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Abstract: Coronary microvascular disease (CMD) is a common form of heart disease in post-
menopausal women. It is not due to plaque formation but dysfunction of microvessels that feed the
heart muscle. The majority of the patients do not receive a proper diagnosis, are discharged prema-
turely and must go back to the hospital with persistent symptoms. Because of the lack of diagnostic
biomarkers, in the current study, we focused on identifying novel circulating biomarkers of CMV
(cytomegalovirus) that could potentially be used for developing a diagnostic test. We hypothesized
that plasma metabolite composition is different for postmenopausal women with no heart disease,
CAD (coronary artery disease), or CMD. A total of 70 postmenopausal women, 26 healthy individuals,
23 individuals with CMD and 21 individuals with CAD were recruited. Their full health screening
and tests were completed. Basic cardiac examination, including detailed clinical history, additional
disease and prescribed drugs, were noted. Electrocardiograph, transthoracic echocardiography and
laboratory analysis were also obtained. Additionally, we performed full metabolite profiling of
plasma samples from these individuals using gas chromatography-mass spectrometry (GC–MS)
analysis, identified and classified circulating biomarkers using machine learning approaches. Stearic
acid and ornithine levels were significantly higher in postmenopausal women with CMD. In contrast,
valine levels were higher for women with CAD. Our research identified potential circulating plasma
biomarkers of this debilitating heart disease in postmenopausal women, which will have a clinical
impact on diagnostic test design in the future.

Keywords: metabolic-circulating biomarker; coronary microvascular dysfunction; post-
menopausal women
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1. Introduction

Cardiovascular disease (CVD) is a major public health concern. It is the main cause
of morbidity among women in the US [1]. Despite similar obesity prevalence in men and
women, the risk of developing cardiovascular disease is greater in obese women (64%)
than in obese men (46%) [2]. Additionally, women have a higher prevalence of coronary
microvascular disease (CMD). In contrast, men tend to have atheroma and epicardial
endothelial dysfunction or coronary artery disease [3]. The majority of female patients
having CMD are postmenopausal women, and hormone-replacement therapies (HRT)
decrease CMD risk up to 30% in this population, suggesting a role for estrogens in the
development and progression of CMD [4].

CMD does not involve plaque formation, which blocks blood flow in the main coro-
nary arteries. Instead, damage to the inner walls of blood vessels manifests via spasms and
decreases blood flow to the heart muscle [5]. Patients complain about chest pain, shortness
of breath, fatigue, and sleep problems. The current diagnosis strategy involves invasive and
expansive methods, such as CFR, IMR or PET examination, which rules out the presence
of CAD. Since there are no standard and specific diagnostic tests for CMD, patients do
not receive a positive diagnosis when tested for coronary artery disease. Therefore, there
is a clinical need for novel ways to diagnose, treat and prevent CMD in postmenopausal
women.

Our objective was to identify novel markers of CMD in postmenopausal women. In
this current study, our hypothesis is that postmenopausal women with CMD will have
a distinct plasma metabolite profile compared to healthy women and women with CAD.
Biomarkers we identified can be utilized in the clinic to diagnose women with CMD
and significantly reduce future hospitalizations, cost and time for healthcare for diverse
communities.

2. Results

Participants of the study were postmenopausal women with similar age and body
mass indexes. Patients with angina or angina equivalent underwent nonischemic testing,
in particular myocardial perfusion scintigraphy. Those who had severe epicardial coronary
artery disease were included in CAD groups. Those who had normal or noncritical coronary
stenosis with ischemia on myocardial perfusion imaging were included in the CMD group.
Baseline characteristics are provided in Table 1. There was no statistically significant
difference between the group averages of LDL, triglyceride, AST, ALT, urea, creatine, Na,
K, glucose, Hb, WBC, PLT and MCV values. There was a significant difference between
the values of total cholesterol (p-value: 0.0072) and HDL (p-value: 0.0039). The treatment
protocols of the patients were compatible with existing co-morbid diseases and cardiac risk
factors. Transthoracic echocardiography (systolic dysfunction, diastolic dysfunction, valve
disorder, lv hypertrophy, pulmonary hypertension) and coronary angiography results of
the patients are presented in Table 2. In the CAD group, 4 patients had more than one vessel
atherosclerotic heart disease, 9 patients had single-vessel stents, 3 patients had 2 vessel
stents, 3 patients had 3 vessel stents. 1 patient had undergone a coronary artery bypass
graft operation. Coronary angiography of 22 patients in the CMD group was normal, and 1
patient had a single-vessel noncritical plaque.
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Table 1. Patient characteristics. CMD = coronary microvascular disease, CAD = coronary artery disease, BMI = body mass
index, COPD = chronic obstructive pulmonary disease, ACE-ARB diuretics = angiotensin-converting enzyme inhibitor, and
angiotensin receptor blocker diuretics, CA = calcium channel blockers, HDL = high-density lipoprotein, LDL = low-density
lipoprotein, AST = aspartate aminotransferase, ALT = alanine aminotransferase, Na+ = sodium, K+ = potassium, WBC =
white blood cell, HB = hemoglobin, PLT = platelet, MCV = mean corpuscular volume.

Characteristics Control (n = 26) CMD (n = 23) CAD (n = 21) p Value a

Patient characteristics
Age, mean (SD), Y 62(8) 58 (7) 62 (7) 0.2057

BMI, median (IQR) b 31 (30) 30 (30) 30 (29) 0.8036
Hypertension, no.(%) 17 (65) 8 (34) 11 (52) 0.101

Diabetes, no.(%) 5 (19) 6 (26) 11 (52) 0.0412
Smoking, no.(%) 2 (7) 0 (0) 1 (4) ND

COPD or asthma, no. (%) 2 (7) 4 (17) 3 (14) ND
HL, no. (%) 5 (19) 5 (21) 5 (23) ND

Rheumatology, no. (%) 0 (0) 1 (4) 1 (4) ND
Thyroid, no. (%) 4 (15) 0 (0) 3 (14) ND

Medication
Antithrombotic, no. (%) 6 (23) 14 (60) 20 (95) <0.0001

ACE-ARB diuretics, no. (%) 14 (53) 6 (26) 13 (61) 0.0408
CA channel blockers, no. (%) 8 (30) 3 (13) 6 (28) 0.3035

Beta blocker, no. (%) 4 (15) 6 (26) 7 (33) 0.3507
Antianginal, no. (%) 0 (0) 3 (13) 11 (52) <0.0001

Antihyperlipidemic, no. (%) 4 (15) 10 (43) 12 (57) 0.0097

Blood test results
Total cholesterol, mean (median), mg/dL 237 (234) 213 (202) 192 (185) 0.0072

HDL, mean (median), mg/dL 55 (53) 49 (47) 43 (44) 0.0039
LDL, mean (median), mg/dL 150 (147) 128 (126) 113 (99) 0.0145

Triglyceride, mean (median), mg/dL 162 (146) 172 (141) 179 (151) 0.815
Glucose, mean (median), mg/dL 113 (104) 133 (114) 127 (120) 0.2305

Urea, mean (median), mg/dL 14 (13) 13 (13) 14 (13) 0.5087
Creatinine, mean (median), mg/dL 0.8 (0.8) 0.7 (0.7) 0.7 (0.7) 0.0491

AST, mean (median), U/L 19 (18) 19 (15) 18 (17) 0.7581
ALT, mean (median), U/L 18 (17) 17 (16) 20 (17) 0.5324

Na+, mean (median), meq/L 140 (140) 139 (139) 140 (139) 0.6461
K+, mean (median), meq/L 4.3 (4.3) 4.3 (4.4) 4.4 (4.5) 0.6139

WBC, mean (median), ×109/L 7 (7) 7 (7) 8 (8) 0.3099
HB, mean (median), g/dL 23 (13) 20 (13) 18 (13) 0.8631

PLT, mean (median) ×109/L 283 (270) 275 (254) 307 (303) 0.4216
MCV, mean (median), fL 87 (87) 85 (83) 83 (82) 0.3882

a p value for 3-group comparison using one-way ANOVA multiple comparison and chi-squared analysis, b Calculated as weight in
kilograms divided by height in meters squared.

Table 2. Characteristics of patients with CAD or CMD.

Characteristics Control (n = 26) CMD (n = 23) CAD (n = 21)

Transthoracic
echocardiography

Systolic dysfunction 1 1 0
Diastolic dysfunction 15 11 13

Valve disorder 10 12 8
LV hypertrophy 4 1 2

Pulmonary hypertension 1 1 0
Coronary angiography

Normal 22
Atherosclerotic heart disease 1 4

To identify circulating biomarkers from plasma, we performed whole metabolite
profiling using GC/MS analysis. The original dataset contained 175 metabolites. After data
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preprocessing and feature selection, we ended up with 45 metabolites. Using an unpaired
t-test, we identified high stearic acid and ornithine as an indicator of CMD and valine as
statistically different in the CAD group compared to the control group (Figure 1).
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To further develop a biomarker signature set, we used the RFECV algorithm, which
iteratively computed the cross-validation score each time it eliminated a metabolite feature
column (Figure S1). The classification achieved significantly better scores when more than
10 features were selected. The highest score was obtained when 15 metabolites were chosen
(Figure S2). To test the classification performance of the identified signature, a binary
classification was implemented using the random forest algorithm. The binary labels were
“CMD” and “non-CMD”, which combined both the CAD and control group samples. We
tested the classification performance of stearic acid only, ornithine only, stearic acid and
ornithine together, and the 15 metabolites set. The training and testing were done using
5-fold cross-validation with a fixed random seed. The resulting performance was measured
and visualized with receiver operating curves (ROC) and precision–recall (PR) curves. For
the stearic acid, the mean area under the curve (AUC) was computed to be 0.58 with a
standard deviation of 0.17 (Figure 2A, left panel). The mean F_1 score was computed to
be 0.39 with a standard deviation of 0.13 (Figure 2A, right panel). The mean area under
the curve (AUC) for ornithine was computed to be 0.55 with a standard deviation of 0.17
(Figure 2B, left panel). The mean F_1 score was computed to be 0.39 with a standard
deviation of 0.14 (Figure 2B, right panel). Third, using the metabolite data from both stearic
acid and ornithine, the mean area under the curve (AUC) was computed to be 0.60 with a
standard deviation of 0.10 (Figure 2C, left panel). The mean F_1 score was computed to be
0.40 with a standard deviation of 0.14 (Figure 2C, right panel). Finally, using the metabolite
data from the 15 metabolites selected by RFECV, the mean area under the curve (AUC) was
computed to be 0.63 with a standard deviation of 0.04 (Figure 2D, left panel). The mean F_1
score was computed to be 0.40 with a standard deviation of 0.15 (Figure 2D, right panel).
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3. Discussion

There are no specific diagnostic biomarkers for CMD. Because of the lack of spe-
cific diagnostic tests, many women who go to the emergency room with angina are dis-
charged without a proper diagnosis, only to return to the hospital with more severe cardiac
symptoms. We previously employed machine-learning techniques to identify biomarkers
associated with other conditions, e.g., long-term-estrogen use [6], breast cancer risk [7],
long-term broccoli consumption [8], and early predictors of liver carcinogenesis [9]. Fea-
ture selection and classification-based approaches enabled us to identify the best set of
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biological molecules that indicate health states with high specificity and selectivity. In
the current study, we utilized plasma whole metabolite profiles and machine-learning
algorithms to identify specific biomarkers of CMD. When we used classical statistical
methods, which yielded stearic acid and ornithine as the metabolites that are statistically
significant, they did not perform well to differentiate between CMD and non-CMD patients
with high selectivity and specificity, hence lower mean AUC values. When we included
15 metabolites that were identified by the algorithm, our mean AUC increased, suggesting
nonlinear methods may provide us a better set of biomarkers to develop as a diagnostic
tool. However, plasma metabolites may not be ideal indicators of CMD, and current studies
are underway to identify protein biomarkers, which we found to be better biomarkers for
other pathological conditions before [7,10].

Long-chain acyl-carnitines, such as stearic acid, are formed from carnitine and acyl-
CoAs by carnitine acyltransferases in mitochondria [11,12]. Because long-chain fatty Acids
are the main energy substrates in the skeletal muscles and the heart, these tissues are con-
sidered essential contributors to the long-chain acyl-carnitine pool in plasma. The elevated
levels of plasma acyl-carnitine have been linked to the progression of various diseases, in-
cluding insulin resistance [13]; obesity, impaired glucose tolerance, type 2 diabetes [14–16];
and cardiovascular diseases [17–19]. In a cross-sectional study of 741 Chinese patients
with T2DM, which aimed to estimate if there was an association between acyl-carnitine
metabolites and CVD, investigators measured the fasting plasma levels of 25 acyl-carnitine
metabolites in 288 individuals with CVD. Their analysis showed that some acyl-carnitine’s
were associated with the risk of CVD in T2DM [20]. In another case-cohort study (based
on PREDIMED trial) with 980 individuals (229 cases and 751 non-cases), analysis of 3
acyl-carnitine groups (short-chain, medium-chain, and long-chain) found that increased
short-chain and medium-chain plasma acyl-carnitines are associated with a higher risk of
CVD independent of established CVD risk factors [21]. They suggested using short-chain
acyl-carnitines as a potential biomarker of future stroke risk due to its increased concentra-
tion 3–4 years before the onset of CVD [21]. Consistent with their findings suggesting no
association between stearic acid and CAD, in our study, we found an association between
stearic acid and CMD, but not CAD. Long-chain saturated fatty acids, such as stearic acid
consumed in significant amounts in the diet, can lead to metabolic disorder of glucose and
lipids [22], but also can induce vascular endothelial inflammation, which has the potential
to cause vascular dysfunction [23], ultimately causing diverse cardiovascular diseases.
Some studies have found that consuming a Mediterranean diet could potentially decrease
the cardiovascular risks that saturated fatty acids may yield [24,25].

In CMD vasospasm, vasoconstriction in smaller arteries of the heart is a major problem.
In our study, we found ornithine plasma levels to be significantly higher in postmenopausal
women with CMD. Ornithine is a metabolite, which is part of the pathway for NO pro-
duction and arginine catabolism. Ornithine might be due to the increased activity of
Arginase I enzyme, which is expressed in coronary microvasculature and can compete
with nitric oxide synthase (NOS) for the use of L-arginine as a substrate [26], which results
in the generation of ornithine and urea, instead of NO and L-citrulline. Obesity caused
by a chronic high-fat diet plays a role in vascular endothelial cell dysfunction because
of its low-grade, chronic inflammation [27], especially in the liver, where Arginase I is
upregulated, contributing to changes in arginine metabolism [28]. In many studies, it is
shown that obesity increases the expression of arginase I, which alters the bioavailability of
arginine [29]. Arginine can be hydrolyzed to form urea and ornithine by arginase or can
form NO by nitric oxide synthase. Both pathways compete for arginine [30]. Because of
the increase in Arginase I activity, there is a reduced nitric oxide production, which is a
major regulator of vascular homeostasis produced by endothelial cells, which play a role
in maintaining normal vascular function by modulating vascular tone, inflammation and
homeostasis [31].

CMD is a disease characterized by damage to the walls and inner lining of small
coronary artery blood vessels due to constrictions and spasms of the heart wall. Addition-
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ally, decreased levels of estrogen, seen in postmenopausal women, are strongly correlated
to coronary microvascular disease since estrogen modulates factors that are critical for
the regulation of vascular relaxation. Estrogens improve nitric oxide function, which is a
potent vasodilator [5]. One of the complications of T2DM is progression to cardiovascular
disease (CMD), specifically due to microvascular dysfunction [32]. Arginase is believed to
be an important regulator of NO bioavailability and endothelial function by hydrolyzing
L-carnitine to ornithine and urea [31]. When Arginase activity is increased, it may reduce
the production of NO and impair endothelial function, causing the microvascular disease
to develop. In a prospective intervention study, which included 12 healthy individuals
and 12 subjects with T2DM, plasma ratios of amino acids involved in arginase and NO
synthase activities were determined [33]. It was found that individuals with T2DM had
significantly higher levels of plasma ornithine than control when liquid chromatography-
tandem and mass spectrometry were done. In addition, T2DM patients had higher ratios
of ornithine/citrulline and ornithine/arginine than the control group, indicating increased
arginase activity. This study corroborates our finding, an association between increased
levels of ornithine and CMD in postmenopausal women. Another case–control study
analyzed plasma levels of different endogenous substrates for arginase in 298 patients,
who were divided into 2 groups: Acute coronary syndrome (ACS) group, and stable
angina (SAP) group [34]. Arginine, citrulline, ornithine, and methylated form of arginine c
(SDMA) levels were measured using HPLC-MS/MS. Lower levels of arginine, citrulline
and ornithine were found in both groups, as well as AMI (defined as the ratio of (arginine +
citrulline + ornithine)/(ADMA + SMDA)). They concluded that AMI was an independent
risk factor of acute coronary syndrome [34]. Findings from this study is consistent with
ours, which did not find an association (no significant p value) between ornithine and CAD.

We identified valine, a branched-chain amino acid, to be associated with CAD. Consis-
tent with our findings, in a double-blinded study of 73 subjects, the biochemical profile of
blood plasma in subjects with CAD and normal subjects (by angiography) was analyzed
by high-resolution proton NMR spectroscopy [35]. It was found that high levels of lipids,
alanine, and isoleucine/leucine/valine were observed in CAD subjects when compared to
the control group. Valine, just like other amino acids, such as isoleucine, aspartate, and
glutamate, provides the carbon skeleton for citric acid [36] and may play a role in the
myocardial adaptation and mechanism adopted for restoring the ischemic injury of the
heart [35], which serves as evidence that BBAA metabolism plays a role in cardiometabolic
health [37–39]. In a women’s health study that followed 27,041 healthy women for 18 years,
isoleucine, leucine, and valine were found to be positively correlated with future CVD
events [40]. Overall, our findings are consistent with these studies.

Combined with a western meat-rich diet, obesity can increase the levels of circulating
BCAA (leucine, isoleucine and valine) to the point of causing non-alcoholic fatty liver
disease and other related metabolic disorders by increasing the levels of free fatty acid
(FFA) in plasma and in the liver, but also inhibiting the conversion of FFA into TG, causing
FFA lipotoxicity in the ladder [41]. BCAA also can modulate glucose metabolism. It has
been found that increase plasma concentration of BCAA is associated with the development
of diabetes and insulin resistance [42].

In summary, we identified biologically relevant metabolites of microvessel function to
be significantly different in postmenopausal women with CMD. Although classification
performances of the identified molecules are not ideal, our studies provide proof of princi-
ple that plasma metabolite profiles can be used to develop diagnostic signatures for CMD.
More future studies are underway to analyze inflammatory cytokines and other protein
markers relevant to cardiovascular health. A combination of metabolomics and proteomics
approaches combined with advanced machine learning techniques provides diagnostic
biomarkers to be used in the clinic.
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4. Materials and Methods
4.1. Study Design and Population

Studies are approved by the Izmir Katip Celebi University Interventional Clinical
Studies Institutional Review Board (IRB#80). All research was carried out in compliance
with the Helsinki Declaration. Donors provided broadly written consent for using their
specimens in research. The consent document informed the donor that the donated spec-
imens and medical data would be used for the general purpose of helping to determine
biomarkers of CMD in postmenopausal women.

A total of 70 patients were included in this prospective observational cohort study. 23
of these patients were diagnosed with CMD (group 1), 21 patients were diagnosed with
CAD (group 2), and 26 patients were defined as the control group (group 3). Inclusion
criteria were as follows: having CAD-related chest pain, a positive non-invasive imaging
result, and undergoing a successful coronary angiography with patients’ consent. Exclusion
criteria of the study were: being male or a premenopausal female, having a contraindication
against coronary angiography. Patients who refused to participate in the study were also
excluded from this research.

Anamnesis, physical examination, body mass index (BMI), medications, transthoracic
echocardiogram, blood pressure measurements, and routine biochemical examinations
(total cholesterol (TC), high-density lipoprotein (HDL) cholesterol, low-density lipoprotein
(LDL) cholesterol, triglyceride, glucose, urea, creatinine, aspartate transaminase (AST),
alanine transaminase (ALT), hemoglobin (Hb), white blood cell (WBC), mean corpuscular
volume (MCV), platelet (PLT) levels) were recorded (Table 1).

Coronary angiography (CAG) procedure was applied to patients who underwent non-
invasive imaging methods (cardiovascular stress test, myocardial perfusion scintigraphy)
and was found to be positive. CAG was performed using the Judkins technique through
the femoral or radial artery. Each coronary artery was displayed in at least two different
plane images. All patients who accepted the procedure were informed about the study,
and their written consent was obtained. After this procedure, a 5 cc blood sample was
obtained from patients who were found to have coronary artery disease or CMD as a result
of coronary angiography. After obtaining the consent of patients, who were determined as
the control group with similar demographic and medical characteristics, 5 cc blood was
taken. Venous blood samples were obtained from the antecubital vein. 100 µL plasma
samples prepared from blood samples were stored at −80 ◦C for processing.

4.2. GC/MS Validation of the Metabolites by Whole Metabolite Profiling

To detect and quantify the circulating metabolites in plasma, a gas chromatography-
mass spectrometry (GC/MS) analysis was performed at UIUC Metabolomics Center as
described [7–10,43]. Briefly, 50 µL of blood plasma was extracted using 1 mL of iso-
propanol:acetonitrile:water (3:3:2, v/v) at 20 ◦C for 5 min. After centrifugation, 0.5 mL
of supernatant was dried in a SpeedVac concentrator and subsequently derivatized in
two-steps: with 50µL methoxyamine hydrochloride (Sigma-Aldrich, St Louis, MO, USA)
(40 mg/mL in pyridine) for 60 min at 50 ◦C, then with 50µL MSTFA + 1% TMCS (Thermo,
Waltham, MA, USA) at 70 ◦C for 120 min, followed by a 2-h incubation at room temperature.
Hentriacontanoic acid (30 µL of 1 mg/mL) was added to each sample before derivatization
for use as an internal standard for normalization. Metabolite profiles were acquired using
a gas-chromatography mass-spectrometry (GC–MS) system (Agilent Inc, Santa Clara, CA,
USA) consisting of an Agilent 7890 gas chromatograph, an Agilent 5975 MSD and 7683 B
autosampler, as previously described [44]. Briefly, gas chromatography was performed on
a ZB-5MS (60 m × 0.32 mm ID and 0.25 mm film thickness) capillary column (Phenomenex,
Torrance, CA, USA). The inlet and MS interface temperatures were 250 ◦C, and the ion
source temperature was adjusted to 230 ◦C. An aliquot of 1 mL was injected with a split
ratio of 10:1. The helium carrier gas was kept at a constant flow rate of 2.4 mL/min. The
temperature program was: 5 min isothermal heating at 70 ◦C, followed by an oven tem-
perature increase of 5 ◦C/min to ◦C after which a final 10 min incubation at 310 ◦C was
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performed. The mass spectrometer was operated in positive electron impact mode (EI)
at 69.9 eV ionization energy at m/z 30–800 scan range. The scan range was set at least
50 m/z above the highest anticipated fragment. The minimum quality match for minor
compounds was ≥80 and for other peaks ≥90. The spectra of all chromatogram peaks were
evaluated using the AMDIS 2.71 (NIST, Gaithersburg, MD, USA) using a custom-built MS
database (484 unique metabolites) [11]. Tentative substances were not reported. All known
artificial peaks were identified and removed before data mining. To allow comparison
between samples, all data were normalized to the internal standard in each chromatogram.

Differences in metabolite profiles among control, CAD and CMD were analyzed
using Prism 7.0 (GraphPad software, San Diego, CA, USA, RRID:SCR_002798), after Z-
scores were calculated for each metabolite. An unpaired t-test was performed to identify
metabolites that are different between each group. For clinical data, a one-way-ANOVA
model and chi-squared analysis were fitted to test the statistical significance of differences
between different groups, followed by Tukey’s post hoc test. p < 0.05 was considered
significant.

4.3. Machine Learning Analysis: Data Preprocessing, Feature Selection and Classification

The raw data consisting of 175 metabolites measured across 70 patients was nor-
malized using min/max scaling. Data imputation was then utilized to handle missing
data and get the data ready for the classification task afterward. The metabolic feature
columns, which had more than 40% of data missing, were eliminated. Next, we trained an
iterative imputer on the rest of the data using the IterativeImputer class inside the Python
sklearn.impute module to infill missing values. We iteratively tested the trained imputer
by removing the data of one metabolite feature column and imputing the data afterward.
At this step, the performance of the imputer was measured for each of the metabolites by
observing the R2 (Figure S1). We used the R2 measure to eliminate the metabolite column
with R2 < 0.3 and had more than 5% of missing values across all patients. The last step
of preprocessing was data standardization. We performed mean removal and variance
scaling, which gave us zero mean and unit variance for each metabolite feature column.
Preprocessing step reduced the feature columns to 75 metabolites, which were passed for
further analysis. Feature selection was performed on the preprocessed dataset using the
recursive feature elimination with cross-validation (RFECV) function inside the sklearn.
Feature selection module. A random forest classifier was used as the estimator with 5-fold
cv validation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/metabo11060339/s1, Figure S1: RFECV algorithm results. RFEVC iteratively computed
the cross-validation score each time it eliminated a metabolite feature column, Figure S2: Relative
abundance of 15 metabolites in Control, CMD and CAD groups that gave the highest ROC in when
random forest algorithm was used.
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