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Acute myeloid leukemia is a life-threatening malignancy in children and adolescents treated predominantly by risk-adapted
intensive chemotherapy that is partly supported by allogeneic stem cell transplantation. Mutations in the WT1 gene and NUP98-
NSD1 fusion are predictors of poor survival outcome/prognosis that frequently occur in combination with internal tandem
duplications of the juxta-membrane domain of FLT3 (FLT3-ITD). To re-evaluate the effect of these factors in contemporary
protocols, 353 patients (<18 years) treated in Germany with AML-BFM treatment protocols between 2004 and 2017 were included.
Presence of mutated WT1 and FLT3-ITD in blasts (n=19) resulted in low 3-year event-free survival of 29% and overall survival
of 33% compared to rates of 45-63% and 67-87% in patients with only one (only FLT3-ITD; n=33, only WT1 mutation; n=29)
or none of these mutations (n=272). Including NUP98-NSD1 and high allelic ratio (AR) of FLT3-ITD (AR ≥0.4) in the analysis
revealed very poor outcomes for patients with co-occurrence of all three factors or any of double combinations. All these patients
(n=15) experienced events and the probability of overall survival was low (27%).We conclude that co-occurrence ofWT1mutation,
NUP98-NSD1, and FLT3-ITD with an AR ≥0.4 as triple or double mutations still predicts dismal response to contemporary first-
and second-line treatment for pediatric acute myeloid leukemia.

1. Introduction

Pediatric acute myeloid leukemia (AML) is a rare and
heterogeneous disorder, for which continuous improvement
of risk-adapted treatment approaches over the last 30 years
has led to overall survival rates of approximately 70% [1, 2].
In current pediatric AML treatment protocols, cytogenetic
abnormalities of the leukemic blasts at initial diagnosis
are important indicators for risk group stratification and

treatment assignment [1, 2]. Approximately, 25% of pediatric
patients have AML blasts with a normal karyotype, but even
these cases often harbor somatic mutations in genes such
as WILMS TUMOR 1 (WT1), NPM1, NRAS, KRAS, Fms-like
tyrosine kinase 3 (FLT3), and/or c-KIT/CD117 [1, 2].

TheWT1 gene is located on chromosome 11, has ten exons
and four zinc finger domains, and functions as a transcription
factor andmaster regulator of tissue development [3].Within
normal hematopoiesis, WT1 has two distinct roles: in early
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stages, it mediates quiescence of primitive progenitor cells,
and later, WT1 expression is important for differentiation
towards the myeloid lineage [4]. In AML,WT1mutations are
present in approximately 10% of patients and predominantly
located in exons 7 and 9, which contain the DNA-binding
zinc finger domains of the protein. The majority of these
mutations are out-of-frame deletion/insertions or premature
termination codons that will lead to truncated proteins with
altered functional consequences for the cells [5]. If these
truncated proteins are stable, they might have dominant neg-
ative effects by partially blocking the wild-type WT1 protein;
if unstable, the diminished WT1 protein levels may lead to
haploinsufficiency [5]. Nevertheless, it has been clearly estab-
lished that the occurrence of WT1 mutations in AML blasts
with normal karyotypes is associated with adverse clinical
outcomes in adult [6–9] as well as pediatric patients [10, 11].

Somatic WT1 mutations in AML blasts often co-occur
with other genetic aberrations, most frequently with an inter-
nal tandem duplication in the juxta-membrane domain of
the tyrosine kinase receptor FLT3 (FLT3-ITD) [5]. Classified
as type-I or proliferating mutation, FLT3-ITDs are present
in 10-15% of pediatric AML cases and lead to poor clinical
outcomes [12–14]. We previously demonstrated in a cohort
of 298 pediatric patients with de novo AML treated before
2004 on AML-BFM protocols that the combination of FLT3-
ITD and mutatedWT1 is associated with even worse survival
[10]. Comparably, an independent study from the Children’s
Oncology Group (COG) in a cohort of 842 children with de
novo AML showed that the poor prognostic impact of WT1
mutations depends on the FLT3-ITD status [11]. These two
pediatric studies confirmed earlier findings in adults that first
established the adverse prognostic impact of both WT1 and
FLT3-ITDmutations [15, 16].

Two additional prognostic indicators in FLT3-ITD-
positive AML cases established in the last few years are
the mutational burden in each patient defined as the ratio
betweenmutant and wild-type FLT3-ITD alleles (allelic ratio,
AR) [12, 17, 18] and the co-occurrence of FLT3-ITD with
a cytogenetically cryptic translocation of chromosomes 5
and 11 or t(5;11)(q35;p15) [19]. This translocation leads to
fusion of the nucleoporin (NUP98) gene on chromosome
11 and the gene for nuclear receptor binding SET-domain
protein 1 (NSD1) of chromosome 5 (NUP98-NSD1). As the
breakpoints for the NUP98 gene are often not detected by
classical cytogenetic due to its terminal localization at 11p15, it
has been described in AML cases with a “normal” karyotype
[20]. Importantly, this rare recurrent aberration is mutually
exclusivewith other recurrent translocations andmore preva-
lent in pediatric AML, in which it is associated with the
presence of FLT3-ITD and poor survival outcomes [21, 22].

In the present study, we re-evaluated the role ofmutations
in WT1, FLT3-ITD, and the NUP98-NSD1 translocation as
prognostic factors in two contemporary pediatric treatment
protocols by analyzing their association with co-occurring
genetic and cytogenetic aberrations and by determining their
clinical significance and influence on treatment outcome.
Thereby, we were able to define a group of high-risk patients
for which the efforts for salvage/second line treatment largely
failed.

2. Materials and Methods

From April 2004 to May 2017, 841 patients aged 0–18 years
with de novoAML (excluding FABM3 andDown Syndrome)
were treated in Germany according to the AML-BFM 04 trial
(ClinicalTrials.gov Identifier: NCT00111345) or the AML-
BFM 2012 registry and trial (EudraCT number: 2013-000018-
39) (Figure 1(a)). Both trials were approved by the ethical
committees and institutional review boards of university
hospitals of Münster andHannover and an informed consent
was obtained from each patient or their legal guardians
before the beginning of treatment. Standard procedures for
the diagnosis of AML were carried out by the German
AML-BFM reference laboratory as previously described [23–
25]. This included mutation analysis in WT1, FLT3-ITD,
NPM1, NRAS, and c-KIT by Sanger and/or next-generation
sequencing or GeneScan analysis. In 353 patients (42%),
sufficient material and clinical data were available for further
analysis. As a confirmation, material fromWT1 and/or FLT3-
ITD positive and negative cases was re-analyzed by next-
generation sequencing (NGS) using the TruSight Myeloid
Panel (Illumina)[26] with median read counts for WT1 and
FLT3-ITD of around 4,200 and 6,000 reads, respectively, as
we described previously [27]. In addition, the allelic ratio of
FLT3-ITD to FLT3 wild-type was calculated via GeneScan
analysis [13] and the expression ofNUP98-NSD1was analyzed
in 246 out of 353 patients with available material by real-
time quantitative PCR using previously described primers
[19]. Initial analysis demonstrated that the selected cohort
was representative for all patients treated between 2004 and
2017 on the AML-BFM protocols for features such as gender,
age, AML subtype, initial cytogenetics, and preliminary, early
response to treatment (data not shown).

Clinical end-points were defined as previously described
[28, 29] and survival rates were calculated via Kaplan-Meier
analysis and compared by log-rank test. Multivariate analysis
was performed using Cox regression model evaluating the
hazard ratio (HR) of each covariate with 95% confidence
interval (CI). Stem cell transplantation was included in
the Cox regression model as a time-dependent variable.
Differences with a p value less than 0.05 were considered as
significant. Data were analyzed using the Statistical Analysis
System software version 9.4 (SAS Institute, Cary, NC). Data
acquisition was stopped at June 30, 2018, with a median
follow-up of 3.6 years.

3. Results

3.1. StudyCohort and Patient Characteristics. In this study, we
included 353 patients treated on either the AML-BFM 2004
or AML-BFM 2012 protocol for whom sufficient material
and information were available (Figure 1(a)). As shown in
Table 1, 48 (14%) patients had WT1 and 52 (15%) FLT3-ITD
mutations in their leukemic blasts at diagnosis. Mutations in
NPM1, NRAS, and c-KIT were present in the blasts of 9%,
17%, and 12% of patients, respectively. Most patients with
mutatedWT1 (n=35, 73%) harbored at least one co-occurring
mutation in the AML blasts, with the most common being
FLT3-ITD (n=19, 40%) followed by NRAS mutations (n=11,

https://clinicaltrials.gov/ct2/show/NCT00111345
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Figure 1: Study flowchart and patient characteristics. (a) Study flowchart outlining the process of patient recruitment in the data analysis.
(b)WT1mutations often co-occurred with FLT3-ITD and other genetic aberrations. AML-BFM, acute myeloid leukemia-Berlin-Frankfurt-
Muenster; n, number;WT1,Wilms Tumor 1; FLT3-ITD, fms-related tyrosine kinase 3-internal tandem duplication; NPM1, nucleophosmin 1;
NRAS, neuroblastoma RAS viral oncogene homolog; c-KIT, KIT proto-oncogene; CBF, core binding factor; MLL, rearrangements ofMLL gene;
NUP98-NSD1, Nucleoporin-Nuclear Receptor Binding SET Domain Protein 1 fusion gene; CN, cytogenetic-normal AML; AR, allelic ratio;
CCR, continued complete remission; LFU, lost to followup; NR, non-response; PR, partial remission. aCBF aberrations include translocation
of chromosomes 8 and 21 and inversion or translocation of chromosome 16. bOther cytogenetic aberrations such as trisomy 8, various
chromosomal translocations, and complex karyotype alterations.
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23%, Table 1 and Figure 1(b)). Comparably, the majority of
patients with FLT3-ITD had additional mutations in other
genes (n=32, 62%), most commonly inWT1 (n=19, 37%) and
NPM1 (n=11, 21%). Patients with mutated WT1 or FLT3-ITD
were older compared to the rest of the study cohort, andAML
FAB M1/M2 was the most common morphologic subtype in
both groups (Table 1). In addition, the AML blasts of more
than half of patients with WT1 (n=25/48, 52%) and FLT3-
ITD (n=28/52, 54%) mutations had a normal karyotype at
diagnosis; these percentages were significantly higher than
those in patients without mutations in each of the two genes
(p<0.0001, Table 1).

3.2. Characteristics of WT1 Mutations. We identified 64
different WT1 sequence alterations in 48 patients (Table 2).
These alterations were frequently located in exon 7 (n=55,
86%) and predominantly resulted in frameshifts producing
premature termination codons (PTCs). In total, nine single
nucleotide variants (SNVs) were found, mostly in exon 9
(n=7, 78%). Only three of the nine SNVs were not previously
reported as pathogenic (Table 2). Using NGS, we character-
ized multiple distinct WT1 mutations with highly diverse
variant allele frequencies in 13 patients (11 patients had two
and 2 patients, three distinct mutations). We then analyzed
the heterozygosity of these mutations via the integrative
genomic viewer (Broad Institute, MA, USA) and determined
that they were all located on individual/different alleles/reads
(Table 2).

3.3. Survival Significance of the Genomic Aberrations. Next,
we analyzed the impact of each mutation on the clinical
outcomes. Our analysis identified WT1 and FLT3-ITD, but
not NRAS, NPM1, or c-KIT mutations as single factors that
significantly increased the chance of relapse or treatment
failure and reduced the probability of 3-year overall survival
(OS) in our patient cohort (Figures 2(a), 2(b), and 3). In
addition, FLT3-ITD but not WT1 mutations significantly
decreased the 3-year probability of event-free survival (EFS,
Figure 2(b)). When we grouped the two mutations together,
the survival analysis revealed a 3-year EFS of 29±11% for
patients with both WT1 and FLT3-ITD mutations com-
pared to 63±3% for patients with none of these mutations
(p=0.0004) and 61±11% or 45±9% for patients with only
WT1 mutation (p=0.016) or FLT3-ITD (p=0.16), respectively
(Figure 2(c)). Corresponding to this low EFS, co-occurrence
of these two mutations was associated with an increased
cumulative incidence of relapse (CIR) of 65±12% compared to
32±12% for patients with none of these mutations (p=0.002)
and 39±11% or 46±9% for patients with only WT1 mutation
(p=0.05) or FLT3-ITD (p=0.08), respectively (Figure 2(c)).
Furthermore, we identified a low 3-year OS probability of
33±12% in patients with co-occurrence of WT1 and FLT3-
ITD, which was significantly lower than those of patients
without these mutations (81±3%, p<0.0001), patients with
only mutated WT1 (87±7%, p=0.0007), and patients with
only FLT3-ITD (67±9%, p=0.017, Figure 2(c)). Comparing
the curves for EFS and OS clearly demonstrated that our
second line treatment was not able to rescue any patient with

co-occurrence of WT1 and FLT3-ITD mutations, while the
OS rates increased by more than 20% for the other three
subgroups (Figure 2(c)).

3.4. Impact of NUP98-NSD1 Fusion. To further characterize
the prognostic significance ofWT1 and FLT3-ITDmutations,
we analyzed the expression of NUP98-NSD1 fusion in our
patient cohort (Figure 1(a)). From 246 patients with available
material for this retrospective real-time quantitative PCR
analysis, 15 (6%) of them were identified to have the NUP98-
NSD1 translocation. Most of these patients (12/15, 80%)
harbored additionalWT1 or FLT3-ITD mutations: 3 patients
carried both WT1 and NUP98-NSD1, 4 had a co-occurrence
of FLT3-ITD and NUP98-NSD1, and 5 patients carried all
three genetic alterations (Figure 1(b)). Only 1 of these 15
patients had a previous known status ofNUP98-NSD1 by con-
ventional karyotyping: 2 others were previously diagnosed
with deletion of chromosome 5, 1 carried an inversion of
chromosome 16 (no other mutations and still in continuous
complete remission), 4 carried complex karyotypes or rare
aberrations, and 7 had no other cytogenetic abnormalities
(data not shown).

We then analyzed the prognostic significance of NUP98-
NSD1 in the cohort of 246 patients with the known status
of this fusion gene (Figure 1(a)). As a single factor, the
presence of NUP98-NSD1 in AML blasts of patients at
diagnosis was associated with a significant increase in CIR
(81%) in addition to decreased probabilities of 3-year EFS
and OS (Figure 4(a)). Combining NUP98-NSD1 with WT1
and FLT3-ITDmutations in our multifactor survival analysis
revealed that patients with all three or either two of these
mutations had worse survival outcomes. These patients had
a higher CIR of 73±11% compared to the CIR of 30±4%
for patients with none of these aberrations or NUP98-NSD1
alone (p<0.0001) and the CIR of 37±13% or 38±10% for
patients with only mutated WT1 (p=0.0078) or FLT3-ITD
(p=0.013), respectively (Figures 4(a) and 4(b)).The increased
CIR translated into a lower 3-year EFS probability of 23±10%
for patients with triple or double mutations compared to
the EFS of 62±4% for patients with none of these mutations
or only NUP98-NSD1 (p<0.0001) and the EFS of 63±13% or
54±10% for patients with only WT1 (p=0.003) or FLT3-ITD
(p=0.036) mutations, respectively (Figure 4(b)). Moreover,
co-occurrence of all three or any double mutations resulted
in a significantly lower 3-year OS probability of 42±12%
compared to 80±8% for patients with none of the mutations
or only NUP98-NSD1 (p=0.0003) and 88±8% or 73±10% for
patients with only WT1 (p=0.0007) or FLT3-ITD (p=0.049)
mutations, respectively (Figure 4(b)).

3.5. Survival Significance of the FLT3-ITD Allelic Ratio. We
have previously established the prognostic significance of
an FLT3-ITD allelic ratio of ≥0.4 in pediatric AML [12].
Therefore, to determine the impact of the mutational burden
of FLT3-ITD on treatment outcomes in the present cohort,
we calculated the FLT3-ITD AR in patients with available
data/material. As indicated in Figure 1(b), 27 patients had
an AR ≥0.4 at diagnosis. Analyzing the survival impact of
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Figure 2: Co-occurrence of WT1 and FLT3-ITD mutations at initial diagnosis of pediatric AML predicts poor survival outcomes. (a) WT1
mutation as single factor increased the incidence of relapse, reducing the probability of survival. (b) The presence of FLT3-ITD, individually,
leads to an increased chance of relapse and decreased patient survival. (c) Clinical consequences of WT1 mutations and FLT3-ITD were
dependent on each other. WT1, Wilms Tumor 1; FLT3-ITD, fms related tyrosine kinase 3-internal tandem duplication; pEFS, probability of
event-free survival; pOS, probability of overall survival; CIR, cumulative incidence of relapse; SE, standard error; n, number. aNo response to
treatment was considered as the occurrence of an event at time zero.

the FLT3-ITD AR ≥0.4 revealed that as a single factor, it
was associated with an EFS of only 25±8% and an OS of
only 47±10%, respectively (Figure 5(a)). Remarkably, the co-
occurrence of FLT3-ITD AR ≥0.4, WT1, and NUP98-NSD1
as triple or double mutations significantly increased the CIR
to 93±15% compared to the CIR of 31±4% for patients with
no mutations or only NUP98-NSD1 or FLT3-ITD AR <0.4
(p<0.0001) and to the CIR of 31±11% or 36±15% in patients
with only WT1 (p<0.0001) or FLT3-ITD AR ≥0.4 (p=0.001)
mutations, respectively (Figure 5(b)). The probability of 3-
year EFS was zero in patients with double or triple WT1,
FLT3-ITD AR ≥0.4, and NUP98-NSD1mutations as opposed
to 61±4% in patients with nomutations or onlyNUP98-NSD1
or FLT3-ITD AR <0.4 (p<0.0001) and 69±11% or 45±15%
for patients with only mutatedWT1 (p<0.0001) or FLT3-ITD
AR ≥0.4 (p=0.019), respectively (Figure 5(b)). Finally, the

co-occurrence of double or triple mutations resulted in a
3-year OS probability of 27±13%, which was significantly
lower than the 3-year OS of 79±3% in patients with no
mutations or only NUP98-NSD1 or FLT3-ITD AR <0.4
(p<0.0001) and 90±7% or 73±13% in patients with only
WT1 (p=0.0003) or FLT3-ITD AR ≥0.4 (p=0.06) mutations,
respectively (Figure 5(b)). By multivariate analysis including
WT1 mutation, FLT3-ITD AR ≥0.4, core-binding factor
aberrations, early bone marrow response to treatment, and
stem cell transplantation as covariables, we confirmed that
the interaction of these three factors, and not each of the
aberrations individually, was a significant predictor of poor
prognosis for EFS (p=0.008, HR: 3.88, 95% CI: 1.42 – 10.6)
and OS (p=0.042, HR: 3.42, 95% CI: 1.04 – 11.21, Table 3).
Importantly, none of the patients with triple mutations sur-
vived and the only patients who could be rescued harbored
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Figure 3: Mutations in NPM1, NRAS, and c-KIT had no impact on survival. (a) Prognostic impact of mutated NPM1 on EFS, OS, and CIR.
(b) Prognostic impact of mutated NRAS on EFS, OS, and CIR. (c) Prognostic impact of c-KIT mutation on EFS, OS, and CIR. NPM1,
nucleophosmin 1; NRAS, neuroblastoma RAS viral oncogene homolog; c-KIT, KIT protooncogene; pEFS, probability of event-free survival;
pOS, probability of overall survival; CIR, cumulative incidence of relapse; SE, standard error; n, number. aNo response to treatment was
considered as the occurrence of an event at time zero.

double NUP98-NSD1 and WT1 or NUP98-NSD1 and FLT3-
ITD mutations (Figure 1(b)), thus resulting in an OS of
27±13% (Figure 5(b)).

4. Discussion

Treatment of pediatric AML has significantly improved over
the past three decades due to the development of intensi-
fied first-line treatments, efficient second-line therapies, and
optimized supportive care [2, 30]. The success is, at least
partly, achieved by more efficient risk group stratification
using factors such as somatic mutations and cytogenetic
aberrations of AML blasts at diagnosis as well as considering
the primary response to treatment to optimize the allocation

of patients to standard or enhanced treatment options [1]. In
the present study, we analyzed the influence of three param-
eters, mutations in WT1 and FLT3 and the translocation of
NUP98-NSD1, on the outcome of pediatric patients in the
German AML-BFM 2004 and 2012 protocols. Although all
three parameters have been established by us and others
as important prognostic factors in both pediatric and adult
patients [8–14, 20–22], their combinedutility to identify high-
risk patients likely to experience dismal treatment results has
not yet been reported in a contemporary pediatric AML trial.

In a cohort of 237 patients treated within the AML-
BFM 2004 and 2012 protocols and with sufficient material
for re-analysis, we observed favorable outcomes for 3-year
EFS of 61% and 69% and OS of 79% and 90% in patients
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Figure 4: Prognostic significance of NUP98-NSD1 fusion. (a)NUP98-NSD1 as single factor predicted poor outcomes. (b) Inclusion ofNUP98-
NSD1 as poor prognostic factor with WT1 mutation and FLT3-ITD, predicted poor outcomes for patients harboring all three factors in
addition to patients withNUP98-NSD1 andWT1mutation or FLT3-ITD. Patients with unknown status ofNUP98-NSD1 fusion were excluded
from this analysis. WT1, Wilms Tumor 1; FLT3-ITD, fms related tyrosine kinase 3-internal tandem duplication; NUP98-NSD1, Nucleoporin-
Nuclear Receptor Binding SETDomain Protein 1 fusion gene; pEFS, probability of event-free survival; pOS, probability of overall survival; CIR,
cumulative incidence of relapse; SE, standard error; mut, mutated; pos, positive; neg, negative. aNo response to treatment was considered as
the occurrence of an event at time zero. bThree patients with NUP98-NSD1 are included in this group.
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Figure 5: Prognostic significance of mutational burden of FLT3-ITD. (a) FLT3-ITD with an allelic ratio ≥0.4 as a single factor predicted poor
outcomes. (b) High mutational burden of FLT3-ITD was another predictor of poor prognosis when it occurred with WT1 and/or NUP98-
NSD1. Patients with an unknown FLT3-ITD AR were excluded from this analysis. NUP98-NSD1, Nucleoporin-Nuclear Receptor Binding SET
Domain Protein 1 fusion gene; FLT3-ITD, fms related tyrosine kinase 3-internal tandem duplication; pEFS, probability of event-free survival;
pOS, probability of overall survival; CIR, cumulative incidence of relapse; AR, allelic ratio; SE, standard error; n, number. aNo response to
treatment was considered as the occurrence of an event at time zero. bThree patients with NUP98-NSD1 are included in this group.
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Table 3: Multivariate analysis.

Cox regression analysis - Event-free survival

Parameters Hazard ratio 95% confidence interval p value
Lower limit Upper limit

WT1mutation 0.79 0.41 1.53 0.479
FLT3-ITD AR ≥ 0.4 1.55 0.69 3.51 0.288
WT1mutation, FLT3-ITD ≥ 0.4 and 3.88 1.42 10.66 0.008
NUP98-NSD1 interaction
t(8;21) and/or inv(16) 0.51 0.27 0.96 0.037
Unsatisfactory early response to treatmenta 1.31 0.79 2.18 0.294
HSCTb 0.25 0.1 0.64 0.004
Cox regression analysis - Overall survival
WT1mutation 0.84 0.35 2.06 0.710
FLT3-ITD ≥ 0.4 1.51 0.57 4.02 0.404
WT1mutation, FLT3-ITD ≥ 0.4 and 3.42 1.04 11.21 0.042
NUP98-NSD1 interaction
t(8;21) and/or inv(16) 0.45 0.16 1.31 0.143
Unsatisfactory early response to treatmenta 1.21 0.61 2.42 0.589
HSCTb 1.18 0.51 2.73 0.700
WT1,Wilms tumor 1; FLT3-ITD, fms related tyrosine kinase 3-internal tandem duplication; NUP98-NSD1, Nucleoporin-Nuclear Receptor Binding SET Domain
Protein 1 fusion gen; t, translocation; inv, inversion; HSCT, hematopoietic stem cell transplantation.
aUnsatisfactory early response to treatment was defined as persistence of >5% blasts in bone marrow at day 15 and/or 28 after treatment. bhematopoietic stem
cell transplantation events at first complete remission or after no-response to other treatments were included in the multivariate analysis as a time-dependent
variable.

without WT1 mutations or NUP98-NSD1 fusion or with
only one of these factors. Patients with leukemic blasts that
were FLT3-ITD positive but negative for WT1 and NUP98-
NSD1 mutations and that had an FLT3-ITD AR ≥0.4 still
achieved an EFS of 45% and an OS of 73%. Surprisingly,
our data therefore suggests that without WT1 and NUP98-
NSD1mutations, the negative impact of FLT3-ITD even with
an AR≥0.4 might not be as severe as previously published
[12, 17]. However, all patients positive for at least two of the
three risk factors and with an FLT3-ITD AR ≥0.4 had events
within the first three years and only 27% could be rescued by
our salvage therapies.These unfavorable results in our double
or triple mutated group unequivocally demonstrate that our
current first-line treatment strategies for these patients are
still insufficient/inadequate and urgently need improvement.

Of the three risk factors, currently only the FLT3-ITD
mutation can be specifically targeted with inhibitors [31].
Although the first generations of these drugs only achieved
limited and often transient efficacy due to intrinsic and
extrinsic adaptations in the AML blasts and/or the environ-
ment [31], combination therapies of newer tyrosine kinase
inhibitors such as Quizartinib with standard chemotherapy
seem to be relatively well tolerated and in initial studies
have demonstrated survival improvement in relapsed or
refractoryAMLpatients [32–34].Due to the important role of
FLT3 pathway activation in AML, numerous combinations of
FLT3 inhibitors with other drugs are currently being tested.
Whether these results will also be helpful for the treatment
of pediatric AML will need to be carefully determined in
future studies, especially considering the clonal heterogeneity
of FLT3-ITD and the additional survival burden that it causes

by increasing drug resistance through clonal evolution or
selection and further expansion of resistant AML clones [35,
36]. Nevertheless, it is tempting to speculate that the simple
addition of a newer FLT3 inhibitor to our standard therapy
might be a feasible, well-tolerated, and effective approach for
all patients with blasts that are positive for the FLT3-ITD
mutation, regardless of the status of alterations in WT1 or
NUP98.

The role of WT1 in patients with AML is still contro-
versial [4]. Although WT1 is overexpressed in the majority
of leukemias and can be used as a marker for minimal
residual disease and maybe even vaccination attempts, the
prognostic and therapeutic relevance of high or absent
WT1 expression levels is not unequivocally accepted [37–
39]. In contrast, mutations in WT1 are clearly identified as
determinants of poor prognosis and, as we showed here,
confer a dismal prognosis especially in combination with
FLT3-ITD or NUP98-NSD1 fusion. In the present study, we
identified 64 monoallelicWT1 sequence alterations in exon 7
or exon 9 in the leukemic blasts of 48 patients. The majority
of these alterations leads to frameshifts and/or premature
terminations codons and thus shortened proteins. These
mutant proteins can act in a dominant negative manner
[40], whichmay contribute to a myeloid differentiation block
present in AML blasts [41]. However, similar mutations
have also been described in the context of Wilms tumors
as gain-of-function mutations promoting proliferation [42].
Here, we show a favorable prognosis for patients with single
WT1 mutations, with 26 out of 29 cases reaching continued
complete remission (CCR) (Figure 1(b)). Therefore, based on
a 3-year EFS of 69% and an OS of 90%, the development of
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new treatment approaches is not as urgently needed for these
patients with WT1 mutated blasts that do not harbor FLT3-
ITD or NUP98-NSD1mutations.

Among the 31 different fusion gene partners of NUP98
identified so far, the NUP98-NSD1 t(5:11) translocation is the
most frequent and present in 4-7% of patients in pediatric
AML patients [20–22]. Importantly, the NUP98 transloca-
tions that occur in AML all share the N-terminus of the
protein and are thought to initially lead to epigenetic dys-
regulation of different leukemia-associated genes including
HOXA7, HOXA9, and HOXA10 in myeloid precursor cells
[20]. Additional somatic mutations in other genes occur as
secondary events and promotemalignant transformation and
uncontrolled cell growth [20]. As also shown in our patient
data set, these secondary alterations often include activating
mutations in FLT3 (FLT3-ITD) or truncating mutations in
WT1 [21]. Strikingly, only three patients in our study had
a NUP98-NSD1 translocation without mutations in FLT3
or WT1; two of these patients achieved and remained in
first CCR at the end of data acquisition. The third patient
had no other genetic risk factors but a very high initial
white blood cell count of almost 400,000 cells/𝜇l. Complete
remission induction was delayed, and the patient relapsed
a year later but was successfully treated by allogeneic stem
cell transplantation with a follow-up of 10 years. Therefore,
as also described previously [21], our patients with NUP98-
rearranged blasts withWT1 and/or FLT3-ITDmutations had
a poor prognosis, especially in contrast to patients with only
WT1 and FLT3-ITD mutations, who could at least partially
be rescued by allogeneic transplantation. However, due to
the high risk of failure of the first-line treatment, stem
cell transplantation already in first CCR seems to be an
attractive option for cases of NUP98-rearranged AML [21,
22]. Nevertheless, it should be noted that even allogeneic
stem cell transplantation is not always effective in improving
the treatment outcome in patients with a high probability
of treatment failure based on risk stratification. Thus, intro-
ducing novel treatment approaches such as the use of small
inhibitors, e.g., venetoclax and isadanutlin [43] or cellular
therapies with allogeneic NK-cells or engineered T-cells with
chimeric antigen receptors (CARs) [44] targeting leukemic
blasts harboring NUP98 rearrangement or WT1 muta-
tions should be taken into consideration in future clinical
studies.

Recent analysis from a collaborative study between the
American and Dutch children oncology groups (COG and
DCOG) included patients from three clinical COG/DCOG
trials and also young adults less than 39 years of age in the
Therapeutically Applicable Research to Generate Effective
Treatments (TARGET) AML initiative [45]. Analysis of the
different cohorts revealed similarly unfavorable outcomes
with an EFS of 14-25% and an OS of 15-40% for patients
with FLT3-ITD andWT1mutations and/or theNUP98-NSD1
translocation [45]. In contrast to our findings however, the
authors reported an EFS range of 15-35% in patients with
FLT3-ITD only, which is lower than that achieved with
current protocols, for which an EFS of 45% and an OS of 73%
were found for patients with FLT3-ITD only. Notably, in the
American-Dutch study, patients with co-occurrence ofNPM1

mutations and FLT3-ITD (and without WT1 and NUP98-
NSD1) were separated from patients with FLT3-ITD only
and had a slightly increased, albeit probably not statistically
significant, survival. Similarly, we have previously observed
favorable outcomes for patients with NPM1 mutations in
their AML blasts with normal karyotype and proved this
impact was not affected by the presence of FLT3-ITD [46]. In
the current cohort, five patients were positive for mutations
in FLT3-ITD and NPM1 and negative for WT1 and NUP98
alterations. At present, four patients with a normal karyotype
are still in first CCR, and the fifth patient with a complex
karyotype and an FLT3-ITD AR >11 experienced early death.
In summary, the principle findings of this American-Dutch
study and the present study are very similar. However, the
treatment outcomes for our patient groups are superior, most
likely due to the fact that we included only patients between
0 and 18 years of age treated in Germany according to two
contemporary protocols from the AML BFM study group.

5. Conclusion

Despite the fact that our study was partly based on data col-
lected prospectively since 2004 and partly on data assessed de
novo on stored material by either NGS or PCR, we can safely
conclude that co-occurrence of the three factors, mutated
WT1 and FLT3-ITD and/or NUP98-NSD1 translocation, still
defines a subgroup of AML patients with devastating EFS
and OS outcome, even with our current treatment protocols.
Although the number of pediatric AML patients available for
analysis of these three risk factors was limited and therefore
not all interesting factors could be assessed in multivariate
analysis, it is obvious that patients with double or triple
mutations benefitted very little from the improved EFS and
OS in our AML-BFM studies in recent years. Thus, for these
pediatric patients, new and more targeted approaches are
urgently needed for both first- and second-line treatments.
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