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A B S T R A C T   

The semi-empirical formula is an effective method for predicting the motion of rigid projectiles in 
practical applications due to the simplicity of its theory and the convenience of parameter cali-
bration. The commonly used semi-empirical formula is Forrestal’s form, combining several spe-
cific experimental cases that have been published, we find it exists deficiencies in predicting 
deceleration histories and the penetration depths of high velocities. To solve this problem, the 
general penetration resistance is employed to formulate the semi-empirical formula due to the 
‘general’ characteristic of the general penetration resistance, and also make an assessment of this 
semi-empirical through experimental data. The results show that this semi-empirical method, like 
Forrestal’s form, is not good at predicting high-velocity penetration depth. Thus, it propels us to 
develop a new semi-empirical formula. To this end, the general penetration resistance is modified 
with the assumption that the additional mass should be increased with the penetrating velocity 
and the projectile mass, based on which a new semi-empirical formula is developed. Then, the 
proposed semi-empirical formula is employed in individual published experimental data of 
different projectiles and striking velocities as well as different targets. The predictions of the 
proposed semi-empirical formula show good agreement with the experimental data both in 
penetration depths and deceleration histories, which also demonstrate the reasonableness of the 
assumption that the additional mass of rigid projectile increases with penetrating velocity and the 
projectile mass.   

1. Introduction 

Penetration mechanics has received great attention in the industrial and military fields, due to its role in product design and 
product performance evaluation. Penetration mechanics is a subject full of interest and challenge, studies are usually based on data 
acquired from experimental observations to understand this problem, further, many theoretical approaches have been developed for 
making such predictions and they are generally classified into three categories: empirical equations, analytical models and numerical 
simulations. All those approaches have their strengths and weakness. 

Both analytical models and numerical simulations require reasonable constitutive equations of the material that include the shear- 
failure envelope and the equation of state. Analytical models attempt to adopt a simplified theoretically based constitutive equation 
aiming at calculating much information on the penetration event based on the simplified assumptions. However, as Yankelevsky [1] 
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concluded, those simplified assumptions in the analytical models may not be reasonable in the entire penetration event and may affect 
the prediction accuracy. Numerical simulations enable to employ of the most complex constitutive formulations and boundary con-
ditions and thus are able to predict more advanced results of the penetration problem. However, it needs a companion experimental of 
material tests to calibrate the parameter of the constitutive models, which may require special custom devices that exist in a limited 
number of laboratories. Moreover, the problem that lacking suitable constitutive equations for some targets may be an obstacle to 
applying the analytical models and the numerical models. Thus, the empirical formula will always be required for proper predictions 
due to the complexity of the penetration event. 

Both the analytical models and numerical simulations can provide information about the response of the target and the projectile, 
while the empirical formula mainly provides information about the projectile motion. Empirical formulas can be theoretically divided 
into pure empirical formulas and semi-empirical formulas. The pure empirical formulas are concluded by extensive test data and 
mainly towards estimating the full penetration depth. Semi-empirical formulas, based on some theories and calibrated by penetration 
depth data, can predict the motion history information of the projectile as well as the full penetration depth. In actual engineering 
analysis and design, in addition to the penetration depth, people often want to know the process information, such as deceleration 
history and velocity history. When there is no acceleration sensor in the test, the process information cannot be obtained from the test. 
In this paper, the focus is on the motion (penetration depth, deceleration, etc.) of the rigid projectile. Besides, with the development of 
diverse target materials, the corresponding constitutive equations may become complex, which may cause difficulty in calibrating the 
material constitutive parameters, in this case, the semi-empirical can serve as an effective method for predicting the motion of rigid 
projectiles. Thus, attention in this paper is on the semi-empirical formula. 

Until now, many semi-empirical formulae have been proposed, which were well summarized in review papers [1,2] and research 
papers [3–5], and a recent book [6]. The fundamental discrepancy among the different semi-empirical formulae is related to the 
description of the penetration resistance exerted on the rigid projectile. Besides, with the development of new penetration resistance 
forms, the correspondingly new semi-empirical formulae can be established. 

The simplest resistance form is the constant resistance with only one static resistance parameter a, which was firstly proposed by 
Robins and Euler [6]. In recent past years, a similar resistance expression was also suggested by Rosenberg et al. through analyzing the 
numerical simulation results and some penetration experimental data. However, the reasonableness of the constant resistance is under 
debate, as clearly evident in the papers of [7–11]. The main stand in Refs. [8,10,11] is that the time-deceleration of the projectile is 
velocity-dependent according to multiple groups of experimental data and numerical data, the contribution of the velocity-dependent 
term to the total resistance increases with the striking velocity, and the constant resistance is only the natural manifestation in the 
low-velocity. As seen, the constant resistance encounters some difficulty in predicting the deceleration histories. 

Other common penetration resistance forms have a theoretical basis, which can be derived from the cavity expansion theory. The 
first form is derived by Forrestal et al. [12], who performed the spherical cavity expansion analysis with a simple elastic-plastic 
constitutive material, the first form is expressed as σ = a+cv2, where a is the static resistance, and cv2 is the dynamic inertial resis-
tance. It should be mentioned that this penetration resistance form was first suggested by French engineer Poncelet [13], and much 
later by Petry and Goodier [14]. The second form is gained by Warren and Forrestal [15], who introduce a once power of velocity into 
the Forrestal form by accounting for the strain rate sensitivity and strain hardening in the spherical cavity-expansion approximation. 
The second resistance form becomes: σ = a+bv + cv2. The third form is the general penetration resistance, through which three 
dimensionless parameters controlling the penetration depth have been concluded by Chen et al. [16], the general penetration resis-
tance is a generalized form of the forms from Warren and Forrestal [15] and from Forrestal et al. [12], i.e., σ = a+bv + cv2+d v̇. 
Compared to the form derived by Warren and Forrestal [15], the general penetration resistance further introduces the term of 
additional mass. As stated by Chen et al. [16], this general penetration resistance is usually recognized as a general form of penetration 
resistance, although the penetration resistance can be commonly devised as a series form of instantaneous velocity from the viewpoint 
of mathematics. 

The most commonly used semi-empirical formula in real penetration problems is Forrestal’s form, such as applications in concretes 
with unconfined compressive strengths of 23 MPa [17,20], 39 MPa [17], 58.4 MPa [18], 13.5 MPa and 21.6 MPa [19], and limestone 
target [21,22]. The penetration events that the large diameter rigid projectiles penetrated into concretes that had an average 
compressive strength of 39 MPa should be noted, the deceleration results of those tests all show gradual falling trends in the tunnel 
stage. However, as concluded by Forrestal et al. [17], their formula can not properly predict deceleration histories, the predicted 
results show large deviations toward the end of the penetration event. Besides, the penetration depth results from Piekutowski et al. 
[23] for rigid steel rods impacting aluminum 6061 targets and from Feng et al. [24] for rigid steel projectile penetrating concrete with 
average compressive strength of 47.6 MPa are worth attention. Those two sets of tests feature with a large range of the rigid pene-
tration velocity (up to 1.8 km/s for aluminum and 1.5 km/s for concrete) without any apparent deformation of these projectiles, which 
is suitable to assess the performance of the semi-empirical formula. As presented in Section 2, Forrestal’s form can not properly predict 
the penetration depths at the large striking velocities. From the above, it can be inferred that Forrestal’s form exists the predicted 
deficiencies both in penetration depths and the deceleration histories. 

The above review shows that the constant resistance form and Forrestal’s form exhibit the predicted problems in deceleration 
histories or penetration depths, which propel us to seek a proper semi-empirical formula to solve this problem. Since the general 
penetration resistance is usually recognized as a general form of penetration resistance, the general penetration resistance is employed 
to formulate the semi-empirical formula and further examine its predicted ability by combing specific experimental data. It should be 
noted that, as we know now, no previous investigations have given a careful examination of the general penetration resistance by 
considering both the entrance stage and the tunnel stage. 

This paper is divided into two parts. The first part focuses on evaluating the semi-empirical formula based on general penetration 
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resistance (denoted as GPR). To this end, the total motion equation of the projectile including both the entrance stage and tunnel stage 
is established. Then, the performance of GPR is checked by comparing with the specific test data from Piekutowski et al. [23] and Feng 
et al. [24]. Also, a comparison of Forrestal’s form is given. The results, as presented in Section 2, show that both GPR and Forrestal’s 
form can not predict well the experimental penetration depths in the high velocities of the rigid projectile. To solve this problem, the 
second part is concerned with developing a new semi-empirical formula. The foundation of this new semi-empirical formula is a 
modified general penetration resistance, which assumes that the additional mass of the projectile should be varied with the penetrating 
velocity and the projectile mass rather than a constant in the original general penetration resistance. The detailed description of our 
assumption and the new semi-empirical formula based on the modified general penetration resistance (denoted as NGPR) are pre-
sented in Section 3. In Section 4, the predictions by NGPR are compared with individual published experimental data of different 
projectiles and striking velocities as well as different targets. For the comparison, the proposed semi-empirical model is compared with 
the GPR formula. The better agreement of predictions by NGPR with test results demonstrates the good performance of this new 
semi-empirical formula and the reasonableness of the assumption that the additional mass of projectile varies with penetrating velocity 
and the projectile mass. 

2. Evaluation of the semi-empirical formula based on the general penetration resistance 

2.1. Equation of the rigid projectile motion 

The penetration process can be divided into two stages: the entrance stage and the tunnel stage. Many formulae [2,20,18] assume 
that the depth of the entrance stage should be equal to the two-six diameters of the projectile. However, as discussed by Yankelevsky 
and Feldgun [25], the above assumptions about the depth of the entrance stage are ambiguous and can not account for the nose 
slenderness. Thus, they postulated that the depth of the entrance stage should be equal to the length of the projectile nose rather than 
the commonly used two-six diameters of the projectile. Then, they integrated the radial cavity pressure on a “projectile-target” variable 
contact area which is increasing with time during the entrance stage to represent the resistance during the entrance stage. Their 
postulate was validated by the deceleration recorded data from penetration tests using instrumented projectiles. Here, we adopt their 
new description of the depth of the entrance stage, in order to simplify the analysis, the linear deceleration relationship that the 
Forrestal’s formulae assumed [17] is still used to describe the entrance stage. The motion equation of the rigid projectile in the tunnel 
stage is formulated by using the general penetration resistance. 

A rigid projectile with a common convex nose shape, as shown in Fig. 1, normally impacts a target at initial velocity vs and proceeds 
to penetrate the target at velocity v. The axial resistance force acting on the projectile during the entrance stage is expressed as: 

M
dv
dt

=M
d2x
dt2 = Fx = − kx, 0 < x < L (1)  

where k is a constant. 
The condition of x = L means the end of the entrance stage and the beginning of the tunnel stage. The motion equation of the rigid 

projectile in the tunnel stage is formulated by the general penetration resistance which expresses a relationship between the normal 
compressive stress σn on the projectile nose and the normal expansion velocity vn [16]: 

σn =AY + C
̅̅̅̅̅̅
ρY

√
vn + Bρvn

2 + Dρdv̇n (2)  

where d is the diameter of the projectile, Y and ρ are yielding stress and density of target material, respectively. Specifically, for 
concretes and metals concerned in this paper, Y represents the yield stress and the unconfined compressive strength fc, respectively. 
The dimensionless parameters A, B, C and D control the effect of target resistance, target inertia, target damping and the additional 
mass, respectively. The general penetration resistance of Eq. (2) reduces to Forrestal’s form with parameters C and D equal to zero. In 
the case of D = 0, the formula derived by Warren and Forrestal [15] can be obtained. 

Fig. 1. Penetration of a general nose-shape projectile.  
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The cavity normal expansion particle velocity induced by the rigid projectile with velocity v is: 

vn = v cos θ (3a)  

v̇n = v̇cos θ (3b) 

According to Fig. 1, the total axial resistance force on the projectile can be gained by integration of the normal compressive stress 
and the tangential stress along the projectile nose surface： 

Fx =∯ (σn cos θ − σt sin θ)dAs =

∮

σn(cos θ+ μm sin θ)dAs (4)  

where As is the nose area of the rigid projectile. Tangential stress on the nose is determined by the frictional resistance, i.e., σt = -μmσn, 
where μm is the sliding friction coefficient in impact. 

Insertion of Eq. (2) and Eq. (3) into Eq. (4), and integration of Eq. (4) can provide: 

Fx =
πd2

4

[
AYN1 +Bρv2N2 +

(
C

̅̅̅̅̅̅
ρY

√
v+Dρdv̇

)
N3

]
(5)  

where N1, N2, and N3 are three dimensionless parameters used to characterize the nose shape and friction. N1, N2, and N3 have been 
defined in Chen et al. [16]. For the nose profile that can be expressed by the general convex function y = y (x), N1, N2, and N3 need to be 
obtained through numerical integration, while for the commonly used ogival nose, conical nose and spherical nose in weapon engi-
neering, N1, N2, and N3 have explicit expressions. Appendix A provides the expressions of N1, N2, and N3 for the general convex noses 
and commonly used typical noses. 

equation (5) can be rewritten as: 

Mm
dv
dt

=Mmv
dv
dx

= −
πd2

4

(
AYN1 +Bρv2N2 +C

̅̅̅̅̅̅
ρY

√
vN3

)
(6) 

The projectile mass M is modified as Mm after taking the effect of additional mass into consideration: 

Mm =M +
πρd3

4
DN3 = M + Ma (7) 

Eq. (6) can be further rewritten as: 

M
dv
dt

= −
M
Mm

πd2

4

(
AYN1 +Bρv2N2 +C

̅̅̅̅̅̅
ρY

√
vN3

)
(8) 

It can be seen from Eq. (8) that when the additional mass is considered, the target resistance is weakened, which results in a deeper 
penetration depth. 

The penetration depth can be determined through integration of Eq. (6) as below: 

πd2

4Mm

∫ P

L
dz=

∫ v1

0

vdv
(
AYN1 + Bρv2N2 + C

̅̅̅̅̅̅
ρY

√
vN3
) (9) 

In Eq. (9), v1 is the initial velocity of the tunnel stage and v1 can be determined through deceleration continuous condition at x = L, 
the detail derivation of v1 will be given later. Referring to the integration approach of Chen et al. [16], the penetration depth P can be 
obtained analytically as below: 

P=
2
π N

{

ln

(

1+ 2
̅̅̅̅̅̅̅

ξ
I
N

√

+
I
N

)

−
2
̅̅̅
ξ

√

̅̅̅̅̅̅̅̅̅̅̅
1 − ξ

√

[

arctan

( ̅̅̅̅̅̅̅̅
I/N

√
+

̅̅̅
ξ

√

̅̅̅̅̅̅̅̅̅̅̅
1 − ξ

√

)

− arctan
( ̅̅̅

ξ
√

̅̅̅̅̅̅̅̅̅̅̅
1 − ξ

√

)]}

d + L 0 ≤ ξ < 1 (10a)  

where 

I =
Mmv2

1

d3YAN1
(10b)  

N =
Mm

ρd3BN2
(10c)  

ξ=
C2N2

3

4ABN1N2
(10d)  

Mm =M +
πρd3

4
DN3 (10e)  

where I is the dimensionless impact function, N is the geometry function, ξ is dimensionless damping function. According to the 
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discussion of Chen et al. [16], the penetration depth has real physical meaning only when ξ is less than one, thus the integration result 
of Eq. (9) with ξ greater than one is not given here. 

Now, it turns to the derivation of the initial velocity v1 of the tunnel stage, which is also the velocity at the end of the entrance stage. 
With the initial conditions x(t = 0) = 0 and v(t = 0) = vs, Eq. (1) has the following solutions for projectile displacement, velocity, and 
deceleration: 

z=
(vs

w

)
sin wt, 0 < x< L (11a)  

v= vs cos wt, 0 < x < L (11b)  

dv
dt

= − wvs sin wt, 0 < x < L (11c)  

w2 =
k

Mm
(11d) 

Note that in Eq. (11d), the additional mass Mm is used rather than M, which can ensure the additional mass of the projectile in the 
tunnel phase is the same as that in the entrance phase. Define t1 as the time at x = L, from Eq. (11a) and Eq. (11b): 

L=
(vs

w

)
sin wt1, at x=L (12a)  

v1 = vs cos wt1, at x = L (12b) 

Squaring Eq. (12a) and Eq. (12b), and then adding gives: 

Mm
(
v2

s − v2
1

)
= kL2 (13) 

Substituting Eq. (13) into Eq. (1) yields: 

F(x= L)= −
Mm
(
v2

s − v2
1

)

L
(14) 

Equating Eq. (14) with Eq. (6) at x = L yields: 

Mm
(
v2

s − v2
1

)

L
=

πd2

4

(
AYN1 +Bρv1

2N2 +C
̅̅̅̅̅̅
ρY

√
v1N3

)
, at x= L (15) 

Value of v1 can be determined from Eq. (15): 

v1 =

− CN3
̅̅̅̅̅̅
ρY

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
C
̅̅̅̅̅̅
ρY

√ )2
N3

2 − 4
(

ρBN2 +
4Mm
πd2L

)(
AYN1 −

4Mm
πd2Lv2

s

)√

2
(

ρBN2 +
4Mm
πd2L

) (16) 

Then, k can be obtained from Eq. (13), further, ω can be obtained from Eq. (11d). 
Placing Eq. (16) into Eq. 10(a-e), an explicit relationship between the penetration depth (P) and the initial striking velocity (vs) can 

be obtained as follow: 

P=
2
π N

{

ln

(

1+ 2
̅̅̅̅̅̅̅

ξ
I
N

√

+
I
N

)

−
2
̅̅̅
ξ

√

̅̅̅̅̅̅̅̅̅̅̅
1 − ξ

√

[

arctan

( ̅̅̅̅̅̅̅̅
I/N

√
+

̅̅̅
ξ

√

̅̅̅̅̅̅̅̅̅̅̅
1 − ξ

√

)

− arctan
( ̅̅̅

ξ
√

̅̅̅̅̅̅̅̅̅̅̅
1 − ξ

√

)]}

d + L 0 ≤ ξ < 1 (17a)  

where 

I =
Mmv2

1

d3YAN1
(17b)  

N =
Mm

ρd3BN2
(17c)  

ξ=
C2N2

3

4ABN1N2
(17d)  

Mm =M +
πρd3

4
DN3 = M + Ma (17e)  
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v1 =

− CN3
̅̅̅̅̅̅
ρY

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
C
̅̅̅̅̅̅
ρY

√ )2
N3

2 − 4
(

ρBN2 +
4Mm
πd2L

)(
AYN1 −

4Mm
πd2Lv2

s

)√

2
(

ρBN2 +
4Mm
πd2L

) (17f) 

As can be seen, there are four parameters A, B, C, and D in the formula of Eq.17(a-f). Once four parameters are determined, the 
penetration depth at arbitrary velocity can be obtained in the condition of rigid penetration. The deceleration history of the projectile 
in the entrance stage can be directly obtained from Eq. (11c), and that in the tunnel stage can be numerically solved from Eq. (5). 
Further, the velocity history and displacement history can be obtained by once and double integration of the deceleration-time 
relation, respectively. 

There are two methods to determine the values of the four parameters. The first method is using the dynamic cavity-expansion 
theory to analytically or numerically determine the parameters A, B, and C, but the parameter D can not yet be determined using 
this way, besides, how theoretically determining the value of D is still an unsolved issue. In the second method, Eq.17(a-f) is treated as a 
semi-empirical formula, the four parameters can be determined by optimizing the penetration results of penetration depth verse 
impact velocity. The focus of this paper is on the semi-empirical formula, thus the second method will be used to determine the pa-
rameters. The following optimization function is employed to minimize the average error: 

Min
(A,B,C,D)

(Error)av = Min
(A,B,C,D)

∑N

i=1
PPred

i

(
PPred

i

Pex
i

− 1
)2

(18)  

where N is the total number of data points. When using the optimization method, the value range of parameters A, B, C, and D should 
be given. Here, to produce reasonable values of parameters, the range of each parameter is presented by referring to the published 
value of A, B, and C from cavity expansion theory. For concrete and aluminum alloy concerned in this paper, previous studies [12,23, 
26,27] show that B relates mostly to the compressibility of the target material and has a narrow range, generally, the range of B is from 
1.0 to 1.3. In contrast, parameter A has a broad range. The parameter Au gained by calibrating the experimental penetration depth data 
based on assumption of the constant resistance is regarded as the upper limit of the parameter A, this is because the velocity dependent 
terms in general penetration resistance of Eq. (2) also provide the contribution on the total resistance. As for parameter C, its limit can 
be indirectly controlled through the damping parameter ξ of Eq. (17d). Chen et al. [16] concluded that ξ is a small value and sometimes 
approaches zero for the penetration experiments that this paper referenced here. According to the published values of A, B, and C from 
the cavity expansion model, ξ is less than 0.1 for aluminum alloys [15], and ξ is less than 0.2 for concrete [28]. Due to no published 
theoretical value can be referenced for parameter D, its range is not limited here. 

For ease of reference, the formula based on general penetration resistance is denoted as the GPR formula. The next section gives 
applications of this GPR formula on the penetration data from Piekutowski et al. [23] and Feng et al. [24], a comparison of Forrestal’s 
form is also given. 

2.2. Evaluation of the GPR formula and Forrestal’s form 

A lot of experimental data on deep penetration of rigid projectiles with different nose shapes have been reported over the past 
several decades. The penetration data from Piekutowski et al. [23] and Feng et al. [24] are preferentially considered to check the 
predicted ability of the GPR formula and the Forrestal’s form, this is because the rigid penetration velocity in these two sets of 
penetration tests is in a large range. One point should be mentioned is the effect of friction on the penetration depth. As concluded by 

Fig. 2. The predicted penetration depths of Al 6061 penetration [23] using the GPR formula with different additional mass.  
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Rosenberg [29,30], the effect of friction on the shanks of rigid sharp-nosed projectiles can be neglected for the deep penetration of the 
metal and concrete targets. Thus, it can be inferred that the friction of the projectile nose mainly affects the penetration depth. 
However, how to ahead quantify a proper friction coefficient or friction coefficient function is still an unsolved problem. In the 
remainder of this paper, for aluminum alloys, we follow the suggested friction coefficient in Forrestal et al. [12], that is μm = 0.02 for 
ogive nose and μm = 0.1 for conical nose and sphere nose; for concretes, keep the same setting as for aluminum alloys. 

In the penetration event by Piekutowski et al. [23], the projectiles had a shank diameter of 7.11 mm, a nominal mass of 0.021 kg 
and an ogive nose shape with 3.0 Caliber-Radius-Head (CRH). The projectiles shot normally at 6061-T651 aluminum targets with a 
static yield strength of 276 MPa at an impact velocity of 0.5 km/s-1.8 km/s without apparent deformation. Piekutowski et al. [23] 
provided values of A, B, and C from cavity expansion model which considers the compressible property, strain hardening and 
strain-rate sensitivity, i.e., A = 5.04, B = 0.983, and C = 0.94. Based on this group of parameters, the predicted penetration depths from 
the GPR formula with different values of D is depicted in Fig. 2. As can be seen, when the additional mass is small, the predictions of 
GPR fit well with the penetration depth of the low-middle velocity section, but poorly with the penetration depth of the high-velocity 
section. An opposite trend is presented when the additional mass becomes large. The predictions with D equals to 15.0 and 0.0 are the 
upper and lower envelopes of test data, respectively. Regardless of any value of D, the predictions from the GPR formula can not fit well 
all the experimental data points. 

By using values of parameters from the cavity expansion model, it is concluded that the GPR formula can not correctly predict the 
penetration depth. Now, the GPR formula is further checked by using the optimization method, that is, the GPR formula is treated as a 
semi-empirical formula. In fact, the optimization method can essentially reflect the predicted ability of a formula due to its parameters 
are determined by optimizing with the data points. 

By reducing the error function of Eq. (18) with the test data in Piekutowski et al. [23], the four parameters in the GPR formula are 
optimized to be A = 6.22, B = 1.0, C = 0, D = 13.2. The corresponding predicted penetration depths with the semi-empirical GPR 
formula are depicted in Fig. 3. Also, the predicted results from Forrestal’s form are presented. It is obvious that both the GPR formula 
and Forrestal’s formula are not able to correctly reflect the penetration depths at high velocities. 

Then, the penetration event performed by Feng et al. [24] is utilized to further evaluate the predicted ability of the GPR formula and 
Forrestal’ form. Feng et al. [24] conducted seven penetration tests with concrete that had an average compressive strength of 47.6 MPa 
at initial striking velocities from 841 m/s to 1402 m/s. All the projectiles were characterized with 3.0 Caliber-Radius-Head (CRH) and 
60 mm diameter. Also, projectiles of those tests were regarded as rigid bodies since the mass loss and deformation of projectiles were 
relatively less. Since no values of parameters from the cavity expansion model were given, parameters of the GPR formula are 
determined by using the optimization method. With the test data in Feng et al. [24] and error function Eq. (18), the four parameters are 
optimized to be A = 10.27; B = 1.0; C = 0; D = 11.09; The predicted penetration depths with the semi-empirical GPR formula as well as 
the predictions from Forrestal’s form are depicted in Fig. 4. It is observed that the above two semi-empirical formulas can not properly 
reflect the penetration depth at the high velocity of the rigid projectile. 

From the above two classical penetration events, it is concluded that both the GPR formula and Forrestal’s formula predict a large 
error on the penetration depths at larger velocities. To deal with this problem, the general penetration resistance is modified, based on 
which a new semi-empirical formula is developed, as discussed in the next section. 

Fig. 3. Comparison between the test data of Al6061 penetration [23] and the predicted penetration depths from the GPR formula and For-
restal’s formula. 
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3. Proposal of a new semi-empirical formula 

3.1. The conjecture about the additional mass 

Fig. 2 indicates that the additional mass in the GPR formula can not balance the penetration depths in the whole striking velocities. 
The good fit of the predicted penetration depth to the high-velocity test data will cause a deviation of the predicted penetration depth 
from the low-velocity test data. With the parameters of GPR formula determined by the optimization method, Figs. 3 and 4 illustrate 
that the GPR formula is inherently inaccurate in predicting penetration depths at high velocities. 

Based on the general penetration resistance, Chen et al. [16] concluded that the penetration depth is controlled by three dimen-
sionless functions, ie., the impact function I, the geometric function N and the damping function ξ, besides, the additional mass as 
expressed by Eq. (7) is concluded. Also, Chen et al. [16] discussed that, with the increase of the striking velocity, the material flow of 
the target becomes more obvious and more additional mass should be considered, which is beneficial for predicting a larger pene-
tration depth under the higher striking velocity. Obviously, the viewpoint of Chen et al. [16] is helpful to solve the deviation between 
predictions by the GPR formula and the test data. However, the additional mass term as expressed by Eq. (7) for a given projectile and 
target is a constant with no relation to the velocity of the projectile, which indicates that the magnitude of striking velocity has no effect 
on the flow extent of the target material. Obviously, the additional mass description in the GPR formula contradicts the discussion by 
Chen et al. [16], which results in the deviation between the predictions by the GPR formula and the test data at the higher striking 
velocity as shown in Figs. 3–4. From above, it appears that the assumption that the additional mass increases with the striking velocity 
is supported. 

Further, from Eq. (7), the additional mass Ma accounts for the effect of the diameter of the projectile and the geometric of projectile 
nose but neglects the effect of the projectile mass. Imaging the condition where projectiles have the same diameter, nose shape, and 
initial striking velocity but different projectile lengths resulting in different masses, obviously the projectile with a larger mass is 
accompanied by a larger kinetic energy. Following the above discussion by Chen et al. [16], the projectile with a larger kinetic energy 
can result in a more obvious flow of the target and thus more additional mass. In short, in the condition of projectiles with the same 
diameter, nose shape, and initial striking velocity, the projectile with a larger mass induces a larger additional mass. However, this 
point can not be reflected by the additional mass Ma in Eq. (7). In other words, the additional mass Ma in Eq. (7) also needs consider the 
effect of the projectile mass. 

In conclusion, based on the viewpoint of Chen et al. [16], the additional mass Ma expressed in Eq. (7) in the GPR formula needs 
further consideration of the effects of the striking velocity and the projectile mass. Along with this thought, the modified general 
penetration resistance is proposed in the next subsection. 

3.2. Modification of the general penetration resistance 

Generally, the additional mass varies continuously with the velocity of the projectile during penetration, thus it is natural to think 
the parameter D in Eq. (7) should change with the penetrating velocity v. However, since there is not a rigorous function of D, we may 
claim that any function forms of the parameter D which express a directly proportional relationship with the penetrating velocity v are 
reasonable, an example is shown by Eq. (19a). Further, for mathematically easy to process, it is assumed that the parameter D is varied 
with the initial striking velocity vs, this assumption means an average additional mass during the whole penetration process for a given 
initial striking velocity vs. Besides, considering that the parameter D is dimensionless, it is postulated that the parameter D is a function 

Fig. 4. Comparison between the test data of 47.6 MPa concrete penetration [24] and the predicted penetration depths from the GPR formula and 
Forrestal’s formula. 
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of the dimensionless Johnson damage parameter ΦJ as Eq. (19b). 

D=D(v)=D
(

ρv2

Y

)n

(19a)  

D=D(vs)=DΦJ =D
(

ρvs
2

Y

)n

(19b)  

Eq. (19b) has two parameters D and n, with which various increasing trends of the additional mass with striking velocities can be 
obtained. Insertion of Eq. (19b) into Eq. (2), a modified general penetration resistance is obtained: 

σn =AY +C
̅̅̅̅̅̅
ρY

√
vn +Bρvn

2 +Dρdv̇n

= AY +C
̅̅̅̅̅̅
ρY

√
vn +Bρv2

n +D
(

ρv2
s

Y

)n

ρdv̇n

(20) 

It is observed that, the modified general penetration resistance of Eq. (20) reduces to original general penetration resistance of Eq. 
(2) in the condition of n = 0. 

Besides, considering the additional mass Ma in Eq. (7) increases with the projectile mass, the original general penetration resistance 
of Eq. (2) is modified as: 

σn =AY + C
̅̅̅̅̅̅
ρY

√
vn + Bρvn

2 + DρLeff v̇n where Leff =
4M
πd2 (21)  

With Eq. (21), following the same derivation in Section 2, the additional mass term becomes: 

Mm =M +
πρd2Leff

4
DN3 = M + MDN3 = M + Ma (22) 

As seen in Eq. (22), the additional mass Ma increases with the projectile mass can be correctly reflected. 
Finally, in order to comprehensively account for the effect of the striking velocity and the projectile mass on the additional mass, 

Eq. (20) and Eq. (21) is combined and the modified general penetration resistance is expressed as: 

σn =AY +C
̅̅̅̅̅̅
ρY

√
vn +Bρvn

2 + D
(

ρv2
s

Y

)n

ρLeff v̇n,where Leff =
4M
πd2 (23)  

3.3. Formulation of a new semi-empirical based on a modified general target resistance 

Based on the modified general penetration resistance of Eq. (23) and the same derivation process in Section 2, an explicit rela-
tionship between the penetration depth (P) and the initial striking velocity(vs) can be obtained as follow: 

P=
2
π N
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where 
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Through comparison between Eq.17(a-f) and Eq. 24(a-f), it can be seen that only the additional mass term is updated from Eq. (17e) 
to Eq. (24e). It should be noted that the additional mass Ma in Eq. (24e) is able to reflect the effect of striking velocity and projectile 
mass. The new expressions for k and ω are the same with Eq. (13) and Eq. (11d) respectively, only the term Mm is updated by Eq. (24e). 
The deceleration history of the projectile in the entrance and tunnel stage can also be obtained from Eq. (11c) and Eq. (5), respectively. 
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For ease of reference, this new formula based on the modified general penetration resistance of Eq. 24(a-f) is denoted as the NGPR 
formula. The NGPR formula can be regarded as a semi-empirical formula if its parameters are determined by optimizing the pene-
tration depth data. 

To simplify the unknown parameters, the value of n is set to 1.0. According to Eq. (24e), it means that the additional mass is linearly 
related to the projectile kinetic energy. The other four parameters A, B, C and D are determined by optimizing the data points of 
penetration depth data verse striking velocity. As will be presented in Section 4, the value of n equals 1.0 is reasonable, because the 
predictions of the semi-empirical NGPR formula exhibit good agreement with all the referenced experimental data both in penetration 
depths and deceleration histories. 

4. Comparisons between predictions of the NGPR formula with experimental penetration data 

In this section, a collection of experimental data from individual published references is employed to evaluate the performance of 
the NGPR formula. Only the experimental results belonging to the penetration of rigid projectiles are referenced. For the comparison, 
the NGPR formula is compared with the GPR formula. Here, the NGPR formula and GPR formula are viewed as semi-empirical for-
mulas, thus the parameters of those formulas are determined by optimizing the experimental data points of penetration depth verse 
striking velocity with Eq. (18). The advantage of the optimization method is that it can essentially reflect the predictive performance of 
different formulas. The value range for each parameter in the NGPR and GPR formulas is consistent with the description in Section 2.1. 
It should be mentioned that the GPR formula is the general form of the Forrestal’s form, the GPR formula can embody and sometimes is 
superior to the predictive performance of the latter formula, thus, the Forrestal’s form is not included here to avoid redundant 
comparison. The setting of the friction coefficient is the same as that described in Section 2.2. 

4.1. Deep penetration in aluminum alloys 

Here, the experimental data of Piekutowski et al. [23], Forrestal et al. [12,27] are utilized. The brief description of the penetration 
event of Piekutowski et al. [23] can be seen in Section 2.2. For the penetration event of Al7075 in Forrestal et al. [27], the target had a 
strength of 448 MPa, the projectiles were characterized with 7.11 mm diameter, 0.0248 kg mass, and an ogive nose shape with 3.0 
CRH. For the penetration event of the Al6061 target in Forrestal et al. [11], the target had a strength of 400 MPa, the projectiles were 
characterized with 7.10 mm diameter, 0.024 kg mass, and three nose shapes (ogive shape with 3.0 CRH, semi-sphere nose, and conical 
nose). Table 1 lists the optimized parameters of the NGPR and GPR formulae corresponding to those aluminum alloy penetration 
events. 

Figs. 5 and 6 show the predictions of the NGPR and GPR formulae and the experimental penetration depths. From Fig. 5, the NGPR 
formula exhibits a better agreement with the penetration depth data of Al6061 [23] than the GPR formula. From Fig. 6, the NGPR 
formula presents a similar predicted performance to the GPR formula for the given experimental penetration depths data points of 
Al7075 [27], but their difference gradually becomes obvious when the striking velocity is further larger. Fig. 7 shows the predictions of 
the NGPR formula and experimental penetration depths of Al6061 [12] for different projectile noses. The experimental penetration 
depths of the ogive nose are used to determine the parameters of the NGPR formula, and those parameters are used to predict the 
penetration depth of the other two nose shapes. Obviously, good agreement is obtained between the predictions and penetration depth 
test data for all three nose shapes, which reflects that the obtained parameters by optimizing the penetration depths data points are 
reasonable. 

4.2. Deep penetration in concrete 

This section performed an analysis on the experimental data of penetration into concrete target. The test data of Feng et al. [24] and 
Forrestal et al. [17,19] and predictions of the NGPR and GPR formulae are regrouped. The brief description of penetration event in 
Feng et al. [24] can be seen in Section 2.2. For the penetration events in Forrestal et al. [17], two sets of penetration experiments with 
concrete targets that had average compressive strengths of 23 MPa and 39 MPa were conducted, the 4340 projectiles were charac-
terized with 7.62 cm diameter, 13 kg mass, and two types of ogive nose shape with 3.0 CRH and 6.0 CRH. For the penetration event in 
Ref. [19], the concrete target had an average compressive strength of 51 MPa, the 4340 steel projectiles were characterized with 30.5 
mm diameter, 1.6 kg mass, and an ogive nose shape with 3.0 CRH. Table 2 lists the optimized parameters of NGPR and GPR formulae 
corresponding to those concrete penetration events. 

Table 1 
Optimized parameters of GPR and NGPR formulae for penetration of Al6061 and Al7075.  

Target species Formula A B C D (D) 

Al6061 [23] NGPR 5.22 1.29 1.78 0.04 
GPR 6.22 1.0 0.0 13.2 

Al7075 [27] NGPR 4.60 1.22 1.63 0.07 
GPR 5.01 1.0 0.0 7.05 

Al6061 [12] NGPR 3.86 1.23 1.50 0.05 
GPR 4.56 1.0 0.0 10.76  
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Fig. 5. The depth measurements of penetration Al6061 [23] with the predictions from the NGPR and GPR formulae.  

Fig. 6. The depth measurements of penetration Al7075 [27] with the predictions from the NGPR and GPR formulae.  

Fig. 7. The depth measurements of penetration Al6061 [12] and the predictions from the NGPR formula for different nose shapes.  
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Fig. 8 compares the predictions of the NGPR and GPR formulae and the experimental penetration depths of 47.6 MPa concrete. The 
experimental penetration depths from projectiles with 4.70 kg masses are used to calibrate the parameters of the NGPR and GPR 
formulae, and those parameters are utilized to predict the penetration depths for projectiles with masses of 4.3 kg and 0.32 kg. It can be 
seen that the NGPR formula can better reflect the changing trend of the test data than the GPR formula, and the former can significantly 
improve the predictions of penetration depth at the high velocity. The good agreement between the predictions by the NGPR formula 
and test data also demonstrates that the parameters calibrated by one group of test data can properly predict the penetration depths in 
other penetration cases. In Fig. 9, the experimental time-deceleration history at the striking velocity of 841 m/s by Feng et al. [24] and 
the other six time-deceleration histories from their numerical simulation are utilized to compare with predictions from the NGPR and 
GPR formulae to further interpret the performance of the two formulae. It is obvious that both the NGPR and GPR formulae can 
properly reflect the deceleration histories data. On the whole, the NGPR formula can better predict the penetration depth of the 
projectile with different masses at different striking velocities than the GPR model, and the former is also able to reasonably reflect the 
deceleration histories of the projectile. This point can be further validated by the penetration events of 39 MPa concrete as shown in 
Figs. 10 and 11(a-f) which also provides the comparison of the experimental penetration depths and time-deceleration histories data 
with model predictions. From Fig. 11(a–f), predictions by NGPR and GPR formulae both exhibit closer agreement with the experi-
mental deceleration histories than that by Forrestal’s form in Ref. [17]. In addition, the NGPR and GPR formulae are further checked by 
using the experimental penetration depth and time-deceleration historical data for 23 MPa concrete penetration events, as shown in 
Figs. 12 and 13(a-f). In Fig. 12, the experimental penetration depths with projectile of 3.0 CRH are utilized to calibrate the parameters 
of the NGPR and GPR formulae, and those parameters are utilized to predict the penetration depths for projectiles of 6.0 CRH. Fig. 13 
(a–f) only presents the predicted deceleration histories of the NGPR formula due to the coincidence of the predictions of the GPR 
formula with that of the NGPR formula. Obviously, in this penetration event, the predictions by the NGPR formula are more consistent 
with the test penetration depths than that by the GPR formula while both exhibit similar predicted performance in deceleration 
histories. Finally, the experimental penetration depth measurements of 51 MPa concrete are employed to check the performance of the 
NGPR and GPR formulae, as shown in Fig. 14. It is observed that the NGPR obviously improves the predicted accuracy on penetration 
depths at high velocities. 

From the above penetration events including both aluminum alloy and concrete targets, it can be concluded that the NGPR formula 
is more flexible and possess a better performance in predicting the motion of the projectile than the GPR formula. Besides, it is 

Table 2 
Optimized parameters of GPR and NGPR formulae for penetration concretes with different unconfined compressive strengths.  

Target species Formula A B C D (D) 

47.6 MPa [24] NGPR 8.38 1.03 2.01 0.02 
GPR 10.27 1.00 0.00 11.09 

23 MPa [17] NGPR 5.43 1.30 1.79 0.00 
GPR 5.96 1.30 1.72 4.08 

39 MPa [17] NGPR 6.85 1.30 2.05 0.02 
GPR 6.36 1.25 2.74 0.00 

51 MPa [19] NGPR 9.47 1.28 2.39 0.02 
GPR 11.27 1.00 0.00 12.82  

Fig. 8. The penetration depth data of 47.6 MPa concrete [27] and the predictions from the NGPR and GPR formulae.  
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Fig. 9. The deceleration versus time data of 47.6 MPa concrete [24] and the predictions from the NGPR and GPR formulae.  
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indicated that this modified general penetration resistance and setting the parameter n equal to 1.0 are reasonable for all the pene-
tration events investigated here. 

5. Discussion 

One should be noted that our study falls in the category of rigid penetration. Based on this premise, all the kinetic energy of the 
projectile is used to expand the hole and promote the flow of the target. Following the viewpoint by Chen et al. [16], the increase in the 
striking velocity of the projectile will induce a stronger flow of the target, and thus lead to a larger additional mass and a deeper 
penetration depth. The above trend between the penetration depth and striking velocity is also clearly evident in the experimental data 
of Figs. 5, 6, 8 and 14, all those figures embody a faster increase in penetration depth with the striking velocity. There exists an upper 
limit of the striking velocity under the assumption of the rigid projectile. Beyond this transition point, the projectile body begins to 
have obvious deformation, part of the kinetic energy of the projectile body is consumed for its own deformation. In this case, the 
penetration depth increases slowly with the striking velocity, and sometimes no increase in penetration depth occurs, a real example of 
this can be reflected in Fig. 6 of [23], this penetration process pertains to the semi-hydrodynamic penetration field. Thus, if the 
projectile can not be regarded as a rigid body, the assumption that the additional mass monotonically increases with the striking 
velocity will be not suitable, this is because this assumption can result in an overestimation of the penetration depth. In other words, 
the rigid penetration is the premise for the assumption that the additional mass monotonically increases with the striking velocity to be 
valid. 

Besides, it is necessary to mention the phenomena of cavitation. As reported by Hill [31], the cavitation expansion of the target can 
absorb an appreciable amount of kinetic energy of the projectile, thus diminishing the penetration performance of the kinetic pro-
jectile. Generally, the published penetration experiments that the common kinetic projectile penetrated the concrete and metals hardly 
induce the cavitation of the target. This is because the critical cavitation velocity is relatively high, and the corresponding high stress in 
the projectile body exceeds the elastic stress level, which causes severe deformation and even failure, thus influencing the occurrence 
of the cavitation. However, with the development of high-strength projectiles, the cavitation of the metal and concrete target may be 
realized in the coming years. Here, we assume that the projectile remains rigid at any velocities, it can be inferred that as the striking 
velocity of the projectile increases, the penetration depth firstly exhibits a rapid growth trend, as shown in the experimental data in 
Figs. 5, 6, 8 and 14, but when the penetrating velocity approaches the cavitation velocity, this rapid growth trend of penetration depth 
will change due to a large amount of energy absorption by the cavitation of the target. Thus, the assumption that the additional mass 
monotonically increases with the striking velocity will be not proper around the cavitation velocity, although the projectile remains 
rigid, due to an overestimation of the penetration depth with this assumption. On the whole, it concludes that the assumption that the 
additional mass monotonically increases with the striking velocity is only valid in the condition of rigid penetration and below 
cavitation velocity. 

By considering the effect of striking velocity and the projectile mass on the additional mass based on the general penetration 
resistance, a modified general penetration resistance of Eq. (23) is proposed. Then, this expression is used to formulate a semi- 
empirical formula denoted as the NGPR formula. To simplify the unknown parameters, the new parameter n is set to 1.0, which 
means that the additional mass is linearly related to the projectile kinetic energy. The good agreement of the predictions from the 
NGPR formula with all the experimental penetration data investigated here demonstrates that this modified general penetration 
resistance of Eq. (23) and the value of n equals 1.0 are reasonable. We should also emphasize the significance of deriving a physically- 
based relationship for the additional mass term through rigorous analytical modeling. 

To explain the difference between the predictions of the NGPR formula, GPR formula and the cavity expansion model, the relation 

Fig. 10. The penetration depth data of 39 MPa concrete [17] and the predictions from the NGPR and GPR formulae.  
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of dimensionless stress with the dimensionless velocity gained by the NGPR formula, GPR formula and the cavity expansion model are 
compared. To this end, the total force acting on the projectile as expressed by Eq. (8) is rewritten. Eq. (8) is expressed as: 

Fx = − M
dv
dt

=
M
Mm

πd2

4

(
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Eq. (8) is rewritten as: 
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In Eq. (25) defining σ = Fx/(πd2/4) as the stress acting on the projectile, and σ/Y becomes the dimensionless stress. The 
̅̅̅̅̅̅̅̅̅̅̅̅̅
ρv2/Y

√
is the 

dimensionless penetrating velocity. As seen, Eq. (25) expresses the relation between the dimensionless stress and the dimensionless 
penetrating velocity. For the referenced cavity expansion models, the additional mass is not considered, thus Mm is equal to M. For the 
NGPR formula and GPR formula, the Mm is expressed as Eq. (24e) and Eq. (17e), respectively. 

Fig. 15 provides the curves of dimensionless stress with the dimensionless penetrating velocity for two selected penetration events. 

Fig. 11. The deceleration versus time data of 39 MPa concrete [17] and the predictions from the NGPR and GPR formulae.  
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Fig. 15(a) corresponds to the penetration event of Al6061 from Piekutowski et al. [26], who also provides values of A, B, and C from the 
cavity expansion model, ie., A = 5.04, B = 0.983, and C = 0.94. Fig. 15(b) corresponds to the penetration event of 51 MPa concrete 
[19]. In Ref. [19], values of A, B, and C from the cavity expansion model are 8.79, 1.12, and 1.60, respectively. Values of A, B, and C in 
the NGPR and GPR formulae are shown in Tables 1 and 2. Due to the assumption that the additional mass term Mm varies with the 
initial striking velocity, curves of dimensionless stress with the dimensionless penetrating velocity by the NGPR formula are different 
and separately depicted in Fig. 15. As seen from Fig. 15(a), curves of dimensionless stress with the dimensionless penetrating velocity 
by the NGPR formula under the striking velocity of 679 m/s and 966 m/s are close to that by the cavity expansion models, while the 
curve by the NGPR formula under the striking velocity of 1817 m/s is wholly lower than that by the cavity expansion model, thus the 
predicted depth by the NGPR formula is almost same as that by the cavity expansion model under the striking velocity of 679 m/s and 
966 m/s but is larger under the striking velocity of 1817 m/s (Fig. 16(a)). Besides, curves by the NGPR formula under the striking 
velocity of 679 m/s and 966 m/s are first lower and then higher than that by the GPR formula with a resistance balance with each 
other, while the curve by the NGPR formula under the striking velocity of 1817 m/s is almost wholly lower than that by the GPR 
formula, thus the predicted depth by the NGPR formula is almost same as that by the GPR formula under the striking velocity of 679 
m/s and 966 m/s but is larger under the striking velocity of 1817 m/s (Fig. 16(a)). The above regular is also reflected in Figs. 15(b) and 
Fig. 16(b) corresponding to the penetration event of 51Mpa concrete, it will not be discussed again. In short, different combinations of 
parameters corresponding to different models produce different resistance curves. The resistance curves of different models differ little 
at low strike velocity, but significantly at high strike velocity. As a result, the predicted penetration depths for different models are 
nearly coincident in low striking velocities but gradually diverge with the increase of the striking velocity, as shown in Fig. 16. 

The main difference between the proposed NGPR formula, the GPR formula and Forrestal’s form is the former can improve the 
predicted ability on penetration depths at high velocities. With the development of extremely high-strength projectiles, the upper- 
velocity limit of rigid penetration can be largely enhanced, in this case, the superiority of the proposed NGPR formula will be more 
evident. Besides, for the penetration case where the mechanical constitutive behavior of the target is complex and difficult to char-
acterize by mathematical equations, the analytical method and numerical simulation may encounter obstacles. The semi-empirical 
formula becomes useful. With one group of penetration data points, the present NGPR formula can be used to obtain the total 
resistance and to predict the penetration data for other penetration cases, such as the projectiles with different nose shapes, the 
projectile with different masses or diameters as well as the projectiles with different striking velocities. This advantage is also helpful to 
reduce the number of experiments. It should be noted that, with more test data points, the calibrated parameters in the NGPR formula 
can more accurately reflect the target resistance. 

6. Conclusion 

The present paper is devoted to seeking a proper semi-empirical formula for predicting the motion of the rigid projectile during the 
deep penetration, due to the insufficient prediction of penetration depth and deceleration history of the commonly used Forrestal’s 
form. To this end, firstly, the general penetration resistance is employed to formulate the semi-empirical formula (denoted as the GPR 
formula), due to the ‘general’ characteristic of the general penetration resistance. The performance of the GPR formula is checked by 
comparing with the individual test data, the results show that the GPR has the same predicted problem as Forrestal’s form, they both 
can not predict well the experimental penetration depths in the high velocities of the rigid projectile. To solve this problem, the general 
penetration resistance is modified by the assumption that the additional mass of the rigid projectile should be increased with the 
striking velocity and the projectile mass. Then, the new semi-empirical formula based on this modified general penetration resistance 
(denoted as the NGPR formula) is established. The predictions of the NGPR formula exhibit good agreement with individual published 
experimental data of different projectiles and striking velocities as well as different targets, which also demonstrates the 

Fig. 12. The penetration depth data of 23 MPa concrete [17] and the predictions from the NGPR and GPR formulae.  
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reasonableness of the assumption that the additional mass of the projectile increases with the striking velocity and the projectile mass. 
The superiority of the NGPR formula is the improvement of the prediction accuracy on penetration depths at high velocities of the rigid 
projectile compared to the GPR formula and the commonly used Forrestal’s form, this may become more important with the devel-
opment of the extremely high-strength projectiles and the elevation of the striking velocity. Besides, for the penetration case where the 
mechanical constitutive behavior of the target is complex and difficult to characterize by mathematical equations, the analytical 
method and numerical simulation may encounter obstacles. The semi-empirical formula becomes useful. With one group of pene-
tration data points, the present formula can be used to obtain the total resistance and to predict the penetration data for other 
penetration cases with the merit of reducing the number of experiments. 
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Fig. 13. The deceleration versus time data of 23 MPa concrete [17] and the predictions from the NGPR formula.  
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Fig. 14. The penetration depth data of 51 MPa concrete [19] and the predictions from the NGPR and GPR formulae.  

Fig. 15. The relations of dimensionless stress with the dimensionless penetrating velocity for the NGPR formula, GPR formula and the cavity 
expansion model in two penetration events, (a) the penetration of Al6061 [23], (b) the penetration of 51 MPa concrete [19]. 

Fig. 16. Penetration depths predicted NGPR formula, GPR formula and the cavity expansion model in two penetration events: (a) the penetration of 
Al6061 [23], (b) the penetration of 51 MPa concrete [19]. 
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Appendix A 

For the nose profile that can be expressed by the general convex function y = y (x) as shown in Fig. 1, N1, N2, and N3 are expressed 
as: 

N1 = 1 +
8μm

d2

∫ L

0
ydx (A.1)  

N2 =N∗ +
8μm

d2

∫ L

0

yy′ 2

1 + y′ 2 dx (A.2)  

N3 =N∗∗ −
8μm

d2

∫ L

0

yy′ 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + y′ 2
√ dx (A.3)  

where 

N∗ =
4∯ An

cos3 θdAs

πd2 = −
8
d2

∫ L

0

yy′ 3

1 + y′ 2 dx (A.4)  

N∗∗ =
4∯ cos2 θdAs

πd2 =
8
d2

∫ L

0

yy′ 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + y′ 2
√ dx (A.5) 

Generally, the values of dimensionless parameters N1, N2, N3 should be numerically integrated for a given nose profile function y =
y (x). For the commonly used ogival nose, conical nose and spherical nose in weapon engineering, N1, N2, and N3 have explicit 
expression. For the ogival nose in Fig. A1(a): 

N1 = 1 + 4μmφ2
[(π

2
− φ0

)
−

sin 2φ0

2

]

(A.6)  

N2 =N∗ + μmφ2
[(π

2
− φ0

)
−

1
3

(

2 sin 2φ0 +
sin 4φ0

4

)]

(A.7)  

N∗ =
1

3φ
−

1
24φ2, 0 < N∗ ≤

1
2

(A.8)  

φ0 = arcsin
(

1 −
1

2φ

)

, φ ≥
1
2

(A.9)  

N3 =N∗∗ + 4μmφ2

{
1

2φ
−

1
3

[

1 −
(

1 −
1

2φ

)3
]}

(A.10)  

N∗∗ = 4

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1
φ
−

1
4φ2

)√ [

φ2 −
1
3

φ+
1
12

]

− 4
(

φ2 −
φ
2

)
sin− 1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1
φ
−

1
4φ2

)√

(A.11)  

where φ = s/d is the caliber-radius-heads of the ogival nose, s is the radius of the ogives nose and d is the shank diameters; μm is the 
sliding friction coefficient in impact. 

For the conical nose in Fig. A1(b): 
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N1 = 1 + 2μmφ (A.12)  

N2 =N∗ +
2μmφ

1 + 4φ2 (A.13)  

N∗ =
1

1 + 4φ2 , 0 < N∗ ≤ 1 (A.14)  

N3 =N∗∗ +
2μmφ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 4φ2

√ (A.15)  

N∗∗ =
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 4φ2

√ (A.16)  

where φ = s/d, s is the length of the conical nose and d is the shank diameters; μm is the sliding friction coefficient in impact. 
For the spherical nose in Fig. A1(c): 

N1 = 1 + 2μmφ2(2φ0 − sin 2φ0) (A.17)  

N2 =N∗ + μmφ2
(

φ0 −
sin 4φ0

4

)

(A.18)  

N∗ = 1 −
1

8φ2,
1
2
≤ N∗ ≤ 1 (A.19)  

φ0 = arcsin
(

1
2φ

)

, φ ≥
1
2

(A.20)  

N3 =N∗∗ +
μm

3φ
(A.21)  

N∗∗ =
8φ2

3

[

1 −
(

1 −
1

4φ2

)3
2
]

(A.22)  

where φ = s/d, s is the radius of the spherical nose and d is the shank diameters; μm is the sliding friction coefficient in impact. 

Fig. A1. Schematic of (a) ogive nose, (b) conical nose, (c) semi-sphere nose projectiles  
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