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The innate immune system is the host’s first line of defense against the invasion of pathogens
including flavivirus. The programmed cell death controlled by genes plays an irreplaceable role
in resisting pathogen invasion and preventing pathogen infection. However, the inflammatory
cell death, which can trigger the overflow of a large number of pro-inflammatory cytokines and
cell contents, will initiate a severe inflammatory response. In this review, we summarized the
current understanding of the innate immune response, inflammatory cell death pathway and
cytokine secretion regulation during Dengue virus, West Nile virus, Zika virus, Japanese
encephalitis virus and other flavivirus infections. We also discussed the impact of these
flavivirus and viral proteins on these biological processes. This not only provides a scientific
basis for elucidating the pathogenesis of flavivirus, but also lays the foundation for the
development of effective antiviral therapies.
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1 INNATE IMMUNITY AND FLAVIVIRUSES

1.1 Innate Immunity and Inflammasomes
As the first hurdle to protect the host from microbial invasion, the innate immune system can not
only establish a rapid, broadly response to control infection, but also plays a key role in the
establishment of an adaptive immune response, which can lead to pathogen-specific and durable
Abbreviations: PRRs, pattern recognition receptors; TLRs, Toll-like receptors; RLRs, retinoic acid-inducible gene I (RIG-I)-
like receptors; NLRs, nucleotide-binding oligomerization domain (NOD)-like receptor family proteins; PAMPs, pathogen-
associated molecular patterns; DAMPs, danger-associated molecular patterns; DENV, Dengue virus; WNV, West Nile virus;
ZIKV, Zika virus; JEV, Japanese encephalitis virus; YFV, Yellow Fever virus; TBEV, Tick-borne encephalitis virus; LGTV,
Langat virus; cGAS, cyclic GMP-AMP synthase; IFN, interferon; ISG, IFN-stimulating genes; IL-1b/18, interleukin 1b/18; IRF-
3/7, interferon regulatory factor 3/7; NFkB, nuclear factor-kB; MYD88, myeloid differentiation primary response 88; MDA5,
melanoma differentiation-associated gene 5; CARD, caspase recruitment domain; MAVS, mitochondrial antiviral signaling
protein; CNS, central nervous system; NLRP3, NLR family pyrin domain-containing 3; PCD, programmed cell death;
GSDMD/GSDME, gasdermin D/E; MLKL, mixed-lineage kinase domain-like pseudokinase; RIPK, receptor-interacting serine/
threonine protein kinase.
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immune memory (1). In order to quickly detect and resist a
variety of pathogens, host cells have evolved many pattern
recognition receptors (PRRs), including Toll-like receptors
(TLRs), retinoic acid-inducible gene I (RIG-I)-like receptors
(RLRs), and nucleotide-binding oligomerization domain
(NOD)-like receptor family proteins (NLRs). When dealing
with specific danger-associated molecular patterns (DAMPs)
and pathogen-associated molecular patterns (PAMPs),
members of the NLRs family are able to assemble large
multiprotein complexes called inflammasomes (2). The NLRP3
(NLR family pyrin domain-containing 3) inflammasome is the
most widely studied inflammasome that has been identified.
NLRP3 is a cytoplasmic protein with three domains: the carboxy-
terminal leucine-rich repeat sequence, the central nucleotide
binding and oligomerization domain (NACHT) with ATPase
activity, and the amino-termina pyrin domain (PYD) (3). Since
the basal level of NLRP3 expression is usually not enough to
activate the NLRP3 inflammasome. Therefore, a two-step
process is required for priming and activation (4, 5). The
priming step is induced by TLRs and cytokine receptors, such
as the tumor necrosis factor receptor (TNFR) or IL-1 receptor
(IL-1R), which recognize PAMPs or DAMPs and upregulate the
transcription of NLRP3 and IL-1b. During the activation step,
PAMPs and DAMPs promote NLRP3 inflammasome assembly.
After assembly, the inflammasome induces the formation of
membrane pores and the release of pro-inflammatory
cytokines, which ultimately leads to a form of inflammatory
cell death called pyroptosis (6, 7).

Innate immune response and inflammasome activation are
recognized key obstacles in the process of virus invasion. On the
other hand, the initiation of the innate immune response needs
to be strictly regulated, since excessive activation could cause
harmful tissue damage and systemic inflammation (8). Thence,
the balance regulation between host’s innate immune responses
and virus invasion is considered as a potential method for the
treatment of viral infection. The balance should be well regulated
to maintain antiviral function and avoid excessive inflammation.

1.2 Flaviviruses
The Flavivirus genus is composed of more than 70 positive-
stranded RNA viruses transmitted by arthropods, especially
mosquitoes and ticks. Flavivirus include pathogens of global
concern such as Dengue virus (DENV), West Nile virus (WNV),
Zika virus (ZIKV), Japanese encephalitis virus (JEV), Yellow
Fever virus (YFV), Tick-borne encephalitis virus (TBEV) and
Langat virus (LGTV). These viruses are arboviruses that can
cause serious human infections, they pose a threat to global
health and may cause serious outbreaks. These are demonstrated
by the global distribution of DENV (9), the spread of ZIKV in
South America (10), the outbreak of YFV in Brazil and Africa
(11, 12), and the WNV outbreak in North America (13). The
symptoms of flavivirus infection range from mild fever to joint
pain to life-threatening hemorrhagic and encephalitis (14).
Although vaccines against several of the viruses including
DENV, JEV and YFV have been licensed, the outbreak is still
happening. There is currently no clinical antiviral treatment for
Frontiers in Immunology | www.frontiersin.org 2
flavivirus infection, highlighting the challenge in implementing
an effective vaccination program (15).

The approximately 11 kb flavivirus genome has only one open
reading frame (ORF) flanked by a 5’-untranslated region (UTR)
and a 3’-UTR, encoding 3 structural proteins [capsid (C);
precursor of M (prM) and envelope (E)] and 7 non-structural
(NS) proteins (NS1, NS2A/2B, NS3, NS4A/4B and NS5)
(Figure 1A). Structural proteins mainly constitute virions,
while NS proteins are involved in viral genome replication and
viral particle assembly, and are involved in initiating host innate
immunity (16). The nucleocapsid is composed of C protein
wrapped RNA genome (17), nucleocapsid is surrounded by a
lipid bilayer, M and E proteins are inserted into the lipid bilayer.
In immature virus particles, M protein exists in the form of
precursor protein (prM), the immature particle contains 60
trimeric spikes of prM-E heterodimers (Figure 1B). PrM is
cleaved when the mature virus particle is formed (18), the
mature flavivirus particle is composed of 90 E homodimers
and 90 M homodimers on the surface, and the E protein is
responsible for receptor binding, attachment, membrane fusion
and viral entry.

In the process of infecting the host, flavivirus first attaches to
the cell surface and enter host cell through endocytosis mediated
by cell surface receptors (Figure 2). The acidic environment of
endosome triggers the membrane fusion of the virus with the
cell. Through membrane fusion, nucleocapsid is released to
cytoplasm, capsid protein and the viral RNA are dissociated,
the viral RNA genome begins to replicate, the viral proteins are
expressed, and the viral particles begin to assemble. Initially,
immature, non-infectious virus particles are formed in the
endoplasmic reticulum, which cannot yet induce fusion with
the cell membrane (19). Subsequently, immature virus particles
are transported to Golgi apparatus, prM is cleaved to form
mature M protein, E protein is rearranged, and mature
infectious virus particles begin to form. Mature virus particles
are released from host cell through cellular exocytosis.

Within this article, we discussed innate immune recognition,
the activation of inflammatory cell death pathways, and the
release of cytokines during flavivirus infection to promote
resistance to viral infections; and described how flavivirus
evade host innate immune response to promote viral infection.
2 INNATE IMMUNE RECOGNITION
OF FLAVIVIRUS

The innate immune system is a strong barrier to prevent
flavivirus infection. In a typical flavivirus infection process,
viral RNA could be identified by a variety of PRRs, such as
TLRs (20), RLRs (21, 22), cyclic GMP-AMP synthase (cGAS)
and NLRs (23), which ultimately produce pro-inflammatory
cytokines and induce antiviral status (Figure 3 and Table 1).
Typically, pro-inflammatory cytokines can trigger the infiltration
of immune cells and eliminate infectious viral factors, which is
beneficial to the host to a large extent. However, excessive pro-
January 2022 | Volume 13 | Article 829433
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inflammatory cytokines can cause harmful tissue damage and
systemic inflammation (53).

2.1 TLRs- and RLRs-Mediated
Flavivirus Recognition
Signal transduction mediated by TLRs and RLRs results in the
secretion of type I interferon (IFN-I), which subsequently
stimulates the expression of IFN-stimulating genes (ISGs) to
establish an antiviral state (24–26). The TLRs and RLRs signaling
cascade also induce the production of pro-inflammatory
cytokines, such as interleukin 1b (IL-1b) and interleukin 18
(IL-18) (20).

TLR3 is a membrane-bound PRR located in the endosome,
which could recognize dsRNA from DENV, WNV ZIKV and
JEV (24, 25, 27–29). TLR3 activates TRIF in turn, and TRIF
activates TRAF3/TBK-1/IKKϵ kinase complex through RIP-1.
The complex then phosphorylates interferon regulatory factor 3/
7 (IRF-3/7) causing their activation. The activated IRF3/7 then
induce the transcription of IFN-I genes (24, 25, 28). RIP-1 can
also activate IKKa/b kinase and then activate nuclear factor-kB
(NFkB) to induce the expression of pro-inflammatory cytokines.
Frontiers in Immunology | www.frontiersin.org 3
TLR7, as another membrane-bound PRR, has also been shown to
be involved in regulating the expression of IFN-I and pro-
inflammatory cytokines in response to DENV, WNV, ZIKV,
JEV and LGTV infection (20, 26, 30–32). After TLR7 recognizes
ssRNA, it dimerizes and recruits the myeloid differentiation
primary response 88 (MYD88) adaptor protein (20, 26).
MYD88 then activates the transcription factors IRF7 and NF-
kB, which stimulate the production of IFN-I and pro-
inflammatory cytokines for host defense, respectively (30).
Indeed, compared with wild-type mice, TLR7-/- and Myd88-/-

mice have more severe disease after WNV infection, with
reduced survival and increased virus transmission (20).

Melanoma differentiation-associated gene 5 (MDA5) is a
cytoplasmic PRR belonging to RLRs family, it typically binds
to double-stranded long RNA. Studies have found that it plays a
vital role in responding to various flavivirus infections (33, 34).
MDA5 is composed of two caspase recruitment domain (CARD)
domains at the N-terminus and a DExD/H-box helicase domain
at the C-terminus. When the C terminal domain binds to the
viral ligand, MDA5 undergoes a conformational change, which
allows the CARD domain to bind to mitochondrial antiviral
A

B

FIGURE 1 | Flavivirus RNA genome and flavivirus particle. (A) Schematic representation of flavivirus genome. The polyprotein encoded by the genome is cleaved by
the host and virus proteases to form 3 structural proteins: capsid (C), membrane (M) and envelope (E), and 7 nonstructural proteins (NS-1, 2A, 2B, 3, 4A, 4B and 5)
(16). (B) Schematic diagram of the flavivirus particle model. (a) Immature flavivirus particles. The surface of immature virus particles is covered with 60 trimeric spikes,
each of which is composed of a prM-E heterodimer (17). (b) Mature flavivirus particles. prM of is cleaved into M to form mature particles, there are 90 E homodimers
and 90 M homodimers on the surface of each particle (18).
January 2022 | Volume 13 | Article 829433
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signaling protein (MAVS), and ultimately induces the expression
of interferon and pro-inflammatory cytokines (21, 35, 36). RIG-I,
another member of the RLRs, can sense 5′-triphosphate-double-
stranded RNA (22, 54). So far, RIG-I is participated in
identifying almost every member of the flavivirus genus (51,
52). Similar to MDA5, after RIG-I recognizes cytoplasmic
dsRNA, it interacts with MAVS located on mitochondria (55).
This complex can activate both IRF-3/7 and NF-kB (37, 38),
eventually increase the release of IFN-I and pro-inflammatory
cytokines, and establish an antiviral state in the cell (39, 40).
Accordingly, IFN-b induced by ZIKV decreased in RIG-I–/– and
MDA5–/– cells, and completely abolished in MAVS–/– cells,
indicating RIG-I and MDA5 play an indispensable role in this
process (41).

Interestingly, it’s recently reported that PARPs (poly-
adenosine 5′-diphosphate (ADP)-ribose polymerases) family
member PARP9 is a non-canonical sensor for RNA virus in
dendritic cells (56). Additionally, DHX15 is identified as RNA
sensor for RNA viruses and is required to control RNA virus-
induced inflammation by activating NLRP6-mediated
inflammasome (57, 58). Studies have identified PARP1 and
PARP12 as strong inhibitors of ZIKV replication (59, 60).
They inhibit virus replication by reducing intracellular ATP
and NAD+ concentrations or mediating the degradation of
Frontiers in Immunology | www.frontiersin.org 4
NS1 and NS3 by the proteasome pathway, respectively.
Whether the RNA sensors PARP9 and DHX15 have similar
functions to control flavivirus infections requires more in-
depth research.

2.2 cGAS-Mediated Flavivirus Recognition
Besides the RNA sensors, the DNA sensor cGAS has also been
proven to detect and limit flavivirus (46, 47). cGAS is activated
after binding to DNA in the cytoplasm, and cyclizes AMP and
GMP in the cytoplasm to produce 2’, 3’-cGAMP. As the second
signal, cGAMP continues to activate STING, which in turn
promotes the expression of interferon and pro-inflammatory
cytokines to exert antiviral effects. Studies have found that the
disturbance of mitochondrial membrane induced by DENV
leads to the leakage of mitochondrial DNA into the cytoplasm,
which finally triggers the activation of the cGAS-STING
signaling pathway and promotes downstream IFN gene
expression (46). In addition, DTMUV infection of a variety of
cell lines lacking STING found enhanced replication of DENV
(61). ZIKV replication in STING–/– human fibroblasts is
enhanced, ZIKV also promotes infection by actively
antagonizing STING in the cGAS pathway (48). Besides, JEV
can also activate the cGAS-STING axis after infecting the mouse
embryonic fibroblasts (MEFs) (50).
FIGURE 2 | The flavivirus life cycle. Virus particles bind to receptors on the surface of the host cell membrane and enter the cell through endocytosis. The acid
environment of endosomal vesicle induces the conformational changes of virus particles, and the fusion of virus and vesicle membrane leads to the release of virus
particles. Subsequently, the viral genome is released into cytoplasm, and the positive-sense RNA is directly translated into a polyprotein, which is cleaved and
processed by the virus and host proteases. Virus assembly occurs on the surface of the ER, and then non-infectious, immature virus particles carrying prM and E are
transported to trans-Golgi network (TGN). The host protease furin then cleaves prM to M, producing mature infectious particles. Eventually mature virus particles are
released by exocytosis (19).
January 2022 | Volume 13 | Article 829433
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2.3 Type I IFN Response During
Flavivirus Infection
Mammalian cells mainly sense flavivirus infections through
PRRs (including TLRs, RLRs and cGAS), and then their
downstream signaling pathways are activated, ultimately
inducing the production of IFN-I. Then, the released IFN-I
binds to the IFN-I receptors (IFNAR1/IFNAR2) to activate the
JAK/STAT signaling cascade to initiate antiviral status.

First, IFN-I plays an important role in resisting DENV
infection and generating an immune response (62). Other
studies found that IFN-a/b plays a leading role in resisting
WNV by limiting cell and tissue tropism infection (63), and
TRIM6 helps establish IFN-I-induced antiviral response against
WNV (64). In addition, IFN-I is essential to resist ZIKV, since
IFN-I-mediated strong antiviral effects on ZIKV replication
(>100-fold reduction) (65), while IFNAR-deficient mice are
highly susceptible to ZIKV (66). Meanwhile, autophagy induced
by ZIKV is conducive to activating host immunity through IFN-I
signaling (67). The IFN-I response has also been shown to be a
major obstacle to the viscerotropism and pathogenicity of JEV
(68), such as IFN-I can limit hemorrhage-like disease after
infection with JEV (69). Moreover, IFN-I is also essential to
protect against LGTV and TBEV in mice at two different stages.
The first stage inhibits virus replication and prevents its spread to
the central nervous system (CNS) at the periphery. In the second
stage, local IFN responses of the CNS can prevent the development
of inflammation and encephalitis caused by the virus (52, 70, 71).
Frontiers in Immunology | www.frontiersin.org 5
2.4 Flavivirus Infection Stimulates NLRP3
Inflammasome Activation
The innate immune response has significant effects on antiviral
immunity, inflammatory signal transduction and cytokine
production. Within pro-inflammatory cytokines, IL-1b and IL-
18 are crucial factors that trigger inflammatory response. The
inflammasome processes inactive pro-caspase-1 into active
caspase-1, which cleaves pro-IL-1b/18 into mature IL-1b/18,
leading to inflammation (72). The inflammasome sensors can
identify PAMPs and DAMPs produced after pathogen infection
(72). The elucidation of the NLRs family pyrin domain-
containing 3 (NLRP3) is the most thorough among these
sensors, and it is related to a variety of diseases, such as
autoinflammatory diseases, obesity and colitis (73–79).

DENV can activate NLRP3-specific inflammasome in human
patients and mice; specifically including human peripheral blood
mononuclear cells (PBMCs), keratinocytes and platelets, as well
as mouse bone marrow derived macrophages (BMDMs),
endothelial and dendritic cells (80). After DENV infection,
caspase-1 is activated by inflammasomes, which cleaves IL-1b
and IL-18 to induce inflammatory response (42). In addition,
DENV NS2A and NS2B proteins activate the NLRP3
inflammasome, which then increases the oligomerization of
apoptosis-associated speck-like protein containing a CARD
(ASC), and promotes caspase-1 activation and IL-1b secretion
(43). Ramos et al. (23) found that NLRP3 signaling pathway is
the most important way to trigger IL-1b production after WNV
FIGURE 3 | The innate immune pathways in the process of flavivirus infection and immune evasion. After flavivirus infection, TLR3 and TLR7 recognize double-
stranded RNA (dsRNA) and single-stranded RNA (ssRNA), respectively. It then triggers a signal cascade downstream of the TLRs to induce the activation of NF-kB
to produce pro-inflammatory cytokines and phosphorylation of IRF/7 to drive the production of type I IFN (24–32). The dsRNA RNA in the cytoplasm is recognized
by RIG-I and MDA5 (33–36). The combination of RIG-I and MDA5 with MAVS leads to the activation of NF-kB and the phosphorylation of IRF3 (37–41). Severe
flavivirus can also stimulate the formation of inflammasomes, leading to caspase-1 activation and release of the cytokines IL-1b and IL-18 (42–45).
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infection. ZIKV can stimulate human PBMCs, macrophages and
mice BMDCs to secret IL-1b through NLRP3 inflammasome
(44). Moreover, the combination of ZIKV NS5 protein and
NLRP3 promotes the assemble of inflammasome complex to
promote the secretion of IL-1b (45). However, overexpression of
ZIKV NS3 protein can reduce the activation of caspase-1 and
even degrade NLRP3, which ultimately inhibits IL-1b secretion
(81). The efflux of K+ ion and the release of reactive oxygen
species (ROS) mediated by JEV infection can also induce NLRP3
inflammasome activation (49).

In the host antiviral responses, the activation of NLRP3
inflammasome plays a crucial role (76, 77). However, excessive
activation of NLRP3 inflammasome can also cause severe
pathological damage. For example, the interaction of DENV M
protein and NLRP3 causes over-activation of NLRP3
inflammasomes and excessive release of pro-inflammatory
cytokine IL-1b, which ultimately leads to increased endothelial
permeability and vascular leakage (82). Additionally, DENV E
protein domain III (EIII) induces neutrophil death in vitro and in
Frontiers in Immunology | www.frontiersin.org 6
vivo, which also depends on NLRP3 and caspase-1 (83, 84). During
ZIKV infection, acute kidney injury can also be induced by activating
the NLRP3 inflammasome (85). The above findings confirm that
proper activation of NLRP3 inflammasome is beneficial to the host,
but abnormal activation may cause unfavorable results.
3 PANOPTOSIS AND
PROINFLAMMATORY CYTOKINES
DURING FLAVIVIRUS INFECTIONS

3.1 PANoptosis
Cell death plays a vital role in resisting pathogen invasion. On the
other hand, inflammatory cell death can lead to the release of
pro-inflammatory cytokines, cell contents, PAMPs and DAMPs,
which will induce a severe inflammatory response (86, 87). The
immune system has evolved a variety of mechanisms to limit
microbial infections and regulate inflammation. The innate
immune system recognizes microbial molecules that are
TABLE 1 | Engaged innate immune sensors and notable cytokines released in response to specific flavivirusa.

Virus PRRs Notable cytokines In vivo or in vitro Cell lines Strains References

DENV TLRs TLR3 IFN-b in vitro HepG2 New Guinea C (28)
RLRs TLR7 IFN-a/b in vitro pDCs 16681 strain, New Guinea C (26)
NLRs RIG-I, MDA5 IFN-a/b in vitro DCs 16681 strain (34)
cGAS-STING RIG-I, MDA5 IFN-b in vitro HUH-7 Singapore strain (36)

NLRP3 IL-1b/6, TNF-a in vivo HMEC-1 PL046 strain (42)
NLRP3 IL-1b in vitro A549, tdP-1 New Guinea C (43)
cGAS-STING cGAMP in vitro PDK53 strain (46)

WNV TLRs TLR3 IFN-a/b in vivo 3000.0259 strain (25)
RLRs TLR7 IL-6, IFN-b in vitro macrophages CT-2741 strain (20)
NLRs RIG-I, MDA5 IL-12, IL-23 in vivo BMMs CT-2741 strain (21)
cGAS-STING RIG-I, MDA5 ATF4, SMAD4 in vitro TX-02 strain (33, 35)

NLRP3 IFN-a/b in vivo TX-02, 3000.0259 strain (23)
cGAS-STING IL-1b in vivo TX-02 strain (47)
TLR3 IFN-a/b, IRF3 in vivo MHV68 strain (24)

ZIKV TLRs TLR3 IFN-a/b in vivo (29)
RLRs TLR7/8 Viperin in vitro monocytes MR766 strain (31)
NLRs RIG-I, MDA5 IFN-b in vitro trophoblasts FLR strain (41)
cGAS-STING NLRP3 IL-1b in vitro THP-1 SZ01, z16006 strain (44, 45)

cGAS-STING IFN-a/b in vitro fibroblasts MR766 strain (48)
JEV TLRs TLR3 TNF-a, IL-6, CCL-2 in vitro BV-2 P3 strain (27)

RLRs TLR7/8 TNF-a, IL-6, CCL-2 in vivo BV-2 P3 strain (32)
NLRs RIG-I IFN-a/b, p38MAPK, in vitro Neuro2a P3 strain (27)
cGAS-STING RIG-I NFkB in vitro MEFs (37, 38)

RIG-I, MDA5 IFN-a/b in vitro BV-2 (39)
NLRP3 IL-1b/18 in vitro MEFs (49)
cGAS-STING TNF-a, IL-6 in vitro (50)

in vitro
YFV TLRs N/A

RLRs RIG-I IFN-b, TNF-a, IL-6 in vitro HUH-7 Asibi strain (51)
NLRs N/A
cGAS-STING N/A

LGTV TLRs TLR7 IFN-a/b, IRF1 in vivo TP21 strain (30)
RLRs RIG-I, MDA5 IFN-a/b/l in vivo Hypr strain (52)
NLRs N/A
cGAS-STING N/A

TBEV TLRs N/A
RLRs RIG-I, MDA IRF3, RANTES in vitro T98G WH2012 (40)
NLRs N/A
cGAS-STING N/A
January 2022 | Volume 13 | A
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conserved in many pathogens, and responds quickly by
producing inflammatory mediators and activating programmed
cell death pathways, including pyroptosis, apoptosis, and
necroptosis. The activation of pattern recognition receptors,
combined with inflammatory cytokine-induced signal
transduction through receptors containing death domains,
initiates a highly interrelated cell death process called
PANoptosis (pyroptosis, apoptosis, necroptosis) (Figure 4).

3.2 PANoptosis During Flavivirus Infection
3.2.1 Pyroptosis
Pyroptosis is a way of inflammatory cell death mediated by
inflammasome and gasdermin (7). After receiving the pyroptosis
signal, the inflammasome assembly causes the activation of
inflammatory caspases (caspase-1/4/5/11), and the N-terminal
fragment of gasdermin D (GSDMD) produced by the activated
caspase is transported to the plasma membrane to form pores,
resulting in the production of pro-inflammatory cytokines (2, 6, 7).
Among them, the release of IL-1b and IL-18 caused by GSDMD
cleavage is closely related to the activation of caspase-1 (2).
Frontiers in Immunology | www.frontiersin.org 7
Recent findings indicate that when infecting monocytes or
macrophages, DENV activates the inflammasome and caspase-1,
followed by the release of IL-1b and cellular contents, which
ultimately induces pyroptosis (88–90). Another study showed
that during DENV infection of macrophages, caspase-4 is
located upstream of caspase-1 to regulate pyroptosis (102). In
addition, both DENV EIII and NS1 proteins can induce pyroptosis
through the inflammasome NLRP3, it further causes the typical
manifestations of DHF (dengue hemorrhagic fever) such as
vascular damage, liver dysfunction, thrombocytopenia, and
hemorrhage (84, 103, 104). The pyroptosis induced by ZIKV
infection directly affects the development of neural progenitor
cells, which is closely related to the development of microcephaly
(92, 93). ZIKV’s protease NS2B3 can directly cleave GSDMD in a
caspase-independent manner to trigger cell pyroptosis, indicating a
new mechanism for ZIKV to directly induce cell death and
inflammation (105). Transcriptome analysis of JEV-infected
peritoneal macrophages found that almost all PCD pathways,
including pyroptosis, were activated after JEV infection
(94) (Table 1).
FIGURE 4 | Programmed cell death pathways during flavivirus infection. The viral proteins of DENV (88–90), WNV (91), ZIKA (92, 93) and JEV (94) can act as
cytoplasmic PAMPs to stimulate the assembly of inflammasomes, thereby activating caspase-1. Activated caspase-1 cleaves GSDMD, and then the N-terminal
fragment of GSDMD oligomerizes in the membrane to form membrane pores and initiate pyroptosis. Flavivirus infections also initiate a signal cascade mediated by
caspase-8, activated caspase-8 cleaves and activates caspase-3 to initiate apoptosis (95–98). WNV (68), ZIKA (99, 100) and JEV (101) infections can trigger
necroptosis, which depends on the formation of RIPK1 and RIPK3 complexes and the activation of downstream MLKL proteins to form channels in the membrane.
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3.2.2 Necroptosis
The activation of necroptosis depends on the phosphorylation of
MLKL (mixed-lineage kinase domain-like pseudokinase)
regulated by RIPK3 (receptor-interacting serine/threonine
protein kinase 3), which causes conformational changes and
activation of MLKL. The activated MLKL translocate and form
channels in the plasma membrane (106). Increased expression of
RIPK1, RIPK3 and MLKL proteins was detected in ZIKV-infected
astrocytes, indicating that ZIKV induced necroptosis; after
inhibiting necroptosis, virus replication increased significantly,
indicating that necroptosis has a resistance to virus replication
(99). In addition, retinopathy caused by ZIKV is associated with
inflammation mediated by necroptosis (100). Bian et al. (101)
demonstrated that necroptosis is related to neuronal loss during
JEV infection, providing evidence for necroptosis to participate in
the pathogenesis of JEV infection. Transcriptomics analysis of
JEV-infected macrophages revealed that the necroptotic pathway
was activated, which was confirmed by the immunofluorescent
staining with specific markers (94). Similarly, transcriptomics has
also found evidence of differential expression of markers of
pyroptosis and necroptosis during WNV and CHIKV
neuroinvasive diseases, but more research is needed to explain
the role of inflammatory cell death in viral neuroinvasive diseases
(91). Alternatively, necroptosis can also be activated by the sensor
Z-DNA-binding protein 1 (ZBP1), which is an ISGs containing
the RHIM domain to recruit and activate RIPK3-induced MLKL
phosphorylation, leading to cell death. It has been reported that
ZBP1-mediated cell death is involved in various viral infections
including WNV (107) and ZIKV (108).

3.2.3 Apoptosis
Pyroptosis and necroptosis-mediated lytic forms of cell death are
driven by GSDMD pores or MLKL channels, respectively. They
release inflammatory factors and other cytokines to alert nearby
cells of danger and recruit innate and adaptive immune cells (86,
87). Apoptosis was originally thought to be a way of cell death
that does not cause inflammation. It breaks down cells by
forming apoptotic bodies that wrap the cellular contents,
which is finally cleared by phagocytes (109). But new research
shows that apoptosis is not always immune-silent because of the
signal crossing between it and the lytic cell death pathways (109).
Apoptosis is driven by the initiator caspase-8, -9 and -10 cleavage
executor caspase-3 and -7. Apoptosis is induced by the “initiator”
caspase-8, -9 and -10 cleavage downstream “executor” caspase-3
and -7. According to reports, caspase-3 and caspase-8 can cleave
and activate GSDME (gasdermin E) or GSDMD, respectively,
leading to inflammatory cell death (109, 110).

DENV can induce apoptosis in a variety of cells, such as mouse
neuroblastoma cells [Neuro 2a (111)), liver cancer cells (HepG2
(112), Hep3B (113)], endothelial cells (114) and PBMCs (115),
and human monocyte-derived dendritic cells (Mo-DC) (116).
Among them, DENV2 induces vascular endothelial cell apoptosis
through FasL/Fas and XIAP-related factor 1 (XAF1)-dependent
pathways, which is related to vascular endothelial dysfunction in
the pathogenesis of DHF (117). And sphingosine kinase 2
(SPHK2) plays a pro-apoptotic effect in DENV-infected liver
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cells, which is associated with liver dysfunction (118). Within 2
hours of being infected with DENV or ZIKV, apoptosis of Aedes
aegypti midgut epithelial cells was rapidly induced to prevent
virus proliferation (119), similar results were observed in the
midgut cells of WNV-infected C. p. pipiens (120). In addition,
DENV C protein induces apoptosis by localizing to the nucleus
and interacting with Fas death domain associated protein xx
(DAXX) (121). The DENV-M ectodomain can activate the
mitochondrial-dependent apoptotic pathway after being
transported from the Golgi apparatus to the plasma membrane,
the M ectodomain of JEV, WNV and YFV also has pro-apoptotic
properties (122, 123). In addition, DENV-EIII inhibits
megakaryopoiesis by activating the apoptosis of its progenitors,
which is associated with thrombocytopenia that is frequently
observed in patients with dengue fever (124). However, DENV-
NS1 can interact with the key autophagy gene Beclin-1 to inhibit
the degradation of Beclin-1, and ultimately promote autophagy
and prevent cell apoptosis (125). The proteases NS2B3 and NS3
can trigger apoptosis via the caspase-8 or NF-kB pathway (95,
126). Another study found that DENV-NS2B3 caused endothelial
cell apoptosis by activating NF-kB pathway, indicating that
NS2B3 is involved in the pathogenesis of DHF (127). Similarly,
NS3 of JEV and WNV can also induce apoptosis by activating
caspase-3 or caspase-8, leading to extensive damage to the
nervous system (95, 96).

WNV induces cell death of various cells with the participation
of extrinsic and the intrinsic apoptotic pathways (128, 129).
Cellular microRNA Hs_154 was significantly up-regulated after
WNV infection, and subsequently caused apoptosis by targeting
anti-apoptotic protein (130). WNV C protein interacts with
importin-a and triggers phosphorylation of protein kinase C
to induce apoptosis (131). On the contrary, WNV-C can activate
PI3K/AKT signaling pathway to inhibit the activation of caspase-
3 and 8 (97), and other flavivirus capsid proteins can also protect
cells from apoptosis by activating Akt (132). WNV-NS2A is also
involved in apoptosis and pathogenesis, because after NS2A
mutation (converting alanine 30 to proline (A30P)), the
quantity of TUNEL (terminal deoxynucleotidyl transferase
dUTP nick end labeling) positive cells is greatly decreased (133).

ZIKV infection triggers apoptosis of human neural progenitor
cells (134), as evidenced by the activation of caspase 3, 7, 8 and 9,
leading to cortical thinning and microcephaly (98). Inhibition of
tumor suppressor protein p53 prevents ZIKV-mediated apoptosis
of neural progenitor cells, confirming p53 is involved in ZIKV-
induced apoptosis (135). The ZIKV-C induces ribosomal stress
and apoptosis, and the C protein of DENV has the same function
(136). ZIKV-M oligopeptide ZAMP can induce apoptosis by
activating caspase-3/7 (137). Interestingly, the subgenomic
flaviviral RNA (sfRNA) of ZIKV promotes the spread of ZIKV
by inhibiting cell apoptosis in mosquito tissues (138).

JEV can induce apoptosis through multiple signal pathways.
It can activate IRE1/JNK pathway of endoplasmic reticulum
stress (ERS) to induce apoptosis (139), it can also inhibit the
STAT3-Foxo-Bcl-6/p21 pathway to trigger apoptosis (140).
What’s more, JEV-NS4B induces apoptosis through the PERK-
ATF4-CHOP pathway in response to ER stress (141). Lee et al.
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showed that the PI3K/Akt pathway triggered by JEV and DENV-
2 has an anti-apoptotic effect to protect infected cells from early
apoptosis (142). In addition, LGTV-E also induces apoptosis
(143), and LGTV-NS3 is a multifunctional protein that binds to
caspase-8 and induces apoptosis (144). Activation of the
apoptotic pathway can also be observed in TBEV-infected DCs
(145). Collectively, these findings indicate that flavivirus can
regulate cell apoptosis (Table 1).

3.3 Excessive Pro-Inflammatory Cytokines
and Diseases
Excessive activation of the inflammatory cell death can cause severe
inflammation and tissue damage (86). For instance, in patients with
dengue fever, the severity of the disease is connected with high
levels of IL-1RA and CXCL10 in the plasma (146). The detection of
severe cases of dengue fever found that the expression of pro-
inflammatory cytokines (IL-1, TNFa), anti-inflammatory
cytokines IL-10 and chemokines (IL-8, CXCL10) were
significantly up-regulated, and this cytokine storm was associated
with plasma leakage and hemorrhage (147). The recognition of
DENV NS1 by TLR4 can also lead to the pro-inflammatory
cytokines production, which contributes to vascular damage
(148). In addition, some pro-inflammatory cytokines and IFN-
stimulated chemokines are closely related to the severity of ZIKV.
Studies have found that ZIKV patients with moderate symptoms
and viremia have higher levels of IL-8, IL-1RA, CXCL10 and
CCL2 compared with patients with mild symptoms or no
viremia (149). This means that immunopathology is an
important part of flavivirus pathogenesis, and we need
further research to fully clarify the pathways and functional
consequences of these pro-inflammatory cytokines released
during flavivirus infection.
4 FLAVIVIRUS IMMUNE EVASION

The innate immune response uses PRRs to identify pathogens
and triggers inflammatory response and programmed cell
death to prevent virus invasion and promote its clearance.
On the other hand, flavivirus have evolved the ability to limit
the innate immune responses to promote viral replication.
Among them, the most in-depth research on the immune
evasion mechanism of flavivirus is the regulation of type I
interferon signals (Figure 3).

DENV NS1 protein interacts with ApoA1, a key component
of HDL (high-density lipoprotein), to change the sensitivity of
the membrane to viral infections, and ultimately evade the
immune response (150). ZIKV-NS1 can inhibit IFN-a
response mediated by CD303 (151), Xia et al. (152) found that
ZIKV-NS1 inhibits RIG-I-mediated activation of IFN-b
promoter, the same author proved that ZIKV NS2A/B, NS4A/
B and NS5 could inhibit IFN-b by reducing the phosphorylation
of IRF3 at Ser-396. New research shows that cGAS is cleaved by
caspase-1 downstream of the NLRP3 inflammasome activated by
ZIKV-NS1 (153). Furthermore, ZIKV NS1 and NS4B interact
with TBK1 to prevent TBK1 oligomerization, phosphorylation
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and its mediated activation of IFN-I (154). The NS1 of JEV could
inhibit the production of IFN-I by targeting MAVS (155).

In addition, DENV NS2A, NS4A and NS4B can suppress the
transcription of ISRE promoter and ISGs by blocking the
phosphorylation of STAT1/STAT2 and hinder their nuclear
localization to inhibit the IFN response (156), and the NS2A of
ZIKV and the NS4B of WNV and YFV have similar functions
(157–159). NS2A and NS4B from multiple DENV serotypes
can also inhibit IFN production by targeting IRF3 and TBK1,
but only NS4A from serotype-1 can inhibit TBK1 (160).
ZIKV NS2A and NS4A proteins antagonize the production of
IFN-b mediated by MDA5/RIG-I (161). The conserved
phosphomimetic motif in NS3 of DENV, WNV and ZIKV
competes with RIG-I to bind 14-3-3ϵ, and finally prevents
RIG-I from translocating to mitochondria (162). The
expression of DENV NS2B can suppress the cGAS/STING-
dependent IFN-b promoter activity and down-regulate the
level of cGAS protein (163), DENV NS2B3 protease inhibits
the production of type I IFN by cleaving STING (61, 164).
Similar to DENV NS2B3, ZIKV NS2B3 also cleaves STING to
inhibit IFN production (48). Furthermore, ZIKV NS2B3
degrades JAK1 in a proteasome-dependent manner, which
ultimately leads to the down-regulation of IFN-mediated ISGs
expression (165). According to reports, DENV NS4A binds to
MAVS and blocks its interaction with RIG-I and downstream
innate immune signals (166). In addition, TBEV antagonizes
IRF-1 and IFN-I signaling to suppress dendritic cells function
(167), and TBEV-NS4A can inhibit the phosphorylation of
STAT1 and STAT2 to block type I and II IFN signaling (168).
DENV NS4B can also trigger mitochondria elongation, causing
altered MAMs (mitochondria-associated membranes) and
reducing IFN production-possibly by preventing the
recruitment of activated RIG-I to MAMs (169).

The NS5 of DENV and other flavivirus (WNV, ZIKV, YFV,
JEV, TBEV, LGTV) can inhibit IFN signaling by targeting
different steps and participants of the IFN-I signaling pathway
(170–173). The NS5 protein of DENV and ZIKV binds to STAT2
and degrades STAT2 via the proteasome pathway, thereby
inhibiting IFN-a signal transduction (170, 174–177), while
YFV NS5 interacts with STAT2 and inhibits downstream ISRE
activation (178). The DENV NS5 2′-O-methylation of 5′ also
protects the virus from detection by RIG-I (179). Further
experiments showed that ZIKV NS5 localizes to the nucleus
and inhibits IRF3-mediated IFN-I transcriptional activation, and
independent of its effect on STAT2 degradation (180).
Additionally, the interaction between ZIKV NS5 and IKKϵ
leads to a decrease in IKKϵ protein level and phosphorylation,
thus blocking the activation of IRF3 (181). Meanwhile,
WNV-NS5 has been proven to effectively prevent STAT1
phosphorylation and translocation to the nucleus (158, 182);
JEV NS5 protein blocks IFN-I signaling and antiviral response by
inhibiting the activation of transcription factors IRF3 and NF-kB
(183). Moreover, the NS5 protein of TBEV, LGTV andWNV can
interfere with the maturation of the IFNAR1 receptor and thus
affect the IFN-I signaling pathway (184–186). In addition,
DENV’s sfRNA can interact with TRIM25 to prevent its
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activation and interaction with RIG-I (187). ZIKV sfRNA can
inhibit IFN-b promoter activation mediated by RIG-I or MDA5
(188), while JEV sfRNA reduces IRF3 phosphorylation
and nuclear translocation, as well as downstream IFN-b
expression (189).
5 CONCLUDING REMARKS

We discussed the perception and recognition of various
members of flavivirus by the innate immune system, and the
inflammatory cell death pathways initiated by the host in
response to flavivirus infections. Appropriate cell death and
inflammatory cytokines release are beneficial for host to resist
virus invasion. On the contrary, excessive cell death and
inflammation can cause harmful cytokine storms and tissue
damage. Therefore, the innate immune response and cell death
induced by flavivirus need to be strictly regulated to avoid
excessive inflammatory response while maintaining
antiviral function.

The reduction of innate antiviral defense ability and the
excessive production of inflammatory cytokines may be some
of the driving characteristics of flavivirus-mediated diseases.
Therefore, we should design treatment strategies based on the
mechanisms by which different flavivirus regulate innate
immune responses, and evaluate the clinical efficacy of targeted
innate immune pathways. This article will help us deeply
understand the recognition and response of the innate immune
Frontiers in Immunology | www.frontiersin.org 10
system after flavivirus infection, as well as the regulation of
different cell death pathways, and lay the foundation for further
development of antiviral strategies.
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