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Abstract 

Background:  Mast cells can reshape the tumour immune microenvironment and greatly affect tumour occur-
rence and development. However, mast cell gene prognostic and predictive value in head and neck squamous cell 
carcinoma (HNSCC) remains unclear. This study was conducted to identify and establish a prognostic mast cell gene 
signature (MCS) for assessing the prognosis and immunotherapy response of patients with HNSCC.

Methods:  Mast cell marker genes in HNSCC were identified using single-cell RNA sequencing analysis. A dataset 
from The Cancer Genome Atlas was divided into a training cohort to construct the MCS model and a testing cohort 
to validate the model. Fluorescence in-situ hybridisation was used to evaluate the MCS model gene expression in 
tissue sections from patients with HNSCC who had been treated with programmed cell death-1 inhibitors and further 
validate the MCS.

Results:  A prognostic MCS comprising nine genes (KIT, RAB32, CATSPER1, SMYD3, LINC00996, SOCS1, AP2M1, LAT, and 
HSP90B1) was generated by comprehensively analysing clinical features and 47 mast cell-related genes. The MCS 
effectively distinguished survival outcomes across the training, testing, and entire cohorts as an independent prog-
nostic factor. Furthermore, we identified patients with favourable immune cell infiltration status and immunotherapy 
responses. Fluorescence in-situ hybridisation supported the MCS immunotherapy response of patients with HNSCC 
prediction, showing increased high-risk gene expression and reduced low-risk gene expression in immunotherapy-
insensitive patients.

Conclusions:  Our MCS provides insight into the roles of mast cells in HNSCC prognosis and may have applications 
as an immunotherapy response predictive indicator in patients with HNSCC and a reference for immunotherapy 
decision-making.

Keywords:  Single-cell RNA sequencing, Head and neck squamous cell carcinoma, Tumour microenvironment, 
Immune infiltration, Risk score, Immunotherapy
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Background
Tumour cells, blood vessels, immune cells, extracellular 
matrix, stromal cells, fibroblasts, pericytes, adipocytes, 
and various signalling factors function together to shape 
the tumour microenvironment (TME) [1]. Tumour cells 

can communicate with other types of cells in the TME 
[2]. As the major components of the TME, tumour-infil-
trating immune cells exhibit cross talk with tumour cells 
to promote or suppress tumour growth, invasion, and 
metastasis [3]. Mast cells (MCs) are early and persistent 
tumour-infiltrating immune cells localised at the margins 
of tumours, most commonly around the blood vessels [4, 
5]. Although most previous studies of MCs have focused 
on allergies, their ability to mediate tumour development 
and angiogenesis has been increasingly recognised [4]. 
Indeed, several studies have reported that MCs play a 
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multifaceted role in modulating various events within the 
tumour [5]. MC infiltration within the TME is ubiquitous 
across various human cancers, and their accumulation 
has been associated with both pro- and antitumourigenic 
properties [6]. Thus, MCs are critical components of the 
TME and affect tumour prognosis, revealing their poten-
tial as therapeutic targets for cancer immunotherapy [6].

Head and neck squamous cell carcinoma (HNSCC) 
is the sixth most prevalent malignant tumour world-
wide and primarily originates in the upper respiratory 
and digestive tracts, most commonly in the oral cavity, 
oropharynx, larynx, and hypopharynx, with an annual 
incidence of 900,000 cases and associated mortality of 
450,000 deaths each year [7, 8]. Molecular changes in the 
parenchyma and complex, dynamic TME contribute to 
the wide heterogeneity of HNSCC, leading to differences 
in the growth rate, invasiveness, drug sensitivity, and 
prognosis among HNSCC tumours and thereby compli-
cating treatment [9, 10]. Immune checkpoint inhibitor 
(ICI) therapy has recently gained attention as a promis-
ing therapeutic approach for HNSCC [11]. However, the 
therapeutic efficacy of ICI varies greatly among patients. 
For example, the response rate to programmed cell 
death-1 (PD-1)/PD-1 ligand (PD-L1) inhibitors for recur-
rent or metastatic HNSCC was only 13.3–17.9% in previ-
ous clinical trials [12, 13]. Differences between tumours 
determine the appropriate treatment modality; thus, 
characterising tumours is essential for providing precise 
treatment and improving the prognosis of patients with 
HNSCC. Precise population screening is an important 
strategy for improving the therapeutic efficacy of ICIs, 
which requires identification of more accurate molecular 
biomarkers to evaluate the tumour immune status, pre-
dict the treatment response, and perform risk stratifica-
tion. Compared with normal tissues, the TME in HNSCC 
contains more MCs [14]. However, the role of MCs in the 
TME is complex and poorly understood. Some studies 
have found that the increased density of MCs in HNSCC 
is significantly associated with a reduced disease recur-
rence, and that small numbers of MCs may indicate the 
need for adjuvant therapy [15]. Alternatively, contrary 
findings suggest that increased mast cell density is closely 
associated with HNSCC angiogenesis and lymphatic ves-
sel density, and may contribute to tumour progression 
[16]. Therefore, more sensitive MC-associated biomark-
ers must be identified, although the potential applications 
of MC-specific gene expression signatures have remained 
largely unexplored.

The emergence of single-cell RNA sequencing (scRNA-
seq) technology has enabled analysis of cell types and 
transitions based on gene expression within tumours 
[17]. This technology can reveal the expression pro-
file of single cells, thus identifying rare and previously 

undetected subpopulations within the tissue [18]. There-
fore, scRNA-seq is valuable for studying cell populations 
and subpopulations within the TME. Cillo et al. [19] pre-
viously analysed the status of tumour-infiltrating immune 
cells in untreated HNSCC via scRNA-seq, revealing the 
full immune landscape of HNSCC and providing a refer-
ence dataset for in-depth studies of the roles of immune 
cells in HNSCC and other tumour types.

In the current study, we used this single-cell sequenc-
ing dataset (GSE139324) to comprehensively investi-
gate the expression of MC characteristic genes (MCGs) 
in HNSCC and established an MCG-based prognostic 
marker for HNSCC for predicting the prognosis of both 
conventional and immunotherapy treatment.

Materials and Methods
Data acquisition
The Gene Expression Omnibus database (http://​www.​
ncbi.​nlm.​nih.​gov/​geo/) was used to obtain scRNA-seq 
data from 60,976 intratumoural immune cells from 26 
human primary HNSCC samples (accession number 
GSE139324) [19]. Bulk RNA-seq data for 501 HNSCC 
samples and 44 normal or paraneoplastic samples, as 
well as clinical and follow-up information for patients 
with HNSCC, were obtained by searching The Cancer 
Genome Atlas (TCGA; https://​portal.​gdc.​cancer.​gov/). 
Data from patients with missing survival times or sur-
vival times of fewer than 30 days were excluded from the 
current study because the patients may have died from 
other acute lethal conditions rather than from HNSCC.

Processing of HNSCC scRNA‑seq data and MCG 
identification
In total, 60,976 tumour-infiltrating immune cells from 
HNSCC were screened. The Seurat package in the R 
software (version 4.0.3; The R Project for Statistical 
Computing, Vienna, Austria) was utilised to analyse 
the scRNA-seq data [20]. First, cells with less than 500 
detected genes or with more than 5% mitochondrial 
genes were considered low quality and removed. Cells 
with over 2500 genes were also filtered out to avoid dou-
blets. After log-normalisation of the gene expression 
data, the top 2500 highly variable genes were screened 
using principal component analysis (PCA) to minimise 
the dimensionality of the scRNA-seq dataset [21]. The 
top 30 PCs were selected for dimensionality reduction, 
and major cell clusters were identified using the Find-
Clusters function with a resolution of 0.6; the data were 
visualised using the t-distributed statistical neighbour 
embedding method [22]. Next, cluster-specific genes 
in each cluster were identified using the Findallmarker 
function. The cut-off criteria for marker gene identifica-
tion were a false discovery rate (FDR) < 0.05 and |log2 

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/


Page 3 of 16Cai et al. BMC Cancer          (2022) 22:577 	

fold-change| > 0.4. The “singleR” package was used to 
determine and annotate different cell clusters based on 
the composition of cluster-specific genes, which were 
then validated and corrected using marker genes pro-
vided by the CellMarker database [23, 24]. Finally, 51,127 
cells were clustered into six major immune cell types. In 
TCGA-HNSCC dataset, the “limma” R package was used 
to identify differentially expressed MC cluster marker 
genes in tumour tissues and adjacent nontumour tissues, 
MC cluster marker genes with an FDR < 0.05 and |log2 
fold-change| > 1 were defined as MCGs.

Generation and validation of a prognostic signature based 
on MCGs
The patients were divided into training and test cohorts 
at a 7:3 ratio using the “caret” R package. First, in the 
training cohort, univariate Cox regression analysis of 
overall survival (OS) was performed on MCGs; those 
with a P value < 0.1 were considered to be related to the 
prognosis of HNSCC. Subsequently, to avoid overfitting 
when establishing the prognostic risk model, prognosis-
related MCGs were subjected to LASSO Cox regression 
analysis, and the optimum penalty parameter (λ) value 
was used to generate the MCS [25]. Finally, the normal-
ised expression level of each gene (genei) and its cor-
responding regression coefficients (Expi) were used to 
compute each patient’s risk score. The risk score was cal-
culated using Eq. 1:

Patients with HNSCC were divided into high- and low-
risk groups based on median risk score values. Next, the 
Kaplan–Meier method was used to compare OS between 
high- and low-risk groups, and statistical differences were 
tested using log-rank tests. Univariate and multifactorial 
Cox regression analyses were performed to determine 
the prognostic value of MCS and patient clinicopatholog-
ical variables. Furthermore, the time-dependent receiver 
operating characteristic (ROC) curves and area under the 
curve (AUC) values were calculated to validate the pre-
dictive accuracy of MCS and each clinical characteristic. 
To determine whether MCS could robustly differentiate 
patients, PCA was performed on patients according to 
the expression of MCS genes. The R packages used in the 
above steps included “stats,” “survival,” “survminer,” and 
“survROC.”

Functional enrichment and molecular analyses 
between risk groups
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) analyses of differentially expressed 
genes (DEGs, cut-off values: FDR < 0.05 and |log2 

(1)Risk score =
∑n

i=1
Coef (genei) ∗ Expi

fold-change| > 1) between the low- and high-risk groups 
were performed using the “clusterProfiler” R package to 
determine the biological functions and pathways associ-
ated with the risk score [26].

Gene set enrichment analysis (GSEA) was used to iden-
tify subtle differences in each enriched KEGG pathway in 
the high- and low-risk groups [27].

Immune cell infiltration and immune‑related pathway 
analyses
Single-sample GSEA (ssGSEA) was used to estimate the 
level of immune cell infiltration and immune-related 
pathway activity among different risk groups [28].

Roles of MCS in predicting immunotherapeutic benefits
We used the “limma” and “ggpubr” R packages to iden-
tify the relationships between the risk score and ICI 
response-related gene expression to predict which 
patient group may benefit from immunotherapy.

Because the immunophenoscore (IPS) is a superior 
predictor of the response to anti-cytotoxic T-lymphocyte 
antigen (CTLA)-4 and anti-PD-1 regimens, we further 
evaluated the role of MCS in predicting immunother-
apy response by comparing the relationships between 
IPS and different risk groups. For this analysis, IPSs of 
patients with HNSCC were obtained from The Cancer 
Immunome Database (https://​tcia.​at/​home) [29].

Verification of model genes using double‑label 
fluorescence in‑situ hybridisation (FISH)
FISH was performed to detect the expression of model 
genes in tissue sections from patients with HNSCC who 
had been treated with PD-1 inhibitors (treatment effects 
are shown in Table S1). Cy3-labeled (red) probes spe-
cific to high-risk genes and FAM-labelled (green) probes 
specific to low-risk genes were designed and synthesised 
by Servicebio (Wuhan, China). Briefly, prehybridisation 
buffer was added to unstained tissue sections and incu-
bated at 37 °C for 60 min. The first probe hybridisation 
solution was added to each section and incubated over-
night at 42 °C. Excess hybridisation solution was removed 
by washing, and mouse anti-digoxigenin-labelled horse-
radish peroxidase was then added and incubated at 37 °C 
for 40 min. The sections were dried, and freshly prepared 
TSA chromogenic reagent was added to the labelled 
tissue. The sections were incubated with fluorescein-
labelled secondary probe hybridisation solution for 3 h. 
Nuclei were counterstained with 4′,6-diamidino-2-phe-
nylindole (DAPI) in the dark for 8 min. Two correspond-
ing excitation filters were selected and observed under a 
fluorescence microscope to locate and quantify the two 
genes. To better show the expression of high- and low-
risk genes, double-labelled genes were used to select 
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high- and low-risk gene pairs, respectively. The probe 
sequences used in this study are listed in Table S2.

Ethical statement
All study designs and test procedures were performed in 
accordance with the Helsinki Declaration II. The study 
was approved by the ethics board of IEC for Clinical 
Research and Animal Trials of the First Affiliated Hospi-
tal of Sun Yat-sen University (approval no. [2020]220-1). 
All patients in this study signed informed consent and 
agreed to follow up after treatment.

Statistical analysis
All statistical analyses were performed using the R soft-
ware (version 4.0.3). All differences were considered as 
statistically significant when the P value was < 0.05, and 
all tests were two-tailed.

Results
Identification of MC cluster marker genes and MCGs
After quality control (Fig. S1), 51,127 cells were clustered 
into 12 major clusters (Fig.  1A and B). Cluster-specific 
genes were determined. The “singleR” R package and 

CellMarker database were used to annotate the clusters 
into six types of immune cells: T cells (CD3D+), natural 
killer cells (GNLY+), B cells (CD79A+), dendritic cells 
(PLD4+), myeloid cells (LYZ+), and MCs (TPSAB1+; 
Fig.  1C–E). In the TCGA-HNSCC dataset, we analysed 
the differential expression of MC cluster marker genes 
obtained from the GSE139324 dataset in 501 tumour and 
44 adjacent nontumour tissues, and 47 DEGs (MCGs) 
were identified (FDR < 0.01). The heat and volcano maps 
in Figs. S2 and S3 display the transcript levels of these 
genes.

Independent prognostic value of the MCS risk model
Univariate and multivariate Cox regression analyses of 
clinicopathological variables (age, sex, tumour grade, 
and tumour stage) and overall survival revealed that the 
MCS risk score could be used as an independent pre-
dictor of patient prognosis in the training (Fig.  4A, B), 
testing (Fig.  4D, E), and entire TCGA cohorts (Fig.  4G, 
H; P < 0.05). In addition, the multi-indicator ROC curve 
showed that the AUCs in these cohorts were 0.699 
(Fig. 4C), 0.682 (Fig. 4F), and 0.692 (Fig. 4I), respectively, 
suggesting that our prognostic model was superior for 

Fig. 1  Single-cell RNA sequencing analysis to identify marker genes in mast cells. A t-Stochastic neighbour embedding (t-SNE) plots for immune 
cells. B Heat map showing the expression levels of specific marker genes in each cluster. C t-SNE plots displaying representative marker gene 
expression levels for six cell types. D Bubble plots showing the expression of marker genes in six cell types. E t-SNE plots showing cell types among 
51,127 immune cells
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predicting patient outcome relative to the remaining clin-
ical indicators.

Construction and validation of prognostic MCS
HNSCC samples meeting the screening criteria (n = 490) 
were randomly divided into training (n = 346) and test 
(n = 144) cohorts at a ratio of 7:3. Table  1 shows the 
clinical characteristics of patients with HNSCC in the 
different cohorts. In the training cohort, 14 MCGs 
associated with prognosis were identified utilising uni-
variate Cox regression analysis. The 14 candidate 
genes were narrowed down using LASSO Cox regres-
sion, and a nine-gene signature (MCS) was established 

based on the best λ value (Fig. S2). Detailed informa-
tion and coefficients of the nine genes are presented 
in Table  2 and Table S3. The risk score was calculated 
as follows: risk score (MCS) = (− 0.0355 × KIT expres-
sion) + (0.0018 × RAB32 expression) + (0.1094 × CAT-
SPER1 expression) + (0.0233 × SMYD3 expression) + 
 (− 0.4625 × LINC00996 expression) + (− 0.0168 × SOCS1 
expression) + (0.0007 × AP2M1 expression) + (− 0.7264 × 
 LAT expression) + (0.0015 × HSP90B1 expression). The 
MCS of each patient was calculated, and patients in each 
cohort were split into low- and high-risk subgroups based 
on the median risk score (1.1413) obtained from the train-
ing cohort.

Table 1  Clinical parameters of HNSCCs patients in the TCGA databases. Clinical parameters

Clinical Pareameters Training cohort Testing cohort Entire TCGA cohort

n = 346 % n = 144 % n = 490 %

Age
   ≤ 65 224 64.74 97 67.36 321 65.51

  >65 122 35.26 47 32.64 169 34.49

Sex
  Female 96 27.75 34 23.61 130 26.53

  Male 250 72.25 110 76.39 360 73.47

Histologic grade
  G1-2 252 72.83 101 70.14 353 72.04

  G3-4 83 23.99 35 24.31 118 24.08

  GX 11 3.18 5 3.47 16 3.27

  NA 0 0 3 2.08 3 0.61

T classification
  T1-2 129 37.28 45 31.25 174 35.51

  T3-4 179 51.73 82 56.94 261 53.27

  TX 24 6.94 9 6.25 33 6.73

  NA 14 1.05 8 5.6 22 4.49

N classification
  N0 121 34.97 45 31.25 166 33.88

  N+ 160 46.24 71 49.31 231 47.14

  NX 50 14.45 19 13.19 69 14.08

  NA 15 4.34 9 3.25 24 4.90

M classification
  M0 120 34.68 60 41.67 180 36.73

  M1 1 0.29 0 0 1 0.21

  MX 44 12.72 16 11.11 60 12.24

  NA 181 52.31 68 47.22 249 50.82

Stage
  I-II 70 20.23 24 16.67 94 19.18

  III-IV 228 65.90 100 69.44 328 66.94

  NA 48 13.87 20 13.89 68 13.88

Vital status
  Deceased 144 41.62 67 46.53 211 43.06

  Living 202 58.38 77 53.47 279 56.94
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The PCA results indicated that patients in each cohort 
were clearly separated into two clusters based on MCS 
(Fig. 2A, E, I). In the training cohort, higher risk scores 
corresponded to an increased patient mortality rate 
(Fig.  2B). Consistent with this result, the Kaplan–Meier 

curve indicated a significantly shorter OS for patients in 
the high-risk group compared with those in the low-risk 
group (Fig. 2C; P < 0.001). The sensitivity and specificity 
of the MCS prognostic model were evaluated using ROC 
analysis, and the AUC values for the 3-, 4-, and 5-year OS 

Table 2  List of the nine Mast cell signature genes of the MCS in HNSCC

ENSG ID Symbol Location Expression status Coefficient

ENSG00000157404 KIT Chr4: 54657918-54,740,715 Down −0.0355

ENSG00000118508 RAB32 Chr6: 146543833-146,554,953 Up 0.0018

ENSG00000175294 CATSPER1 Chr11: 65784223-65,793,950 Up 0.1094

ENSG00000185420 SMYD3 Chr1: 245749342-246,507,312 Up 0.0233

ENSG00000242258 LINC00996 Chr7: 150130742-150,145,228 Up − 0.4625

ENSG00000185338 SOCS1 Chr16: 11348274-11,350,039 Up − 0.0168

ENSG00000161203 AP2M1 Chr3: 184174689-184,184,091 Up 0.0007

ENSG00000213658 LAT Chr16: 28984803-28,990,784 Up −0.7264

ENSG00000166598 HSP90B1 Chr12: 103930107-103,953,931 Up 0.0015

Fig. 2  Prognostic analysis of the mast cell gene signature (MCS) risk score. PCA plot (A, E, I); risk score analysis (B, F, J); Kaplan–Meier curve survival 
analysis (C, G, K); time-receiver operating characteristic curve analysis (D, H, L) in the training, testing, and entire “The Cancer Genome Atlas” 
cohorts, respectively
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were 0.701, 0.664, and 0.658, respectively (Fig. 2D). The 
testing and entire TCGA cohorts showed similar results 
as the training cohort. The mortality rate of patients 
increased with the risk score (Fig.  2F, J), and high-risk 
patients showed a shorter OS (Fig.  2G, K). In addition, 
the 3-, 4-, and 5-year OS AUC values were all greater 
than 0.65 (Fig. 2H, L). These results support the reliability 
of the MCS prognostic model.

To determine the prognostic potential of the MCS 
model in the clinical setting, patients were grouped 
according to clinicopathological variables (age, sex, T 
stage, N stage, stage, and grade). For patients of differ-
ent ages (≤65 years old [young group] versus > 65 years 
old [old group]), sexes, T stages, and grade groups and 
those in the N1-3 group and stage III–IV group, the OS 
rates of patients rated as high-risk by MCS were sig-
nificantly reduced (all P < 0.05). However, for patients 
with N0 and stage I/II disease, no significant differences 
were observed, possibly because of the small sample size 
(Fig.  3). In the testing and entire TCGA cohort, after 
grouping by clinicopathological variables, the survival 

results following MCS-based risk stratification were sim-
ilar to those in the training group (Fig. S4).

Functional analyses and molecular characteristics 
of different MCS risk groups
As shown in Fig.  5, the DEGs extracted by the high- 
and low-risk groups in the entire TCGA cohort were 
used to perform GO enrichment and KEGG pathway 
analyses. As expected, the DEGs were associated with 
the immune response and cell-mediated immunity, 
indicating that MCs induced inflammatory responses 
within the TME. The cytokine-cytokine receptor inter-
action pathway was the most significantly enriched 
KEGG pathway, whereas other DEGs were predomi-
nantly enriched in cell adhesion molecules (CAMs) 
and chemokine signalling, T cell receptor signalling, 
Janus kinase (JAK)/signal transducer and activator of 
transcription (STAT) signalling, and multiple T-cell dif-
ferentiation pathways. The GO and KEGG enrichment 
results indicated that MCs could regulate the composi-
tion of and immune response within the TME. Similar 

Fig. 3  Prognostic value of the mast cell gene signature (MCS) risk score in the training cohort classified based on clinicopathological variables. 
Survival curve between high- and low-risk groups stratified by ages (A, B); sex (C, D); T stage (E, F); N stage (G, H); stage (I, J); and grade (K, L)
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GO and KEGG enrichment results were observed in the 
training and testing cohorts (Fig. S5).

GSEA revealed 15 and 66 KEGG pathways significantly 
active in the high- and low-risk groups, respectively 
(FDR < 0.25 and nominal P < 0.05), and the top six and ten 
pathways with the highest normalised enrichment score 
in the high- and low-risk groups were chosen for visuali-
sation analysis (Table 3). The high-risk group had higher 
enrichment levels of amino sugar and nucleotide sugar 
metabolism, aminoacyl-tRNA biosynthesis, and arginine 
and proline metabolism (Fig. 5C). In the low-risk group, 
the alpha-linolenic acid and arachidonic acid metabolism 
pathways were significantly enriched (Fig.  5D). Notably, 
CAMs, natural killer cell-mediated cytotoxicity, B cells, 
and T-cell receptor signalling pathways were obviously 

enriched in the low-risk group but attenuated in the 
high-risk group (Fig. 5D).

Differences in immune cell infiltration and pathways 
between subgroups
Functional analyses revealed that the MCS was related to 
antitumour immunity. We further analysed the immune 
cells and immune-related pathways among different risk 
groups utilising ssGSEA and found that the high-risk 
group showed significantly less infiltration of all immune 
cells compared with the low-risk group (macrophages, 
P < 0.05; all other immune cells, P < 0.001; Fig.  5E). 
Accordingly, all 13 immune pathways exhibited signifi-
cantly lower activity in the high-risk group than in the 
low-risk group (all P < 0.001; Fig. 5F). Assessment of the 

Fig. 4  Predictive effects of the mast cell gene signature (MCS) risk score and clinicopathological variables on the prognosis of overall survival of 
patients with head and neck squamous cell carcinoma. Univariate and multivariate Cox regression analyses between clinicopathological variables 
(including the MCS risk score) and overall survival of patients in the training (A, B), testing (D, E), and the entire “The Cancer Genome Atlas” (G, 
H) cohorts; green and red squares represent univariate and multivariate analysis, respectively. Comparison of area under the receiver operating 
characteristic curve between clinicopathological variables and MCS risk score in the training, testing, and the entire “The Cancer Genome Atlas” 
cohorts (C, F, I, respectively)
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immune status in the testing and entire TCGA cohorts 
showed similar results (Fig. S6).

Role of MCS in predicting immunotherapeutic benefits
KEGG pathway analysis indicated that PD-L1 expression 
and PD-1 checkpoint pathways in cancer were enriched 
in DEGs. Together with the previous analyses indicating 
that high- and low-risk patients had significant differ-
ences in immune cell infiltration, we examined whether 
the MCS was associated with ICI-related biomarker 
expression and could be used to predict immunother-
apy benefits. In the training TCGA cohort, the high-
risk group was positively correlated with low expression 
of CD274 (PD-L1; P < 0.001, Fig.  6A), LAG3 (P < 0.001, 
Fig.  6B), CTLA4 (P < 0.001, Fig.  6C), TIGIT (P < 0.001, 
Fig. 6D), and IDO1 (P < 0.001, Fig. 6E). The expression of 
these ICI-related marker genes decreased with increasing 
MCS risk scores (Fig. 6F–J).

As shown in Fig. 6K–L, patients with HNSCC in the 
training cohort could be divided into four types accord-
ing to the expression of CTLA-4 and PD-1. In the 
CTLA-4−PD-1−, CTLA-4−PD-1+, and CTLA-4+PD-1+ 
groups, the IPS of low-risk patients was significantly 
higher than that of high-risk patients. A higher IPS was 
positively correlated with a better response to anti-
CTLA-4 and anti-PD-1 treatment [29]. These results 
collectively suggested that the MCS could predict 
the immunotherapy response, with patients rated as 

low-risk by the MCS more likely to benefit from immu-
notherapy. The testing and entire TCGA cohort showed 
similar results (Fig. S7).

Relative expression of MCS in the two groups of patients 
with HNSCC
Next, we used FISH to assess the expression patterns 
of nine model genes in tissue sections from HNSCC 
patients treated with PD-1 inhibitors. Representative 
images were obtained from four patients, two from the 
treatment-insensitive group and two from the treatment-
sensitive group. The green fluorescent signal intensity 
was generally stronger in the treatment-sensitive group 
than in the treatment-insensitive group. Further analy-
sis using Image J showed that the green fluorescence 
signal intensity of SOCS1, KIT, and LINC00996 in the 
treatment-sensitive group significantly differed from that 
of the treatment-insensitive group (Fig.  7A-F). In addi-
tion, the red fluorescence signal intensity of RAB32 and 
SMYD3 in the high-risk group was significantly higher 
than that of these genes in the treatment-sensitive group 
(Fig. 7G-J). The fluorescence signal intensities of AP2M1, 
CATSPER1, HSP90B1, and LAT, did not significantly dif-
fer between the two groups (Fig. 7A-H). The above results 
further verified the accuracy of the MCS risk model, that 
is, high-risk genes were highly expressed in the immu-
notherapy-insensitive group, while low-risk genes were 
highly expressed in the immunotherapy-sensitive group.

Fig. 5  Functional and molecular characteristics analysis of the high- and low-risk groups in the entire “The Cancer Genome Atlas” cohort. A Bubble 
graph for Gene Ontology enrichment (a larger bubble indicates more enriched genes, and an increasing depth of red indicates greater differences; 
q-value: adjusted P value; GeneRatio: number of DEGs annotated to the GO or KEGG pathway/total number of DEGs). B Bubble graph for the 
Kyoto Encyclopedia of Genes and Genomes pathways. C Multiple gene set enrichment analysis showing the enriched pathways of the high-risk 
and (D) low-risk subgroups. E Boxplots show the comparison of single-set gene set enrichment analysis scores for 16 immune cell types and F 13 
immune-related functions. CCR, cytokine-cytokine receptor. Adjusted P values are shown as: *P < 0.05; ***P < 0.001
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Discussion
The degree of immune cell infiltration and activation 
within the TME divides tumours into two types: immu-
nologically hot (inflamed) and cold (noninflamed) [30, 
31]. Patients with the latter tumour type have poorer 
prognoses and benefit less from immunotherapy [32]. 
Therefore, analysing the abundance and types of tumour-
infiltrating immune cells is essential for improving patient 
stratification and treatment outcome prediction. HNSCC 
malignancies tend to develop into immunologically cold 
tumours, compromising the response to immunotherapy 
[10, 33]. An increasing number of studies have reported 
that MCs play a protumourigenic role by stimulating 
tumour cell growth [34], inducing an immunosuppressive 

TME [35], promoting angiogenesis and lymphangiogen-
esis [36], and facilitating invasion and metastasis [37]. 
High MC numbers are associated with the poor clinical 
prognosis of various solid tumours, including colorectal 
[38], gastric [39], and pancreatic [40] cancers. However, 
the roles of MCs in these tumours remain controversial. 
The study of Kaesler et al. [41] pointed out that MCs is 
a biomarker for improving the survival rate of mela-
noma patients and believed that targeted activation of 
MCs can effectively promote T cell-mediated tumour 
cell clearance. Similarly, the study by Attranmadal et  al. 
[15] showed that an increase in MCs density was signifi-
cantly associated with a reduction in HNSCC recurrence, 
and further suggested that a small number of MCs might 

Fig. 6  Estimation of the roles of the mast cell gene signature (MCS) in predicting immune checkpoint gene expression and immunotherapeutic 
response. Expression of immune checkpoint genes in different risk groups of the training cohort, violin plot of CD274 (PD-L1) (A), LAG3 (B), CTLA4 
(C), TIGIT (D), and IDO1 (E) expression in the low- and high-risk groups. ***P < 0.001. Correlation between the risk scores and immune checkpoint 
gene expression, scatter plot of CD274 (PD-L1) (F), LAG3 (G), CTLA4 (H), TIGIT (I), and IDO1 (J) expression with risk scores. Association between the 
immunophenoscore and MCS in patients with head and neck squamous cell carcinoma (HNSCC) based on The Cancer Immunome Database 
CTLA-4−PD-1− (K), CTLA-4−PD-1+ (L), CTLA-4+PD-1− (M), CTLA-4+PD-1+ (L)

(See figure on next page.)
Fig. 7  (A, C, E, G, I) Fluorescence in-situ hybridisation (FISH) assay was conducted to determine the expression of model genes in the low-risk and 
high-risk groups. Nuclei are stained blue (DAPI), and AP2M1, CATSPER1, HSP90B1, RAB32, SMYD3 are stained red. SOCS1, KIT, LINC00996, and LAT are 
stained green. Scale bar, 50 μm. (B, D, F, H, J) ImageJ was used to measure the mean fluorescence intensity of each gene staining in the images, and 
the t-test was used to analyse the intergroup significance
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Fig. 7  (See legend on previous page.)
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suggest the need for additional adjuvant therapy. In these 
previous studies, MC abundance was determined by 
observing tumour slices. Such approaches are limited 
for functionally distinguishing tumour-promoting and 
tumour-antagonizing MCs. To date, the roles of MCs in 
HNSCC remain unclear. To comprehensively analyze the 
expression patterns and prognostic significance of MCGs 
for HNSCC, we analyzed scRNA-seq and constructed an 
MCS risk signature reflecting the immune infiltration of 
HNSCC.

We constructed a novel prognostic signature inte-
grating nine MCGs and validated its prognostic value 
using data from patients with HNSCC. According to 
our MCS model, high expression levels of RAB32, CAT-
SPER1, SMYD3, AP2M1, and HSP90B1 were associated 
with poor prognosis, whereas high expression levels 
of KIT, LINC00996, SOCS1, and LAT were associated 
with improved prognosis. RAB32 is a member of the 
Ras proto-oncogene family that encodes an A-kinase 
anchoring protein [42]. A recent study demonstrated 
that RAB32 is a mechanistic target of the rapamycin 
complex 1 signaling pathway, and elimination of RAB32 
has been shown to decrease tumour cell viability and 
proliferation [43]. SMYD3 promotes tumour cell migra-
tion and invasion by strengthening epithelial-mesen-
chymal cells and enhancing telomerase activity during 
the cell cycle [44–47]. Furthermore, SMYD3 expression 
is a key risk factor for esophageal [47], breast [46], blad-
der [48], and other [49] cancers. A recent study indi-
cated that AP2M1 was overexpressed in adenoid cystic 

and mucoepidermoid carcinomas and could serve as 
a prognostic marker of hepatocellular carcinoma [50, 
51]. Increased HSP90B1 expression has been shown to 
be an indicator of poor prognosis in patients with lung 
cancer [52], chronic lymphocytic leukemia [53], bladder 
cancer [54], and liver cancer [55]. Our findings, which 
are consistent with previous research, indicated that 
RAB32, SMYD3, AP2M1, and HSP90B1 were associ-
ated with cancer progression. Few studies have focused 
on the roles of CATSPER1 in tumours; in this study, we 
found that CATSPER1 was related to HNSCC progno-
sis. Thus, further research on the molecular functions 
of CATSPER1 in tumours is warranted. Regarding genes 
whose expression was associated with more favora-
ble prognosis, KIT encodes a cell surface receptor for 
stem cell factors of the type III receptor tyrosine kinase 
family, with MCs among the main cell types expressing 
KIT [56]. KIT activation is important for normal cell 
development, growth, and differentiation [57]. How-
ever, gain-of-function mutations in the KIT gene can 
promote tumour formation and progression [58]. The 
molecular mechanism of LINC00996 in tumours is 
unclear. Through data mining and bioinformatics, Ge 
et al. [59] suggested that decreased LINC00996 expres-
sion is related to the occurrence and metastasis of colo-
rectal cancer. In addition, they suggested that JAK/
STAT, nuclear factor-κB, hypoxia-inducible factor-1, 
Toll-like receptor, and phosphatidylinositol 3-kinase/
AKT signaling pathways are key pathways through 
which LINC00996 suppresses tumourigenesis and 

Table 3  The ten representative KEGG pathways in high- and low-risk groups

Names Size ES NES NOM P FDR

High-risk group

  KEGG_Protein export 24 0.72 1.94 0.002 0.097

  KEGG_Aminoacyl-tRNA biosynthesis 41 0.66 1.88 0.006 0.103

  KEGG_RNA polymerase 28 0.64 1.84 0.004 0.092

  KEGG_Pentose phosphate pathway 27 0.52 1.61 0.037 0.239

  KEGG_Amino sugar and nucleotide sugar metabolism 43 0.46 1.58 0.032 0.224

  KEGG_Arginine and proline metabolism 54 0.42 1.53 0.038 0.211

Low-risk group

  KEGG_T cell receptor signaling pathway 108 −0.7 −2.3 0 0

  KEGG_Cytokine-cytokine receptor interaction 264 −0.63 −2.26 0 0

  KEGG_Chemokine signaling pathway 188 −0.63 −2.23 0 0

  KEGG_Natural killer cell mediated cytotoxicity 132 −0.63 −2.19 0 0

  KEGG_Cell adhesion molecules_CAMs 131 −0.68 −2.19 0 0

  KEGG_Jak-STAT signaling pathway 155 −0.6 −2.16 0 0.001

  KEGG_B cell receptor signaling pathway 75 −0.65 −2.13 0 0.001

  KEGG_Antigen processing and presentation 81 −0.68 −2.05 0 0.001

  KEGG_Alpha-Linolenic acid metabolism 19 −0.7 −1.92 0 0.008

  KEGG_Arachidonic acid metabolism 58 −0.55 −1.91 0 0.009
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metastasis. Thus, LINC00996 should be further studied 
in the context of cancer. SOCS1 is the main regulator 
of various cytokines involved in the immune response, 
particularly the interferon-γ signaling pathway. Recent 
findings have suggested that SOCS1 is a tumour sup-
pressor, and its downregulation has been implicated in 
cancer progression [60]. Furthermore, SOCS1 is silent 
in 50% of liver cancer cases [61], 44% of gastric can-
cer cases [62], 75% of melanoma cases [63], and 40% of 
hepatoblastoma primary tumours [64]. Linker for acti-
vation of T cells (LAT) is the nucleation site of the mul-
tiprotein signaling complex, which is essential for the 
function and differentiation of T cells; thus, its associa-
tion with tumour prognosis is expected. Our current 
findings and those of previous studies suggest that the 
MCS may have applications in prognosis prediction for 
patients with HNSCC based on MCGs.

DEGs between the high- and low-risk groups were 
evaluated to determine the biological functions and 
pathways associated with the risk score. The DEGs were 
predominantly related to the immunological response 
and immune cell-mediated immunity, CAMs, and mul-
tiple T-cell differentiation pathways. Furthermore, we 
conducted GSEA to detect subtle expression changes 
between MCS groups. Unlike traditional enrichment 
analysis based on hypergeometric distribution, GSEA 
does not depend on individual gene expression changes 
but rather detects changes in the expression of gene sets. 
GSEA results revealed significant differences in immune 
function-related pathways between MCS-based risk 
groups. Specifically, compared with the low-risk group, 
the high-risk group was missing CAMs, natural killer 
cell-mediated cytotoxicity, as well as B- and T-cell recep-
tor signaling pathways. Hence, significant differences in 
the immune environment were observed among the dif-
ferent MCS-based risk populations; patients in the high-
risk group showed a significantly suppressed tumour 
immune microenvironment, and a high-risk score may be 
associated with attenuated natural killer cell cytotoxicity 
as well as B-cell and T-cell signaling.

ssGSEA further validated this idea. The results of 
ssGSEA showed that the infiltration level of 16 immune 
cells and the activity of 13 immune pathways in the high-
risk group were significantly lower than those in the 
low-risk group. Notably, MCs were significantly less infil-
trated in the high-risk group than in the low-risk group 
(p < 0.001), this finding is consistent with the study of 
the prognostic role of MCs in HNSCC by Attranmadal 
et  al. [15], that higher MC infiltration was associated 
with better prognosis. It is worth mentioning that MCs 
have complex interactions with a variety of immune 
cells. Studies have shown that activated MCs can recruit 
tumour-infiltrating effector T cells and natural killer cells 

by secreting CXCL10 and CXCL8, respectively [41, 65]; 
in addition, mast cells can also greatly alter B cell genera-
tion, development, and function by secreting cytokines 
such as IL-6 [66]. This partly explains why the low-risk 
group with higher mast cell infiltration is enriched for 
natural killer cell-mediated cytotoxicity, as well as B- and 
T-cell receptor signaling pathways. Collectively, these 
findings indicate that a high MCS score is related to an 
immunosuppressive status and MCS may has the poten-
tial to predict the tumour immune microenvironment of 
HNSCC patients.

Recently, tumour immunotherapy has led to new 
opportunities for suppressing tumour progression, 
recurrence, and metastasis. Notably, immunotherapy 
is largely ineffective in immunologically cold tumours 
[67], including HNSCC tumours, which often acquire 
this characteristic. Thus, immunotherapy efficacy is 
compromised in cold HNSCC tumours with an objec-
tive response rate of single-agent anti-PD-1/PD-L1 
immunotherapy as low as 13–14% in patients with 
HNSCC who are not screened for immune checkpoint 
expression prior to treatment [12, 68, 69]. Therefore, 
clinicians must consider the tumour immune status 
of patients with HNSCC prior to treatment selection. 
In contrast to cold tumours, hot tumours are charac-
terised by considerable immune cell infiltration, par-
ticularly that of cytotoxic T cells, in addition to high 
expression of immune checkpoint molecules, such as 
PD-1, PD-L1, and LAG3 [30, 67]. The expression of 
these three factors is an important indicator of the 
immunotherapy response [70–72]. Immunohisto-
chemistry and quantitative immunofluorescence are 
commonly used to detect immune checkpoint expres-
sion; improved methods are needed for this analysis 
[73]. We found that the DEGs were enriched in PD-L1 
expression and PD-1 checkpoint pathways in cancer, 
suggesting that MCS could predict PD-L1 expression 
and thus immunotherapy responsiveness. Therefore, 
using the MCS model, we attempted to predict the 
potential benefit of immunotherapy for different risk 
groups. As expected, the expression of PD-L1, LAG3, 
CTLA4, TIGIT, and IDO1 was significantly lower 
in the high-risk group than in the low-risk group. In 
addition, the IPS score was significantly higher in the 
low-risk group than in the high-risk group, which is an 
excellent predictor of the anti-CTLA-4 and anti-PD-1 
response. Taken together with the results of immune 
cell infiltration, patients rated as low risk by MCS will 
benefit more from immunotherapy than those rated 
as high risk by MCS. Interestingly, the low-risk group 
showed a higher mutation frequency in CDKN2A; a 
recent study suggested that CDKN2A/2B mutation is 
related to high PD-1/PD-L1 expression and promotes 
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the efficacy of immunotherapy, which is consistent 
with our findings [74].

Few studies have focused on MC characteristic genes in 
HNSCC, particularly their underlying mechanisms. We 
preliminarily explored the prognostic value of MC char-
acteristic genes, providing a theoretical basis for future 
research. Additionally, our findings indicate that the MCS 
based on nine MCGs can be used to predict the immu-
notherapy response, thus providing information for the 
development of precision medicine approaches. How-
ever, a limitation of the study is that our findings cannot 
be confirmed through external verification. Nevertheless, 
the MCS was validated in multiple HNSCC cohorts. Fur-
thermore, we validated our observations in clinical speci-
mens. Taken together, more prospective data are needed 
to verify its clinical utility and to explore the mechanism 
of action of MCs in tumours.

In summary, we established a risk model based on nine 
MCGs to predict prognosis in patients with HNSCC and 
evaluate immune cell infiltration and the immune func-
tion status. Furthermore, the MCS can be utilised to 
screen patients suitable for immunotherapy and design 
optimal treatment strategies.
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