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ABSTRACT Microbial diversity in the cystic fibrosis (CF) lung decreases over de-
cades as pathogenic bacteria such as Pseudomonas aeruginosa take over. The dy-
namics of the CF microbiome and metabolome over shorter time frames, however,
remain poorly studied. Here, we analyze paired microbiome and metabolome data
from 594 sputum samples collected over 401 days from six adult CF subjects
(subject mean � 179 days) through periods of clinical stability and 11 CF pulmo-
nary exacerbations (CFPE). While microbiome profiles were personalized (permuta-
tional multivariate analysis of variance [PERMANOVA] r2 � 0.79, P � 0.001), we ob-
served significant intraindividual temporal variation that was highest during clinical
stability (linear mixed-effects [LME] model, P � 0.002). This included periods where
the microbiomes of different subjects became highly similar (UniFrac distance,
�0.05). There was a linear increase in the microbiome alpha-diversity and in the log
ratio of anaerobes to pathogens with time (n � 14 days) during the development of
a CFPE (LME P � 0.0045 and P � 0.029, respectively). Collectively, comparing samples
across disease states showed there was a reduction of these two measures during
antibiotic treatment (LME P � 0.0096 and P � 0.014, respectively), but the stability
data and CFPE data were not significantly different from each other. Metabolome
alpha-diversity was higher during CFPE than during stability (LME P � 0.0085), but
no consistent metabolite signatures of CFPE across subjects were identified.
Virulence-associated metabolites from P. aeruginosa were temporally dynamic but
were not associated with any disease state. One subject died during the collection
period, enabling a detailed look at changes in the 194 days prior to death. This sub-
ject had over 90% Pseudomonas in the microbiome at the beginning of sampling,
and that level gradually increased to over 99% prior to death. This study revealed
that the CF microbiome and metabolome of some subjects are dynamic through
time. Future work is needed to understand what drives these temporal dynamics
and if reduction of anaerobes correlate to clinical response to CFPE therapy.
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IMPORTANCE Subjects with cystic fibrosis battle polymicrobial lung infections
throughout their lifetime. Although antibiotic therapy is a principal treatment for CF
lung disease, we have little understanding of how antibiotics affect the CF lung mi-
crobiome and metabolome and how much the community changes on daily time-
scales. By analyzing 594 longitudinal CF sputum samples from six adult subjects, we
show that the sputum microbiome and metabolome are dynamic. Significant
changes occur during times of stability and also through pulmonary exacerbations
(CFPEs). Microbiome alpha-diversity increased as a CFPE developed and then de-
creased during treatment in a manner corresponding to the reduction in the log ra-
tio of anaerobic bacteria to classic pathogens. Levels of metabolites from the patho-
gen P. aeruginosa were also highly variable through time and were negatively
associated with anaerobes. The microbial dynamics observed in this study may have
a significant impact on the outcome of antibiotic therapy for CFPEs and overall sub-
ject health.

KEYWORDS cystic fibrosis, microbiome, antibiotics, metabolome

The respiratory tracts of individuals with cystic fibrosis (CF) are colonized by a polymi-
crobial community that impacts the pathology and progression of the disease (1–3).

The microbiome of sputum expectorated from the lung includes opportunistic pathogens,
such as Pseudomonas aeruginosa, Staphylococcus aureus, Stenotrophomonas maltophilia,
Burkholderia cepacia, and Achromobacter xylosoxidans, but a myriad of lesser understood
oral anaerobes are also detected (1–3). It is known that pathogens come to dominate the
community profiles as subjects age and microbial diversity decreases (1), yet we have a
poor understanding of these dynamics in shorter longitudinal time frames, such as
throughout CF pulmonary exacerbations (CFPEs). Some studies have reported changes
occurring during CFPE (4–9), primarily via reduction in the relative abundance of rare taxa
during treatment, particularly anaerobic bacteria (Prevotella, Veillonella, Gemella, etc.) (4, 5,
9–11), but whether this represents a dysbiotic shift in the CF microbiome or regular changes
in microbial dynamics without clinical relevance remains unknown. In other studies, the CF
microbiome was found to remain relatively static through CFPE (8, 12–14), complicating our
understanding of microbiome dynamics. The CF microbiome has also been shown to be
highly personalized (1, 11, 15), but it is unknown whether this personalization is maintained
over shorter longitudinal time frames or if the communities are dynamic.

Recent studies have begun to examine the metabolome of CF sputum, comprised
of DNA, mucins, surfactant, and a myriad of small molecules from microbial, host, and
xenobiotic sources that are highly personalized (16) and have important implications
for disease pathology (17–20). Virulence-associated metabolites from P. aeruginosa are
also detected, as well as fermentation metabolites from streptococci (21). A recent
study showed that as lung function declines, subjects accumulate more peptides and
amino acids in their sputum (17), which are derived from neutrophil elastase activity in
response to microbial infections. The contents of the CF metabolome are highly diverse,
but how this chemistry changes through time and around CFPE events is virtually
unknown.

This report presents a high-resolution analysis of the longitudinal dynamics of the
adult CF sputum metabolome and microbiome. Sputum samples were collected from
six subjects in their homes as frequently as possible for a period of 401 days. Eleven
CFPE events were captured through the sampling period, providing detailed insight
into the microbial and chemical changes in sputum through these important clinical
events.

RESULTS
Longitudinal sampling and microbiome and metabolome data generation

from CF sputum samples. A total of 594 sputum samples were self-collected by six CF
subjects (CF066, CF146, CF176, CF189, CF318, and CF353) with declining lung function
and health over a total of 401 days (subject mean � 179 sampled days, range � 22 to
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190) (see Fig. S1 in the supplemental material; see also Data Set S1, sheets 1 and 2, in
the supplemental material). Subjects did not all begin sampling on the same day but
were asked to collect as frequently as possible during their collection period, resulting
in varied sample numbers per subject (Fig. S1; see also Data Set S1, sheets 1 and 2). All
experienced at least one period of CFPE and treatment during the study (Data Set S1,
sheets 1 and 2). Samples were classified as “CFPE” samples if they were collected within
14 days prior to treatment, as “treatment” samples if they were collected during the
21 days of treatment, and as “stable” if they were collected outside those periods. All
samples were delivered to the clinic by each subject after storage in a home freezer,
with the exception of the last 22 samples from one subject (CF176) who died during the
study. Paired 16S rRNA gene sequencing and untargeted metabolomic data were
generated to evaluate the microbial community and chemical composition of these
sputum samples.

As expected, the microbiome contained a mixture of classic CF pathogens and oral
anaerobic bacteria (classified according to Data Set S1, sheet 3). The metabolomic data
included molecules from host cells, microbial cells, and xenobiotics (Fig. S2). There were
4,988 unique spectra detected in the sputum samples, with 394 annotations from the
Global Natural Products Social Molecular Networking (GNPS) mass spectral libraries
(7.9%) (22). The most prevalent known molecules were phospholipids, sphingolipids,
and antibiotics (Fig. S2).

Sputum microbiome and metabolome are largely subject specific. Four of the
six subjects had Pseudomonas as the most abundant classic pathogen in their sputa,
while the other two were infected with Stenotrophomonas (CF318) or Escherichia
(CF066) (Fig. 1a). Principal-coordinate analysis (PCoA) of the beta-diversity between
samples showed that both the sputum microbiome and the sputum metabolome were
highly individualized (weighted UniFrac distances for microbes, permutational multi-

FIG 1 (a) Bar plots representing the microbiome of sputum samples from the six subjects plotted chronologically through the collection. Gaps in sample
collection are not shown. (b) PCoA plot of the weighted UniFrac distances of the microbiome data colored by subject. Inset are the samples colored on a scale
representing the percentage of the anaerobe or percentage of the pathogen as defined in Data Set S1, sheet 3. Samples where Pseudomonas is the dominant
ASV in the plot are highlighted. (c) PCoA plot of the Bray-Curtis distance of the metabolomic data, including all detected metabolite features colored by subject.
(d and e) Within-subject and between-subject distances of microbiome (weighted UniFrac distance) data (d) and metabolome (Bray-Curtis distance) data (e).
Significance was tested with an LME model with subject as a fixed effect.
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variate analysis of variance [PERMANOVA] by subject F � 30.48, r2 � 0.79, P � 0.001;
Bray-Curtis distances for metabolites, PERMANOVA by subject F � 24.81, r2 � 0.372,
P � 0.001) (Fig. 1b and c). There was greater beta-diversity variation across subjects
than within subjects for both data types (Fig. 1d and e). Alpha-diversities of the
microbiome and metabolome were also individualized and were significantly different
based on subject source (except CF146 and CF318; Fig. S3a and b; see also Fig. S4).
CF176 had the lowest microbiome alpha-diversity (Fig. S3a) but the highest metabo-
lome alpha-diversity (Fig. S3b), a contrasting phenomenon similar to that reported from
a previous CF sputum multi-omics study (17). Despite the overall personalization, four
of the subjects developed highly similar microbiomes at times during the dense
longitudinal sampling period (CF176, CF146, CF353, and CF189, Fig. 1b and c). Com-
paring to CF176 as a reference, 23.0% of samples from CF146, 9.7% from CF189, and
1.3% from CF353 had a weighted UniFrac distance value of less than 0.05 (Fig. S5a; see
also Data Set S1, sheet 4), indicating almost identical microbial communities. The
metabolome data had no samples where the Bray-Curtis distance value was below 0.05,
indicating stronger personalization in this data set as a whole; however, CF176 and
CF353 showed similarity in the PCoA plot with a mean Bray-Curtis distance value of 0.39
(Fig. 1b and c; see also Fig. S5b).

Microbiome and metabolome of sputum are dynamic in short time frames. To
better characterize intraindividual dynamics, we quantified multi-omic variation as the
percentage of samples within each subject with values that were greater than 1.5�

their beta-diversity interquartile range (IQR) (analogous to the analysis by Caverly et al.
[23]) and the incidence of samples that had a weighted UniFrac or Bray-Curtis distance
value above 0.6 (a cutoff to represent a microbiome that was highly differentiated with
respect to 16S or metabolomic data, respectively). To provide a reference frame for
comparison, we computed the same metrics for variation in samples from a recently
published cross-sectional study (n � 88) (17; Fig. S3c and d; see also Video S1 in the
supplemental material). In our cohort, 23.8% of the microbiomes within an individual
were outside their IQR (Table 1), a value similar to the 24.4% of samples across
individuals seen in the cross-sectional study (Fig. S3c). The within-subject weighted
UniFrac distance values were above 0.6 for 10.5% of the longitudinal comparisons,
compared to 45.6% across individuals in the cross-sectional study (Fig. S3c). The

TABLE 1 Microbiome (UniFrac distance) and metabolome (Bray-Curtis distance) variation
in the different subjects through timea

Category and
subject ID

% outside
IQR

% above
0.6

No. of
comparisons

Microbiome
CF66 24.512 8.902 4,561
CF146 33.068 2.703 629
CF176 10.297 0.023 4,370
CF189 25.062 30.53 2,414
CF318 22.96 8.742 13,040
CF353 27.185 12.185 2,700
Avg 23.848 10.514
Cross-sectional 24.4 45.6 10,278

Metabolome
CF66 25.961 32.822 5,778
CF146 20.509 20.509 629
CF176 33.37 2.632 4,558
CF189 30.655 7.995 2,414
CF318 21.707 9.87 13,899
CF353 27.509 2.501 3,159
Avg 26.618 12.721
Cross-sectional 28 56.4 10,278

aAll samples were compared to all others, and the percentages of comparisons outside the interquartile
range (IQR), as well as the number of comparisons with a beta-diversity distance value above 0.6, are
reported.
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incidence of these samples with high beta-diversity were most common in two subjects
with Pseudomonas as the pathogen with the highest relative abundance (CF189 [30.5%]
and CF353 [12.1%]), while the end-stage subject (CF176) had no samples above this
distance threshold and the lowest microbial variation through time (Fig. 1b and c; see
also Fig. S3c) (Table 1). Similarly, the mean proportion of metabolome sample com-
parisons with values 1.5� outside their IQR was 26.6% (28.0% in the cross-sectional
study), with 12.7% having a Bray-Curtis distance above 0.6 (56.4% in the cross-sectional
study) (Table 1; see also Fig. S3d). Two of the Pseudomonas-dominated subjects, CF176
and CF353, showed little change in their sputum metabolome, with �3% of samples
having values above the Bray-Curtis distance value of 0.6 (Fig. S3d). Collectively, the
alpha- and beta-diversity results demonstrate that although there was strong person-
alization in the overall microbiome profiles, the communities within five of the six
individuals were dynamic and driven by changes in the relative abundances of anaer-
obes and dominant pathogens, such as Pseudomonas or Stenotrophomonas (Fig. 1a; see
also the animated video [24] showing changes through time [see Video S1 in the
supplemental material]).

Multi-omic variation around exacerbation. To examine whether disease state

(CFPE, treatment, or stable) was a primary driver of the dynamism seen, the population-
level alpha-diversity and beta-diversity data from the microbial communities and
metabolomes across disease states were compared. With subject source accounted for
as a covariate, the beta-diversity values were significantly different based on disease
state for the metabolomic data, though the level of variance explained by this param-
eter was low (PERMANOVA r2 � 0.032, P � 0.001). There was not a significant difference
in beta-diversity based on disease state for the microbiome data (PERMANOVA
r2 � 0.072, P � 0.223). Pairwise comparisons of the weighted UniFrac distance values
within disease states from each subject using a linear mixed-effects (LME) model
showed that the stable disease state had the highest degree of microbial variability
(Fig. 2a). Metabolome variability was highest during the treatment period, followed by
the stable period, and was lowest during CFPE (Fig. 2b, LME P � 0.001, all pairwise
comparisons). Collectively, the alpha-diversity of the microbiome was significantly
higher during the stability period than during the treatment period (LME P � 0.001) and
during the CFPE period than during the treatment period (LME P � 0.0096), but the
levels did not differ significantly between the stable and CFPE states (Fig. 2c). Alpha-
diversity of the metabolome was highest during exacerbations, but this was only
significant compared to the stable state (Fig. 2d, LME P � 0.0085). With the identifica-
tion of lower microbial alpha-diversity during the treatment period, we further inves-
tigated these changes by comparing the log ratio of anaerobes to pathogens and
found that this ratio was also significantly higher during stability and CFPE than during
treatment but that the ratios did not differ significantly between the stable and CFPE
states (Fig. 2e).

Because we had high-resolution longitudinal samples, we took a closer look at the
microbial dynamics that had occurred through time during the development and
treatment of the 11 CFPE events. The alpha-diversity of the microbial community
significantly increased in the 14 days leading up to antibiotic therapy for a CFPE
(Spearman’s rho � 0.348 with time in days, LME P � 0.0045, Fig. 2f), but there was no
change in alpha diversity through time during the 21 days of treatment (Spearman’s
rho � �0.110, LME P � 0.93, Fig. 2f). There were no significant changes in diversity
measures of the metabolome through time during the CFPE period or the treatment
period (Fig. 2g). The log ratio of anaerobes to pathogens also increased with time
approaching the start of antibiotic treatment for a CFPE (rho � 0.242, LME P � 0.029)
but did not change with time during the treatment period (rho � �0.248, LME
P � 0.645, Fig. 2h). To further test the changes in microbial diversity that occurred with
time through the CFPE and treatment periods, we also used an LME model to describe
the temporal trajectories with a linear spline (or broken stick) and found that the
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Shannon diversity slope with time was significantly higher through CFPE than the
treatment period (LME P � 0.008, Data Set S1, sheet 5).

To identify metabolites changing in the three disease states, we trained a
random forest classification model (25) on data from the disease state to determine
whether individual metabolites were altered. The random forest model did not
indicate strong overall changes in the metabolome around exacerbation (out-of-
bag error rate � 27.5%, Data Set S1, sheet 6). Variables of importance to the classifi-
cation were primarily represented by antibiotics given to the subjects. Nonantibiotic
metabolites of importance to the classification included stearoyl-L-carnitine and hemin;
however, the corresponding data were not significantly different between the exacer-
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bation and treatment states across subjects using an LME model (false-discovery-rate
[FDR] corrected q � 0.05).

In light of the findings previously reported by Caverly et al. (23), who showed
changes in bacterial diversity during times of stability due to maintenance therapies,
and of the fact that we detected some maintenance antibiotics in the metabolomic
data during stable periods, we analyzed the correlations between the abundances of
azithromycin and trimethoprim (provided as maintenance therapies) and microbiome
alpha-diversity. We found a negative correlation between microbiome Shannon diver-
sity and the abundance of trimethoprim in the same samples during stability (linear
mixed model [LMM] P � 0.0048, Spearman’s rho � �0.39) but not between micro-
biome Shannon diversity and the abundance of azithromycin (LMM P � 0.489, Spear-
man’s rho � 0.35, Fig. S6).

Metabolite and microbiome associations. We used a method of identifying
metabolites associated with microbial amplicon sequence variants (ASVs) called
microbial-metabolite vectors (MMvec; 26) to investigate the relationship of these
molecules with a changing microbial community (Data Set S1, sheet 9). We gave
particular attention to P. aeruginosa virulence-associated metabolites, including
phenazines, rhamnolipids, and quinolones, that can have strong effects on other
microbes in the community and host cells in vitro (24, 27, 28). We detected 36 different
quinolones, eight rhamnolipids, and one siderophore (pyochelin) known to be pro-
duced by Pseudomonas aeruginosa in this longitudinal data set but detected no
phenazines. At least one of these metabolites was found in four of the six subjects
(CF066, CF176, CF353, and CF189, Fig. S7a), and all had Pseudomonas in their micro-
biome. Interestingly, none of these metabolites were detected in subject CF146, even
though this subject’s microbiome had on average a 77.0% relative abundance of
Pseudomonas through the collection, and CF353 had low to undetectable amounts
of quinolones and rhamnolipids but an average of 41.0% Pseudomonas. The abundance
of these metabolites was not associated with any disease state (LME P � 0.05). Using
the MMvec method, we found that the quinolone 4-hydroxy-2-nonylquinolone (NHQ)
had a high conditional log-probability of association with Pseudomonas in the data
(1.18 logP, 98th percentile) whereas its related metabolite 4-hydroxy-2-heptylquinolone
(HHQ) also showed a high level of association (1.035 logP, 96th percentile). These
conditional probabilities did not correspond to strong linear associations of the relative
abundance of Pseudomonas with the metabolite abundances (Fig. S7a), highlighting
the importance of compositionally coherent approaches such as MMvec (29). However,
the metabolites themselves, particularly the two quinolones and the rhamnolipids,
were highly correlated with each other (Fig. S7a). Learning associations of metabolites
with the other ASVs of interest showed a negative association between the Pseudomo-
nas quinolones and anaerobes. NHQ and HHQ were highly negatively associated with
Streptococcus (�4.34 logP and 99th percentile and �3.80 and 99th percentile, respec-
tively), Veillonella parvula (�4.65 logP and 99th percentile and �4.06 and 99th percen-
tile), and Prevotella melaninogenica (�3.51 logP and 99th percentile and �3.06 and
99th percentile) (Fig. S6b; see also Data Set S1, sheet 9).

Multi-omics analysis of a CF mortality event. The death of subject CF176 due to
respiratory failure presented an opportunity to study the changes that occurred in the
microbiome and metabolome as the fatal CFPE developed and subsequent treatment
failed. Samples from CF176 were available for 118 (60%) of the 194 days prior to death
during which the subject experienced four separate CFPEs and subsequent treatments
with intravenous (i.v.) antibiotics, including the final course prior to death (Fig. 3a).
These four exacerbations were experienced in a short time frame, indicating they may
have been related, but each event was treated with a new course of different antibiotic
combinations.

The microbial community was dominated by Pseudomonas, with a moderate in-
crease in relative abundance through time (Pearson’s r � 0.323, P � 0.0004). There were
spikes in the relative abundances of anaerobes and other oral bacteria observed, but
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these did not reliably correspond to CFPEs or their treatment in the first 60 days of
collection (Fig. S8a and b). However, the onset of the third CFPE corresponded to an
increase in the relative abundance of Haemophilus parainfluenzae which decreased
upon treatment with levofloxacin (Levoquin) (Fig. S8a and b). The subject then entered
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a brief period of stability before experiencing a final fourth CFPE which featured
another spike in the relative abundance of oral microbes (Fig. S8a and b). Treatment of
this final CFPE consisted of intravenous (i.v.) meropenem, colistin, and linezolid fol-
lowed by oral antibiotics in the 3 weeks before death. During this time, the Pseudomo-
nas data reached a level of over 99.9% of sequenced reads and did not drop below
99.7% throughout the treatment course (Fig. 3a). No other known CF pathogens were
detected in the final days of life (Fig. S8b). There were no increases in the relative
abundances of anaerobes during the final treatments until 4 days before hospitalization
at day 183. Unweighted UniFrac analysis suggested that the microbiome was changing
through time (Fig. S8c and d), but weighted UniFrac analysis showed that the high
relative abundance of Pseudomonas may have obscured the presence of a new infec-
tion in the final days of life (Fig. S8c and d).

The metabolomic data did not reveal strong changes in the months before death,
though the effects of treatment were evident. For example, the level of i.v. antibiotics
detected in the sputum corresponded to time of treatment, suggesting that the drugs
were successfully diffusing to the target community. Metabolites from P. aeruginosa
were also detected in this subject through time, but only sporadically, and did not
coincide with CFPE, changes in Pseudomonas relative abundance, antibiotics, or death.
HHQ, NHQ, and pyochelin were detected primarily early on in the sample collection and
not in the final days of life (Fig. 3b). Molecules whose levels increased with time toward
death were primarily peptides, human neutrophil protein 1 (HNP1), and a ceramide
(Fig. 3c). The levels of these molecules increased gradually throughout the collection,
with HNP1 increasing in the final 50 days of life.

Overall, the multi-omics analysis in this subject did not reveal any new CF pathogen
infections, increased production of metabolites from Pseudomonas, or large changes in
the overall metabolome/microbiome that could explain the subject’s death (Fig. 3; see
also Fig. S8). Instead, the data reported here support a scenario where this subject had
had a gradual increase in the relative abundance of Pseudomonas in sputum corre-
sponding to increasing levels of metabolites associated with pulmonary inflammation
leading up to death.

DISCUSSION

This longitudinal study of six CF subjects provides further support for the notion of
the presence of a dynamic microbiome and metabolome in CF sputum, as described by
Caverly et al. (23), and provides new evidence for changes through the development
and subsequent treatment of CFPEs. Collectively comparing across disease states, the
level of microbial alpha-diversity and the log ratio of anaerobes to pathogens were
decreased during antibiotic treatment for CFPEs but not between the stable and CFPE
states. Comparing both of these measures with time showed that there was a linear
increase approaching a CFPE treatment event, indicating that the microbiome changed
as a CFPE developed. There was then a decrease in alpha-diversity upon initiation of
treatment, and this remained lower without a temporal change through the treatment
period. Linear changes with time around CFPE were not identified in the metabolome,
likely due to the strong personalization in this data set. The signal for a reduction in
microbial diversity and anaerobe abundance during antibiotic treatment supports
previously described changes in a large cross-sectional study (5) and in vitro experi-
ments (4). Thus, there is mounting evidence for changes between classic pathogens
and anaerobic bacteria around CFPE events (4, 5, 13). However, our data also showed
microbiome and metabolome dynamics during times of stability which was, at least in
part, driven by maintenance antibiotics. Thus, future work is needed to determine if
there are clinically relevant consequences of a changing microbiome during stability
and if reduction of anaerobes during CFPE treatment corresponds to clinical response.
This work will require extensive in vitro and in vivo experiments supported by mathe-
matical models and clinical insights (23).

There are several important caveats for this study. First, at least a portion of the
anaerobes detected in our samples might have been contaminants from the oral cavity
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during sputum expectoration (25). It is therefore possible that antibiotics were impact-
ing the oral microbiota, which would then be reflected in contaminated sputum (26).
The microbiome of subject CF189, however, where a single Prevotella ASV came to
dominate the sputum microbiome for months, demonstrated that the anaerobe dy-
namics were unlikely to have stemmed from saliva contamination during expectora-
tion, which would be expected to produce a more diverse and consistent assemblage
of oral bacteria through time. Second, the grouping of samples into stable, CFPE, and
treatment periods is not without its limitations. Subjects often receive oral antibiotics
prior to CFPEs, and many cycle antibiotics as maintenance therapies, including the
subjects in this study. Caverly et al. (23) identified maintenance antibiotics as a
contributing factor to microbiome changes during stability. This study found a negative
relationship between the abundance of the maintenance antibiotic trimethoprim in the
metabolomic data and microbiome Shannon diversity during times of stability. This
supports the notion that maintenance antibiotics may have contributed to dynamics
during stability, although this relationship was not found with azithromycin and we
cannot detect all maintenance drugs with our mass spectrometry methods. Third,
sputum may be produced from different parts of the lung, which are known to have
differing populations of microbiota (20). Nevertheless, even though sputum samples
are not completely representative of the lung microbiome and may contain differing
degrees of contamination from the oral cavity, the ease and low invasiveness of sputum
collection enabled the large sample size in this study, which would have been impos-
sible with more-invasive sample techniques, such as bronchoalveolar lavage, that more
directly target lung microbiota. Another important point is that the subjects in this
study were in different stages of disease progression, a factor which has been shown
to impact the microbiome dynamics during CFPE therapy (5). There is evidence for this
in our study as well, as late-stage subject CF176 had the most stable microbiome
through time.

The collection of paired microbiome and metabolome data in our study enabled
further investigation into the association between metabolites produced by Pseudomo-
nas aeruginosa and ASVs of interest in the microbiome profiles. As reported previously
from a cross-sectional study (17), in many samples that had large amounts of P.
aeruginosa in the microbiome, there were small amounts or no metabolites from the
bacterium detected. This may reflect dynamic changes in the growth rate and metab-
olite production of the bacterium in a subject through time, but this is only speculative,
as many biological phenomena could explain this disparity, including disproportionate
production of these compounds from different P. aeruginosa strains. Because micro-
biome/metabolite correlations are complicated by compositionality (30, 31), we applied
a recently published method of computing metabolite-microbe conditional probabili-
ties and did find an association between the Pseudomonas ASV and its quinolones. This
method also identified negative associations between the P. aeruginosa quinolones and
certain anaerobes, supporting the notion of the mutually exclusive dynamic between
anaerobes and this bacterium that has been described previously (10). This negative
association may represent antagonism between anaerobes and P. aeruginosa or con-
trasting niche occupancies, but future experiments are needed to identify any causal
relationships behind these associations. An important limitation of our metabolomics
methods is that the liquid chromatography-tandem mass spectrometry (LC-MS/MS)
and extraction protocols used sample only a portion of the metabolome; additional
extraction and mass spectrometry approaches will be needed to more comprehensively
assess the sputum metabolomic makeup. It is also of note that other organisms can also
produce some of these secondary metabolites; for example, Burkholderia spp. can
produce rhamnolipids, pyochelin, and quinolones (32–34).

The unfortunate death of subject CF176 during this study provided an opportunity
to study the changes in the microbial community and metabolome of sputum that
occurred in the final stages of this disease. While a Pseudomonas ASV was the most
highly abundant organism for most of the final 182 days of life, there were periods
punctuated by increases in other microbes, particularly Haemophilus. There was no
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evidence of a new pathogen infection, a particularly marked microbiome change, or a
dramatic increase in inflammation that might have explained this subject’s mortality.
Instead, the data showed a progressive increase in the relative abundance of Pseu-
domonas, possibly driven by antibiotics administered for CFPEs, and a progressive
increase in the relative abundances of metabolites and peptides associated with
pulmonary inflammation. This type of mortality event may be common in late-stage CF,
because many individuals exhibit a pathogen-dominated microbiome at this stage of
disease progression (2, 17), but other multi-omics data surrounding mortality events
besides this n � 1 case study are scarce. One report that is available on death associ-
ated with a severe CFPE implicated a new infection from Escherichia coli as a possible
cause, though the conclusions were only speculative (35). As demonstrated here,
multi-omic analyses enable insights into the complex interactions between host,
microbe, and drugs through these tragic events of chronic disease. Perhaps most
significantly, microbiome and metabolome data can now be generated in clinically
relevant time frames (36), so this approach is a feasible route for future investigations
in the clinic.

In conclusion, this study showed that the CF sputum microbiome is highly dynamic
in some subjects through time, including during periods of clinical stability. During the
development of a pulmonary exacerbation, there was an increase in microbial diversity
corresponding to a relative increase of the ratio of anaerobes to pathogens, which then
decreased during treatment. Thus, dynamics between classic pathogens and anaerobic
bacteria around CFPE events may be important for therapeutic outcomes (4, 5, 10).
Future studies that target CFPE therapy in a systematic manner are needed, particularly
when the same antibiotic is repeatedly provided, to determine if any of the observed
dynamics are predictable and if the reduction in anaerobe abundance during treatment
corresponds to positive clinical outcomes. If so, this could lead to more precisely
targeted and efficacious treatments for CF and improvements in subject quality and
duration of life.

MATERIALS AND METHODS
Sample collection and clinical information. The first sample collection comprised a total of 572

sputum samples from six CF subjects (see Data Set S1, sheet 2, in the supplemental material). These
subjects were targeted due to recently poor health measures and lung function decline. A single Midea
WHS-129C1 single-door chest freezer (3.5 cubic feet) was sent to the homes of each subject after consent
to the study under institutional review board (IRB) research protocol no. 160078 (University of California
[UC] San Diego). Subjects were asked to collect samples daily or as frequently as possible at their own
discretion. One subject (CF146) collected twice daily for 15 of the 22 collection days, and data from these
samples were averaged to represent a single sputum sample from that date. Samples were expectorated
into 50-ml conical tubes that were then labeled by the subjects and stored in the freezers. At their
convenience, subjects collected their samples and brought them on ice to the adult CF clinic at UC San
Diego for permanent storage at – 80°C. Samples were thawed once for aliquoting into cryovials and
frozen again prior to multi-omics analysis.

After this initial sample collection, a secondary set of 22 samples was collected from subject 176 after
this subject died. These samples were collected from the freezer retrospectively after death and shipped
overnight on ice to the UC San Diego research laboratory for processing. Due to their priority, they were
processed in the same manner as all others in the collection except that DNA and metabolites were
extracted in triplicate wells of a 96-well plate and analyzed in triplicate. All subsequent plots and
statistical analysis were done using means of data from the three triplicates for both the microbiome and
metabolome. Samples from this secondary collection were integrated with the first set from the same
subject as a case study of this single individual. However, these additional samples were not included in
the statistical analyses describing the microbiome and metabolome dynamics from the initial collection,
due to the potential for batch effects between runs that especially affect beta-diversity measures.

The samples were classified as exacerbation, treatment, or stable samples according to the clinical
data obtained from the attending physician (Data Set S1, sheets 1 and 2). Exacerbations were defined as
an increase in pulmonary symptoms associated with CF disease and the decision to administer intrave-
nous or oral antibiotics to treat these symptoms for 21 days. The specific antibiotics administered for a
CFPE were recorded as well as the start and end dates of each CFPE treatment course (see Data Set S1,
sheets 1 and 2). The maintenance therapies given to each subject were also recorded, but the dates when
these drugs were taken are not known (note that some maintenance therapies are detected in the
metabolomics data, aiding interpretation of administration date; see the supplemental material). For
analysis of antibiotic therapy effects on the microbiome and metabolome, samples were classified as
“exacerbation” samples if they were collected within 14 days of an exacerbation diagnosis or as
“treatment” samples if they were collected during the 21-day treatment course. If there was a change in
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the antibiotic chosen during the 21 days, this did not affect sample classification. Whether subjects were
prescribed routine oral antibiotics prior to an exacerbation diagnosis was not considered in the
classification, but to be included in the analysis as a CFPE, there had to be at least four samples collected
prior to treatment.

DNA extraction and 16S rRNA gene PCR. A 200-�l aliquot of each sputum sample from a cryovial
was added to a Thermo Scientific 96-well deep-well plate after thawing. The six plates containing these
sputum samples were then subjected to DNA extraction performed with a Qiagen PowerSoil DNA
extraction kit in 96-well format. The DNA extraction, PCR amplification, and barcoding of the V4 region
of the bacterial 16S rRNA gene were completed according to the protocols for the earth microbiome
project (37) described elsewhere (http://press.igsb.anl.gov/earthmicrobiome/protocols-and-standards/
16s/). These protocols contain blank (no template) control samples that are used to identify background
sequences in reagents or other contaminants.

Microbiome data processing and analysis. Raw sequence data were processed using Qiita (38) and
were quality filtered following filtering recommendations (39) and processed by Deblur (40) to generate
amplicon sequence variants (ASVs). Sequences were aligned in QIIME2 version 1.9.1 (41) using MAFFT in
order to construct a phylogenetic tree using fasttree2. Taxonomy was assigned using q2-feature-classifier
(42) against the 99% GreenGenes 16S rRNA reference database (version 13-8). Samples with fewer than
500 reads were removed, and the data were rarefied to 500 reads per sample, leaving 552 sputum
samples for analysis. Information about the sequencing depth is available in the supplemental material
(Data Set S1, sheet 7; see also Fig. S2 in the supplemental material). For analysis, QIIME2 version 2019.4.0
was used throughout. Core diversity metrics were computed using core metrics phylogenetic analysis for
alpha- and beta-diversity indices. Based on their assigned taxonomy, ASVs were classified as either
pathogens or anaerobes (Data Set S1, sheet 3). This classification was performed based on which highly
abundant ASVs correspond to known classic CF pathogens targeted for antibiotic susceptibility in clinical
laboratories and on other highly abundant ASVs in the entire data set that are known to represent
obligate or aerotolerant anaerobes. The classified organisms collectively comprised 94.4% of total
sequence reads in the data set. Organisms that did not fall into the classic pathogen or anaerobe
categories (i.e., those that are not commonly considered CF pathogens but are not known anaerobes)
were not included in calculations of pathogen/anaerobe ratios. The ASV assigned to the Pseudomon-
adaceae family was searched against the NCBI database with BLAST and verified to have 100% sequence
similarity to Pseudomonas aeruginosa and other pseudomonads. It is therefore referred to as Pseudomo-
nas throughout the manuscript. Similarly, the ASV assigned to Escherichia had 100% identity to Esche-
richia spp., but the species was not identified due to high levels of similarity in the 16S rRNA gene V4
region within this group.

Metabolite extraction and metabolomics. Metabolites were extracted using a modified version of
the 96-well plate extraction procedure described previously by Quinn et al. (19). Briefly, a 200-�l aliquot
of each sputum sample was added to a Thermo Scientific 96-well deep-well plate for metabolite
extraction. First, 300 �l of ethyl acetate was added to the sputum, subjected to vortex mixing, and
allowed to extract at room temperature overnight. The plate was then spun at 2,000 � g in a tabletop
centrifuge, and then 200 �l of the ethyl acetate layer was removed and dried in the plate overnight. Next,
300 �l of methanol was added to the remaining sputum, subjected to vortex mixing, and then extracted
overnight at 4°C. The plate was spun again to separate particulates from the methanol extract, and 200 �l
was added to the dried ethyl acetate extract. The extracted metabolites were then diluted 1:2 in
methanol spiked with 2 �M ampicillin as an internal standard. Control blank samples also went through
the entire extraction process but without sputum to allow for removal of background signals from the
solvents and mass spectrometer. This extract was analyzed by injection into a Bruker Daltonics Maxis
Impact II LC-MS/MS system according to the mass spectrometry protocols described previously by Quinn
et al. (17). Briefly, a 20-�l injection volume was separated using a Kinetex 1.7-�m-pore-size C18

ultraperformance liquid chromatography (UPLC) column (50 by 2.10 mm) with a linear gradient of 2:98
water to acetonitrile progressing to 98:2 acetonitrile to water for a 14-min run. The data were then
converted to the .mzXML format for metabolite quantitation and annotation with GNPS. Volatile
metabolites, those that are strongly nonpolar, and those that ionize only in negative mode are not likely
to be detected with this method.

GNPS analysis and metabolite feature finding. Data from the mass spectrometer expressed in
Bruker .d format were first converted to the .mzXML format and then uploaded to the GNPS database
and data analysis server (gnps.ucsd.edu). The data are publicly available as MassIVE data set number
MSV000082667. Molecular networks were built on GNPS with the following parameters: mass tolerances
of 0.03 Da, cosine score of 0.65, minimum number of matched fragment ions of 4, and minimum cluster
size of 3 spectra. Library searching parameters were the same with a cosine score of 0.65 and a minimum
number of matched peaks of 4 (a list of library hits is available in Data Set S1, sheet 4; these are level 2
according to the metabolomics standards initiative [43]). Metabolites that were annotated without direct
GNPS library hits were identified through propagating annotations through the GNPS networks and
inspection of MS/MS spectral patterns (Data Set S1, sheet 7; level 2 according to a previously described
classification system [43]). The molecular network used for analysis of the sputum data in this project is
available at https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task�e9e9002371794bedbf8faf38e632a3f4.
The secondary data set had the same parameters used, but the molecular network is available at
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task�70f4483662db4489821a3773783f9641.

Area under the curve abundances of metabolite features were quantified using mzMine2 software
(44). The chromatograms were built with the following parameters: MS1 noise level of 5000 counts, MS2

noise level of 200 counts, minimum time span for chromatograms of 0.01, minimum height of 10,000,
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and a 10-ppm mass tolerance. Chromatograms were deconvoluted, and the isotope peaks were grouped
to remove redundancy. The data were aligned with a retention time tolerance of 0.2 min and an m/z
tolerance of 0.03 or 10 ppm. Metabolites detected in blanks and background controls were removed
prior to statistical analysis.

Statistical analysis. The weighted UniFrac (45) distance matrix was computed in QIIME2 to project
the sample similarities of the microbiome data in a three-dimensional principal-coordinate analysis
(PCoA) plot using EMPeror (46). Similarly, the Bray-Curtis distance matrix was computed in R on the
metabolomics feature table and visualized with a PCoA plot (the UniFrac distance cannot currently be
calculated on metabolome data). PERMANOVA testing on the beta-diversity measures was done with
subject source and disease state classifiers in R using the vegan package. Testing with respect to disease
state accounted for subject source as a covariate using the “strata” function. The microbiome data were
also plotted in PCoA space with the third axis as time in days, to visualize the changing microbiome
through time (see Video S1 in the supplemental material). The UniFrac and Bray-Curtis distance values
were quantified within each subject through time using a method similar to that described previously by
Caverly et al. (23). All pairwise comparisons of each sample to all others from the same subject were
plotted as notch plots, and the percentages of samples outside 1.5� the interquartile range (IQR)
were calculated. In addition, the percentages of samples within a subject with a distance value above 0.6
were reported to assess those that were highly different from the rest. To provide relevant comparisons
of these numbers, the same calculations were then done on a publicly available cross-sectional CF
sputum data set analyzed with microbiome and metabolome methods published previously (17).

The same respective distance measures were used to test for significance of within-subject and
between-subject beta-diversity by computing the mean distances of each sample from a subject to all
samples from other subjects (between distances) and comparing the results to the distances of each
sample from a subject to all others from the same subject (within distances). Comparisons within and
between subjects for both microbiome and metabolome were tested for significance using a linear
mixed-effects model (LME) from the lmer4 package in R with subject as a random effect. The alpha- and
beta-diversities of microbiome and metabolome samples were also compared across subjects using a
Kruskall-Wallis test for significant differences. A post hoc Dunn test adjusted for multiple comparisons
performed with the Benjamini-Hochberg method was used to compare pairwise significance data
corresponding to microbiome and metabolome beta-diversity between individuals.

To determine whether the levels of microbiome and metabolome beta-diversity differed between
disease states, all samples from each subject were compared to each other within each disease state in
a pairwise manner using the weighted UniFrac distance (fixed effect). These comparisons were limited,
however, to samples collected within 21 days of each other, to minimize the large variations that might
have occurred through time and to normalize the time across disease state classes (i.e., not to compare
exacerbations or stable samples collected months apart). These UniFrac distance values were then
compared using an LME model with subject source as a random effect. The post hoc pairwise compar-
isons across disease states were then tested with a Tukey’s test on the mixed model using the
Simultaneous Inference of General Parametric Models (multcomp) package in R. Alpha-diversity changes
(Shannon index) and the log ratio of anaerobes to pathogens across different disease states were also
tested with the same LME method. Changes in total bacterial load in the three disease states were tested
with the same LME model.

For longitudinal comparisons of changes in the microbiome and metabolome with time through
CFPE development and treatment, LME models were used with subjects set as random effects to account
for the different sample numbers from the six subjects. All models were run with the lmer4 package in
R statistical software. Statistical significance was computed using Satterthwaite’s degrees of freedom
method from the lmerTest package in R. The linear trend in Shannon diversity (fixed effect) and the log
ratio of the relative abundance of anaerobes compared to pathogens (fixed effect) were modeled using
this method. For further support, the trend in Shannon diversity through time during CFPE treatment was
also modeled and tested with mixed-effects models with linear splines by the use of lme in the nlme R
packages. The temporal trajectories were assessed with a linear spline (or broken stick) model and then
tested using “Eigen” and S4 (lme4) to determine whether there was an effect of subject status on the
Shannon diversity (fixed effects). Subjects and days relative to CFPE over time were also considered
random effects in this model. The same linear mixed-model approach was used to test the correlation
between the abundance of a maintenance antibiotic from the metabolomic data and Shannon diversity
from the microbiome data in the same samples.

A random forests classification model was used to identify metabolites that separated the stable,
CFPE, and treatment groups. This model was run using the randomForest package in R with 5,000 trees
and 59 variables tried at each split and with stratification due to differential sample numbers in each
disease class.

Microbe-metabolite cooccurrence probabilities were calculated using MMvec, a neural network
approach trained to predict metabolite abundances given the presence of a single microbe (29). This
model was trained using three principal axes with a batch size of 10,000 and 10,000 epochs. MMvec
performs cross-validation by leaving out samples and evaluating how well the metabolites can be
predicted solely from the microbe abundances in the hold-out samples. The cross-validation error values
converged, suggesting little overfitting. We first preprocessed the data by removing features/ASVs that
appeared in fewer than 10 samples. Five samples were selected for hold-out testing, where the model
predicted the metabolite abundances from the microbe abundances in these samples.
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Data accessibility. The microbiome data were deposited in the Qiita (38) database as project
number 11400, and the second data set was deposited under accession no. 11433. The data are also
publicly available at the European Bioinformatics Institute under accession no. ERP119164.
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