analyzed these parameter characteristics.

For example, Wang et al. [22] stated that both the instant residual availability and the recovery

time of a link in a road network had a confirmed half-normal distribution when a link was ran-

domly disrupted. Ouyang et al. [12] used a power law distribution to model the hazard inten-

sity of a power transmission system in Harris County and applied the normal distribution to

model the repair time of failed substations. An investigation made by Carreras et al. [23]

showed that the blackout time intervals for power systems approximately satisfied an exponen-

tial distribution. Weiss and Rosenthal [24] compared the durations of the supply disruption of

an economic order quantity inventory system with a normal distribution and an exponential

distribution. Upadhya and Srinivasan [25] applied an exponential distribution for a fighter air-

craft’s repair time and log-normal distribution for the logistic delays. Myrefelt [26] found that

log-normal distributions best fit the mean time to repair (MTTR) and mean time between fail-

ures (MTBF) data for a heating, ventilation, and air conditioning system.

Method

For the system with the given system response characteristics, we propose a Resilience Distri-

bution Identification and Analysis (RDIA) method, and analyze the system resilience distribu-

tions. Our RDIA method makes the following assumptions:
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1. The system can finally return to the initial performance after recovery;

2. Both the system performance degradation and the recovery processes are monotonic.

Fig 3 expresses the steps of the RDIA method. The specific steps are as follows:

Resilience samples obtaining

To accurately identify the resilience distribution, the resilience data should be sufficient. In the

Monte Carlo simulation, it is assumed that the simulation error is required to be no more than

±ε at a confidence level of 1 − α. According to the central limit theorem, the number of simula-

tions n should satisfy the following equation (see [25, 27]):

n �

z
1�

a

2

s

ε

0

B
@

1

C
A

2

; ð3Þ

If the variance σ2 is unknown, the sample variance S can be taken as an unbiased estimate

of the variance. In general, it is recommended that n� 1000.

Fig 3. Flowchart of the RDIA method.

https://doi.org/10.1371/journal.pone.0276908.g003
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The Monte Carlo method, which uses “frequency” to approximate “probability” with

enough experimental data, is applied to obtain the performance behavior samples after the dis-

ruption. The steps are as follows:

1. Sampling the key parameters of the performance process after disruptions: n sets of the

three key parameters of the system (i.e., Td, Tr, and QL) are sampled according to their

distributions.

2. Determining the resilience curve: The resilience curve is generated using the key parame-

ters sampled above and the performance degradation/recovery functions. Then n perfor-

mance processes after disruptions are determined.

3. Obtaining the resilience samples: n resilience values are calculated using the resilience mea-

sure in Eq 4 (see [27]), i.e.,

RD ¼

R t0þTa
t0

QðtÞdt
R t0þTa
t0

Q0ðtÞdt
; ð4Þ

where Q(t) and Q0(t) represent the system performance at time t with and without disrup-

tion, respectively, t0 is the disruption occurrence time, and Ta is the maximum allowable

recovery time. This measurement reflects the system’s average performance after a disrup-

tion within a certain time period.

Probability distribution fitting and testing

After obtaining the resilience samples, the probability distribution fitting and testing have the

following three steps [28]:

Candidate distribution identification. To construct the resilience sample distribution

histogram, we first calculate the number of groups as:

k ¼ ½1þ 3:3lgn�; ð5Þ

where k is the number of groups, [�] indicates rounding, and n is the sample size. Then we

combine those groups with a sample size of less than five and construct the resilience sample

distribution histogram. If the histogram is symmetrically or approximately symmetrically dis-

tributed, the resilience samples may obey a normal distribution or a Weibull distribution with

a shape parameter between 3 and 4. If the data are right-skewed, an exponential distribution,

log-normal distribution, and Weibull distribution should be considered [29]. After possible

theoretical distributions are selected, the probability plot can further be used for verification,

and the distribution with the best fitting effect (i.e., the points in the probability plot lie

approximately on a line) can be selected.

Parameter estimation. The methods of parameter estimation mainly include the moment

estimation and the maximum likelihood estimation (MLE). The estimation results obtained

with the MLE are more significant if the population distribution is known since the posterior

information of the samples can be fully utilized. In this study, the MLE is used for the resilience

parameter estimation. Letting the distribution of the resilience population be

f ðRi; y1; y2; :::; ymÞ, where θi is an unknown parameter, and ðR1;R2; :::;RnÞ are the observed

resilience sample values obtained by the Monte Carlo simulation, then, the maximum likeli-

hood function can be written as Lðy1; y2; . . . ; ymÞ ¼
Qn

i¼1

f ðRi; y1; y2; . . . ; ymÞ. Taking the
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logarithm, we have ln[L(θ1, θ2, . . . ; ymÞ� ¼
Qn

i¼1

ln½f ðRi; y1; y2; . . . ; ymÞ�. Since the obtained resil-

ience samples are continuous random variables, the maximum likelihood functions are differ-

entiable. Then the likelihood equations can be established as

@lnLðy1; y2; . . . ; ymÞ

@yi
¼ 0; ði ¼ 1; 2 . . .mÞ. By solving this, we can obtain the estimated parame-

ters (θ1, θ2, . . ., θm).

Goodness-of-fit test. Considering the diversity of the resilience sample distributions and

the large sample data obtained with the Monte Carlo method, in this study, the chi-squared

test method is applied for the goodness-of-fit test. This method uses chi-squared statistics χ2

(see Eq 6) to represent the deviations between the observed values and the expected distribu-

tion. According to the large number theorem, when the samples obey a certain distribution,

the number of samples in each group should be close to the number calculated using the theo-

retical distribution. Therefore, the smaller the chi-squared statistics is, the smaller the devia-

tion is. The chi-squared statistics can be calculated as follows:

w2 ¼
Xk

i¼1

ðOi � npiÞ
2

npi
; ð6Þ

where k is the number of groups, Oi is the number of samples in group i, n is the sample size, pi
is the probability that sample Xi belongs to group i if the distribution assumption holds, pi = F
(xi) − F(xi−1), and F(x) is the CDF.

The maximum likelihood estimation is used to replace the unknown parameters in the resil-

ience distribution. The critical value w2
a
ðk � m � 1Þ follows the chi-squared distribution with

the degree of freedom k −m − 1, wherem is the number of unknown parameters and α is the

significance level. According to the given significance level α and the corresponding quantile of

the chi-squared distribution, we can find the critical value w2
a
ðk � m � 1Þ in the chi-squared

table. Then, this value can be compared with the chi-squared statistics calculated using Eq 6. If

the statistics are less than this critical value, it is considered that the sample observation values

obey the assumed distribution, i.e., the resilience distribution is obtained. Otherwise, new dis-

tribution types should be considered based on other candidate distributions.

Experiments and discussions

Using our RDIA method described above, this section discusses the investigation of the resil-

ience distribution of systems with typical performance processes after disruptions. In this

study, it is given that:

1. Both the system performance degradation and the recovery processes follow linear, expo-

nential, or triangular functions as Eqs 1 and 2 state.

2. Both the degradation duration Td and the recovery duration Tr of the system performance

follow negative exponential distributions.

3. The maximum performance degradation QL follows a discrete uniform distribution.

4. The maximum allowable recovery time Ta is 1000 s.

Resilience distribution identification and analysis

Experiment design. To investigate the resilience distribution of systems with different

performance degradation/recovery process functions and parameters, we design five three-
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level factors experiments according to the L18(37) orthogonal array, as shown in Table 2. The

performance degradation duration Td and recovery duration Tr obey the negative exponential

distribution with the mean values of 1/λ = 30, 60, 90 seconds. The maximum performance deg-

radation obeys discrete uniform distributions with PðQL ¼ 0:01iÞ ¼
1

maxðQLÞ
for i = 1, 2, . . .,

max(QL) and max(QL) = 30%, 60%, 90%. To facilitate the research, b is assumed to be ln(200)

in the exponential function.

Procedure and results. Experiment 1 in Table 2 is taken as an example to illustrate the

RDIA process and results. Letting the number of simulations n be 5000, according to Eq 3, we

can compute the simulation error as ε� 0.08% with a confidence level of 1 − α = 95%. The his-

togram of the resilience samples obtained from the simulation is shown in Fig 4(a). Using the

distribution fitting method, one can find that the system resilience obeys a Weibull distribu-

tion with the shape parameter ξ = −0.99988, scale parameter σ = 0.004564, and position param-

eter μ = 0.995432. From the empirical and theoretical CDF plots in Fig 4(b) and the

probability plot in Fig 4(c), one can see that the empirical distribution curve of the resilience

samples obtained in Experiment 1 is highly consistent with the fitting distribution curve, and

only a slight deviation exists in some samples with low system resilience. Using a chi-squared

test, the chi-squared statistic is computed to be χ2 = 9.3021. It is known that the critical value

w2
0:05
ð6Þ ¼ 12:6. Since w2 � w2

0:05
, we can conclude that the system resilience with the process

functions and parameters in Experiment 1 obeys the Weibull distribution at a significance

level of 5%.

We also find that all 18 experiments in Table 2 follow the Weibull distribution. The parame-

ter estimation and the chi-squared test results of these 18 experiments are shown in Table 3.

One can see that 13 chi-squared statistics in Table 3 satisfy a significance level α = 5%, 4 statis-

tics satisfy α = 1%, and 1 statistic satisfies α = 0.5%.

Table 2. Experimental design.

No. Performance process parameters Performance process functions

QL Td Tr Fd Fr

1 P(QL = 0.01i) = 0.033, (i = 1, 2, . . ., 30) 1/λd = 30 s 1/λr = 30 s linear linear

2 1/λd = 30 s 1/λr = 60 s exponential trigonometric

3 1/λd = 60 s 1/λr = 30 s trigonometric trigonometric

4 1/λd = 60 s 1/λr = 90 s linear exponential

5 1/λd = 90 s 1/λr = 60 s trigonometric exponential

6 1/λd = 90 s 1/λr = 90 s exponential linear

7 P(QL = 0.01i) = 0.017, (i = 1, 2, . . ., 60) 1/λd = 30 s 1/λr = 30 s trigonometric exponential

8 1/λd = 30 s 1/λr = 90 s linear trigonometric

9 1/λd = 60 s 1/λr = 60 s exponential exponential

10 1/λd = 60 s 1/λr = 90 s trigonometric linear

11 1/λd = 90 s 1/λr = 30 s exponential trigonometric

12 1/λd = 90 s 1/λr = 60 s linear linear

13 P(QL = 0.01i) = 0.011, (i = 1, 2, . . ., 90) 1/λd = 30 s 1/λr = 60 s trigonometric linear

14 1/λd = 30 s 1/λr = 90 s exponential exponential

15 1/λd = 60 s 1/λr = 30 s exponential linear

16 1/λd = 60 s 1/λr = 60 s linear trigonometric

17 1/λd = 90 s 1/λr = 30 s linear exponential

18 1/λd = 90 s 1/λr = 90 s trigonometric trigonometric

https://doi.org/10.1371/journal.pone.0276908.t002
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Effects of performance process functions and parameters

Experiment design. Using the control variable method, we design 13 types of experiments

to investigate the influence of the system performance process parameters on the resilience dis-

tribution. The specific parameters are shown in Table 4. Experiment Type 1 in Table 4 is the

control group, and the other experiment types are experimental groups. Comparing the exper-

imental results for Experiment Types 2–5, Experiment Types 6–9, and Experiment Types 10–

13 with Experiment Type 1, we can investigate how the random variable Tr, Td, and QL affect

the resilience distribution, respectively.

Fig 4. Statistics results for Experiments 1 in Table 2. a) histogram; b) CDF; c) probability plot (the fitted Weibull distribution is used as the theoretical function).

https://doi.org/10.1371/journal.pone.0276908.g004
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Combining the 13 types of performance process parameters in Table 4 with the 3 system

performance process functions in Eqs 1 and 2, we have 3 × 13 experiments. We use L/E/T to

represent the performance processes that follow the linear/exponential/trigono -metric func-

tions, respectively. We use a letter and a digit together to represent the experiment code, e.g.,

Experiment L1 is a performance process with a linear function and Type 1 parameters in

Table 4. For the experiments with exponential functions in Table 4, letting b be ln(200), the

experiments in Table 5 are added to discuss how the parameter b of the exponential function

affects the system resilience distribution. Experiment E1 is used as the control group, and the

other four experiments are experimental groups.

Table 3. Distribution fitting results for experiments in Table 2.

No. Shape parameter ξ Scale parameter σ Position parameter μ Chi-squared statistic χ2

1 -0.99988 0.004564 0.995432 9.3021

2 -0.99815 0.007244 0.992736 9.1708

3 -1.01166 0.006619 0.993440 6.3915

4 -1.00473 0.013303 0.986747 11.3008

5 -1.00624 0.012333 0.987721 15.8348

6 -0.98600 0.015129 0.984641 6.5990

7 -0.97489 0.010014 0.989709 10.3277

8 -1.03237 0.017843 0.982695 5.6041

9 -0.99553 0.022594 0.977272 12.9884

10 -0.98317 0.022496 0.977099 14.7408

11 -1.07359 0.022177 0.979315 10.8050

12 -1.00270 0.02313 0.976913 7.7037

13 -1.02137 0.020399 0.980017 7.9690

14 -1.03697 0.03476 0.966436 8.4229

15 -1.02432 0.024886 0.975686 10.1542

16 -0.98392 0.026799 0.972732 8.9706

17 -1.02449 0.029377 0.97131 14.3174

18 -0.96725 0.121987 0.873491 17.1497

https://doi.org/10.1371/journal.pone.0276908.t003

Table 4. Experiments to find how the performance process parameters affect the resilience distribution.

Type QL Td Tr

1 P(QL = 0.01i) = 0.01, i = 1, 2, . . ., 100 1/λd = 60 s 1/λr = 60 s

2 1/λr = 20 s

3 1/λr = 40 s

4 1/λr = 80 s

5 1/λr = 100 s

6 P(Q1 = 0.01i) = 0.01, i = 1, 2, . . ., 100 1/λd = 20 s 1/λr = 60 s

7 1/λd = 40 s

8 1/λd = 80 s

9 1/λd = 100 s

10 P(QL = 0.01i) = 0.0125, i = 1, 2, . . ., 80 1/λd = 60 s 1/λr = 60 s

11 P(QL = 0.01i) = 0.016, i = 1, 2, . . ., 60

12 P(QL = 0.01i) = 0.025, i = 1, 2, . . ., 40

13 P(QL = 0.01i) = 0.05, i = 1, 2, . . ., 20

https://doi.org/10.1371/journal.pone.0276908.t004
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Discussion. The procedures for the experiments in Tables 4 and 5 are similar to those in

Table 2, so we only discuss the experimental results here. Fig 5 provides the box plots of the

system resilience with a parameter change.

From Fig 5, one can see that the medians of all the boxes are generally greater than the

mean, and this indicates that the resilience distributions are right-skewed. This is because the

system can return to the normal state within the maximum allowable recovery time Ta in most

situations. It can also be found that the maximum resilience of all experiments is very close to

1. This is because the number of Monte Carlo iterations is large enough in each experiment,

and there are always some processes with small performance degradations and short degrada-

tion/recovery durations. The results show that all the samples of the experiments in Tables 4

and 5 obey the Weibull distribution. The impacts of the performance process functions and

parameters on the system resilience distribution are analyzed below:

1. Effect of performance process functions. According to Fig 5(a), the process functions

affect the system resilience distributions. Fig 6 shows the sample resilience CDFs for all

three types of resilience functions. Comparing the exponential resilience functions with dif-

ferent b, one can see that the CDF curve becomes steeper and most of the resilience samples

are higher with a larger b. When b becomes closer to 0, the sample distribution becomes

closer to those with linear and trigonometric resilience functions. This is because a small b
indicates a small change rate of the exponential performance process, and in this case, the

exponential function is close to the linear function.

The parameters of the Weibull distributions obtained through distribution fitting for the

experiments in Table 5 are shown in Fig 7. One can see that the shape parameter ξ does not

change obviously with b, but a smaller b results in a smaller scale parameter σ, a larger posi-

tion parameter μ, and a less resilient system.

Fig 8 compares the parameters estimated by fitting the Weibull distribution for the experi-

ments in Table 4. One can see that the scale parameter σ and the position parameter μ are

almost the same for experiments with linear and trigonometric performance process func-

tions, and their shape parameters ξ are all near -1. Although the linear and trigonometric

functions are different in curve shapes, their integrations within the same time period are

similar, as shown in Fig 2. Moreover, the scale parameter σ of the experiments with expo-

nential performance process functions is smaller than those for the other two types of func-

tions, and the position parameter μ is larger than those for the other two types.

2. Effect of Td and Tr. Fig 5(b) and 5(c) shows the effect of both the degradation duration and

the recovery duration on the system resilience distribution. One can see that the samples

are more dispersed for the exponentially distributed Tr (or Td) with larger 1/λ. The system

resilience decreases with the increase in the Tr (or Td) mean. This is because the longer the

Tr (or Td) is, the longer the system operates at a low-performance level, resulting in lower

resilience. The effects of Tr and Td are almost the same since they both determine the

Table 5. Experiments to find the effect of b on the resilience distribution.

No. b QL Td Tr

E1(1) ln(20000) P(QL = 0.01i) = 0.01, i = 1, 2, . . ., 100 1/λd = 60 s 1/λd = 60 s

E1(2) ln(2000)

E1 ln(200)

E1(3) ln(20)

E1(4) ln(1.1)

https://doi.org/10.1371/journal.pone.0276908.t005
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duration of the system operating with degraded performance.

The experiments with linear resilience functions are taken as an example. Their shape

parameters ξ do not have significant laws, and their scale parameters σ and position param-

eters μ are shown in Fig 9. One can see that a larger Tr (or Td), a larger σ and a smaller μ
results in a resilience distribution with a wider range.

Fig 10 shows the sample CDF of Experiments L1-L9. It can be seen that the effects of Td and

Tr on the resilience distributions are basically the same. This is because both Td and Tr fol-

low exponential distributions with the same parameter, and they jointly determine the time

when the system operates at a degraded performance.

Fig 5. Sample box plots of experiments in Tables 4 and 5. a) effect of performance process functions; b) effect of Td; c) effect of Tr; d) effect ofQL. The yellow dots

represent the mean resilienceℝD , the red lines represent the median resilience ℝD;0:5, the tops and the bottoms of the boxes represent the upper 75% percentiles ℝD;0:75

and lower 25% percentiles ℝD;0:25, respectively, and the top and bottom lines represent the maximum resilience ℝD;max and minimum resilienceℝD;min, respectively.

https://doi.org/10.1371/journal.pone.0276908.g005

PLOS ONE System resilience distribution identification and analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0276908 November 3, 2022 13 / 21

https://doi.org/10.1371/journal.pone.0276908.g005
https://doi.org/10.1371/journal.pone.0276908


3. Effect of QL. Fig 5(d) explores the effect of the maximum degradation performance QL on

the system resilience distribution. One can see that the mean resilience increases with the

decrease in the max(QL), and the sample resilience is more concentrated with a smaller max

(QL). This phenomenon is inevitable because the maximum performance degradation QL
directly determines the maximum performance that the system loses. Therefore, a smaller

max(QL) implies a larger system resilience. Taking experiments with linear resilience func-

tions as an example, their estimated parameters are shown in Fig 11. One can see that a

larger max(QL) has a larger scale parameter σ and a smaller position parameter μ, indicating

a lower system resilience.

Fig 6. Sample CDFs of experiments in Tables 4 and 5.

https://doi.org/10.1371/journal.pone.0276908.g006

Fig 7. Parameters estimated of experiments in Table 5.

https://doi.org/10.1371/journal.pone.0276908.g007
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Case study

Here, a wireless end-to-end communication system under random electromagnetic interfer-

ence is used as an example to explain our RDIA method with simulation or test data in prac-

tice. In this case, the bit error rate (BER) is chosen as the key performance index, and the

maximum allowable recovery time is 12 minutes.

Fig 8. Parameters estimated of experiments in Table 4.

https://doi.org/10.1371/journal.pone.0276908.g008

Fig 9. Estimated parameters of Experiments L1-L9.

https://doi.org/10.1371/journal.pone.0276908.g009
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The system consists of two fixed nodes, a transmitting one and a receiving one, and the dis-

tance between them is 1km. The transmitting node generates 1024-bit packets at a rate of 1.0

packets/second, and transmits them at 1024 bits/second over the channel. A jammer is applied

to simulate the electromagnetic interference. It moves in a straight line at a constant speed

within a 4km × 8km area as Fig 12 shows. Its speed follows a normal distribution, and its start

and end coordinates follow uniform distributions. The parameters are shown in Table 6.

Fig 10. Sample CDFs of Experiments L1-L9.

https://doi.org/10.1371/journal.pone.0276908.g010

Fig 11. Estimated parameters for Experiments L1 and L10-L13.

https://doi.org/10.1371/journal.pone.0276908.g011
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Let the simulation error be ε� 0.08 with a confidence level of 1 − α = 95%, and the number

of simulation iterations n is determined as 50 according to Eq 3. As it is not a numerical study,

so we relax the requirements of simulation error. In each simulation run, we randomly gener-

ate the jammer trajectory according to the parameters shown in Table 6. The system BER is

collected every 0.5 s during the simulation, and the system resilience of these samples are cal-

culated using Eq 4. Fig 13 shows the BER under the electromagnetic interference shown in Fig

12. As the distance between the jammer and the receiving node is first far, then near, and later

far, the system BER declines first, then rises, and ends up at a degraded level.

Since the BER is a smaller-the-better type parameter, we use the min-max normalization

method to obtain the normalized performance data, and then smoothed it. Fig 14 shows the

results obtained after the BER data in Fig 13 be normalized and smoothed. After calculating

the system resilience under each electromagnetic interference, we fit the data using a general-

ized extreme value distribution with the shape parameter ξ = −1.012, scale parameter σ =

0.09541 and location parameter μ = 0.9056. The PDF and CDF of both the sample data and the

fitting results can be seen in Fig 15. The chi-squared statistic is computed to be χ2 = 4.595.

Comparing with the critical value w2
0:05
ð3Þ ¼ 7:815 at 95% confidence level, we can draw the

conclusion that the system resilience can be considered to obey the generalized extreme value

distribution.

Conclusion

Resilience reflects the ability of a system to withstand disruptions and quickly recover from

them. It is an internal attribute of a system, as well as a random variable due to the randomness

of both the disruption and the system’s response to it. To assist with system resilience design

and analysis, this paper proposes a resilience distribution identification and analysis (RDIA)

Fig 12. The end-to-end communication system under random electromagnetic interference.

https://doi.org/10.1371/journal.pone.0276908.g012

Table 6. Parameters of the jammer movement.

Parameters Distribution

Speed (m/s) N(10, 22)

Start point Xs (km) (U(0, 8), U(0, 8)

End point Xe (km) (U(0, 4), U(0, 4))

https://doi.org/10.1371/journal.pone.0276908.t006
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method to find the resilience distribution from a statistical perspective. Based on the functions

and key parameters of the system’s performance processes after disruptions, this method uses

the Monte Carlo method to obtain the resilience samples. Then the system resilience distribu-

tion can be determined using distribution identification, parameter estimation, and a good-

ness-of-fit test. Finally, the resilience distributions are analyzed for system resilience with

typical performance processes. The results show that the resilience obeys the Weibull distribu-

tion. Our method needs system’s performance degradation/recovery function and related

parameter distributions. In practice, it is not always easy to obtain such data. In this situation,

we can try to collect several sets of system’s performance data that varies with time after dis-

ruptions. The case study shows how to inject disruptions and collect performance response

data for system resilience distribution identification. Further, if no data can be used, classical

resilience distribution types for typical performance processes can be used, and then the distri-

bution type can be updated with data collection.

The contributions of our paper include the following:

1. A systematic method is proposed to identify the system resilience distribution based on the

system performance processes after disruptions.

Fig 13. BER under the electromagnetic interference shown in Fig 12.

https://doi.org/10.1371/journal.pone.0276908.g013

Fig 14. Normalized and smoothed performance under the electromagnetic interference shown in Fig 12.

https://doi.org/10.1371/journal.pone.0276908.g014
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2. The resilience distributions are analyzed for typical performance degradation/recovery pro-

cesses with linear, exponential, and trigonometric functions, as well as exponential distrib-

uted durations and discrete uniform distributed maximum performance degradation. The

results show that the resilience obeys the Weibull distribution.

3. Our method aids understanding of system resilience from a statistical perspective, and the

resilience distribution obtained can be further used for system resilience design and

analysis.

Using our RDIA method, system resilience distribution can be obtained, and future studies

will focus on more possible performance process types.
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