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Background. Nonalcoholic fatty liver disease (NAFLD) is becoming a critical risk of hepatocellular carcinoma (HCC). As both
NAFLD and HCC are heterogeneous diseases, this study aims to identify the similarity between the subtypes of NAFLD and HCC
based on gene modules.Methods. Coexpressed gene modules were extracted for both NAFLD and HCC.+e association between
the coexpressed genemodules of NAFLD andHCCwas evaluated by Fisher’s exact test.+e overlapping coexpressed genemodule
was validated in three independent human NAFLD datasets. Furthermore, the preserved gene module was assessed in four
independent NAFLD mouse datasets. +e significantly enriched motifs within the gene module were inferred from upstream
sequences. Results. Four coexpressed gene modules were extracted from NAFLD. Of the four coexpressed gene modules, one was
significantly overlapping with a module of HCC.+is overlapping genemodule was regarded as the HCC-associated NAFLD gene
module (HANM). Enrichment analysis of biological processes revealed inflammatory response in HANM. Specifically, within the
inflammatory response biological process, IL-17, TNF-α, and NF-κB signaling pathways were enriched. HANM was found to be
strongly or moderately conserved across four mouse NAFLD datasets. Motif analysis of the upstream genomic sequences of
HANM revealed nine transcription factors (FLI1, NRF1, ZBTB33, ELK1, YY1, ZNF143, TAF1, SF1, and E2F1), of which three
transcription factors (YY1, E2F1, and ZNF143) were significantly highly expressed in the NAFLD patients and exhibited survival
significance in HCC. Conclusion. +is study demonstrated a robust way to identify the sharing gene signature between subtypes of
NAFLD and HCC, which contributed to a comprehensive understanding of pathogenesis from NAFLD to HCC.

1. Background

Nonalcoholic fatty liver disease (NAFLD) is a spectrum of
chronic liver disease spanning excessive cytoplasmic retention
of triglyceride, steatosis, nonalcoholic steatohepatitis
(NASH), and hepatic fibrosis and cirrhosis [1]. With the
global pandemic of obesity, NAFLD is becoming a critical
issue [2]. +e prevalence of NAFLD increased from 15% to
25% during 2005–2010 [3]. Of NAFLD patients, approxi-
mately 2.4–12.8% will develop into progressive liver disease
[4] including hepatocellular carcinoma (HCC). However,
NAFLD-associatedHCC risk has been largely underestimated
because of misdiagnosis [5]. Recent studies have recognized
NAFLD as the most common risk for HCC [6]. AUSA cohort

study has reported that 59% of HCC patients were associated
with NAFLD or NASH [7]. Other studies from Germany [8],
Italy [9], and Japan [10] have reported that 41.7–49% of HCC
patients without cirrhotic background were related to
NAFLD. +us, it is urgent to understand the associated
mechanisms behind them.

NAFLD is a disease associated with the necroin-
flammatory process [11], DNA damage response [12], im-
mune responses [13], and oxidative stress (reactive oxygen
species, oxidation, and endoplasmic reticulum) [14]. How-
ever, both NAFLD andHCC are highly heterogeneous. Direct
comparison between them with regular statistical tests could
be problematic. Alternatively, weighted correlation network
analysis (WGCNA) can subtype HCC and NAFLD patients
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and identify the underlying coexpressed gene modules at the
same time [15]. +e underlying coexpressed gene module of
the associated HCC and NAFLD subtypes, hereafter, was
named HANM (the HCC-associated NAFLD module). +e
construction of HANM has multiple applications. First, it
could improve our understanding of the NAFLD-to-HCC
conversion mechanism. Second, the identification of HANM
could help to identify the patients with HCC risk. +ird,
HANM could be used to assess the animal models which were
used in NAFLD/HCC research studies [16–19].

In this study, we first identified the coexpressed gene
modules of both NAFLD and HCC. Module overlapping
analysis was used to find HANM. HANMwas then validated
in three independent NAFLD human datasets and four
mouse datasets. Functions of HANM were further charac-
terized with gene ontology, KEGG, and motif analysis.

2. Materials and Methods

2.1. Datasets. Human datasets (GSE89632, GSE59045,
GSE126848, and GSE83452) and mouse datasets (GSE13
7449, GSE128940, GSE114261, and GSE83596) were ob-
tained from the Gene Expression Omnibus (GEO) database
(http://www.ncbi.nlm.nih.gov/geo/). +e raw data were
called and normalized with the Robust Multiarray Average
(RMA) method and log2-transformed. +e other HCC gene
expression dataset was downloaded from TCGA (https://
portal.gdc.cancer.gov/) and used in accordance with the
publication guidelines of TCGA (http://cancergenome.nih.
gov/publications/publicationguidelines). +e value of frag-
ments per kilobase million was used as gene expression.

2.2. Coexpressed Gene Module Construction. R package
WGCNA [15] was used to construct the coexpressed gene
modules according to its manual (https://horvath.genetics.
ucla.edu). +e parameter, soft power, was chosen by a
scale-free topology model fit. An unsigned correlation
coefficient is regarded as the distance between two samples.
A topological network was thus constructed, hierarchically
clustered, and dynamically cut into multiple gene modules.
Gene modules were merged according to Pearson’s cor-
relation coefficient between their eigengenes.

2.3. Gene Module Preservation Analysis. To evaluate the
clinical significance of coexpressed gene modules, the overall
survival proportion was regressed against survival time with
the Cox proportional hazard model. Expression over the
median was defined as the high expression and that below
the median as low expression. +e Cox proportional hazard
model was built with the R package “survival.” A log-like-
lihood test was used to assess the significance. Modules with
a higher survival probability were further enriched with gene
ontology biological processes.

Human genes were mapped to mouse genes (ortholo-
gous genes) according to the Mouse Genome Informatics
database (http://www.informatics.jax.org). Gene module
preservation was estimated by averaging the several pres-
ervation statistics generated through 1000 permutations of

the original data. A Zsummary value is calculated, which
summarizes the evidence that a module is preserved and
indicative of module robustness and reproducibility.
According to WGCNA recommendation [20], the preser-
vation was defined as strong for Zsummary> 10, moderate for
2<Zsummary <10, and weak for Zsummary<2.

2.4. Gene FunctionAnalysis. ClusterProfiler [21] was utilized
to perform the enrichment analysis of biological processes of
gene ontology and KEGG pathways (https://www.genome.jp).

2.5. Searching Shared Transcription Factors. iRegulon
(http://iregulon.aertslab.org) [22] was used to perform the
enrichment analysis of shared transcription factors in a gene
module. As suggested, the transcription factors with a
normalized enrichment score >3.0 were considered
significant.

2.6. Survival Analysis. +e survival analysis was conducted
with a web service [23]. +e parameter cutoff of gene ex-
pression was set as “optimal.” Risk factors (alcohol con-
sumption and hepatitis virus) were set none. Totally, 91
samples were used in this analysis.

3. Results

3.1. Coexpressed Gene Modules in NAFLD Patients. +e
whole analysis procedure is illustrated in Figure 1. First, gene
expression of a NAFLD dataset, GSE89632, was directly
parsed from the prepared series matrix file and hierarchically
clustered. Dynamic cutting and merging of the hierarchical
clustering tree generated six coexpressed gene modules. +ey
were named with different colors automatically by the
WGCNA program (Supplementary Figure 1). Module sim-
ilarity was estimated by Pearson’s correlation coefficient
between module eigengenes. Modules with a similarity >0.75
were merged. Pearson’s correlation coefficient between the
eigengenes of each merged module and the NAFLD status is
shown in Figure 2(a). +ree gene modules (blue, yellow, and
brown) were significantly associated with NAFLD. Gene
ontology analysis of biological processes found no enriched
biological process in the blue module (Figure 2(b)). +e
yellow module was found enriched in the inflammatory re-
sponse, positive regulation of the metabolic process, positive
regulation of the nitrogen compound metabolic process, and
regulation of the apoptotic process (Figure 2(c), Supple-
mentary Table 1). Specifically, of the inflammatory response
biological process, IL-17, TNF-α, and NF-κB signaling
pathways were enriched (Supplementary Table 2). +e brown
gene module is found enriched in the regulation of the ni-
trogen compoundmetabolic process, regulation of the cellular
biosynthetic process, and cellular response to stress
(Figure 2(d)).

3.2. HCC-Associated NAFLD Coexpressed Gene Modules.
An HCC gene expression dataset was downloaded from
TCGA (https://portal.gdc.cancer.gov/). Gene modules in
HCC were constructed as NAFLD (Supplementary
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Figure 2). After dynamical cutting of the coexpressed
hierarchical tree, we identified 18 gene modules in HCC.
+ese gene modules were then compared to the modules
from the NAFLD dataset. Differential significance was
assessed by Fisher’s exact test (Figure 3(a)). Of the six gene
modules from the NAFLD dataset, the yellow gene
module was significantly associated with the gene mod-
ules (turquoise and brown) from HCC (p value <0.001).
+e two gene modules from HCC were functionally
similar to the yellow module of NAFLD in the biological
processes (Figures 3(b) and 3(c)), molecular functions
(Supplementary Figures 3A-3B), and cellular components
(Supplementary Figures 3C-3D).

3.3. Gene Module Consistency in Human Patients and Mouse
Models with NAFLD. +e identified gene modules associ-
ated with HCC were further validated in three independent
human NAFLD datasets. +e three datasets (GSE59045,
GSE126848, and GSE83452) were downloaded from the
GEO database. A permutation test was used to calculate the
empirical p value of the statistics Zsummary, which indicated
the preservation of the coexpressed gene network in one
dataset against another. +e preservation was defined as
strong for Zsummary> 10, moderate for 2<Zsummary< 10, and
weak for Zsummary< 2. +e yellow gene module was found
strongly preserved in two datasets andmoderately conserved
in the other one (Figure 4(a)).

We further validate these gene modules in mouse
models. Four datasets (GSE137449, GSE128940, GSE114261,
and GSE83596) from mouse models were compiled. Zsum-

mary scores indicated that the yellow module was the most
conserved gene module between NAFLD human patients
and mouse models. +e yellow module was strongly con-
served in GSE137449, moderately conserved in GSE128940
and GSE83596, and weakly conserved in GSE114261
(Figure 4(b)). +e yellow module was, hereafter, named

HANM (the HCC-associated NAFLD module, Supple-
mentary Table 1).

3.4. Motif Characterization of HANM. To examine the
characters of HANM, we studied the enrichment of its
upstream motifs through a web service, iRegulon (http://
iregulon.aertslab.org) [22].+e enrichedmotifs are shown in
Figure 5(a). +ose motifs were bound by the transcription
factors including FLI1, NRF1, ZBTB33, ELK1, YY1,
ZNF143, TAF1, SF1, and E2F1 (Table 1). Likewise, we also
enriched the upstream motifs of HANM homolog genes in
mice. +e enriched motifs were bound by the transcription
factors including ZBTB33, NRF1, FLI1, ZFP143, UQCRB,
ZFP42, E2F3, and RARA (Table 2). +ree transcription
factors (FLI1, NRF1, and ZBTB33) were shared by the two
species.

We selected the samples with high correlation to the
eigengene of HANM (Pearson’s correlation coefficient>0.9,
p< 0.05). +ese samples were then compared to healthy
samples by each HANM gene with the limma package
(https://bioconductor.org). Fold change >1.8 and false dis-
covery rate (FDR)< 0.05 were used as a cutoff. Totally, 131
differentially expressed genes were found. Of the nine
transcription factors, six (ZBTB33, YY1, TAF1, E2F1, SF1,
and ZNF143) were significantly highly expressed in the
NAFLD patients with FDR< 0.05 and fold change> 1.8.

We further investigated the survival effect of these six
differentially expressed transcription factors. Patients were
split into two groups by the optimal cutoff of each gene [23].
A log-rank test was used to assess the survival differences
between the two groups. Of the six differentially expressed
transcription factors, YY1, ZNF143, and E2F1 were signif-
icantly associated with survival with p value� 0.0015, 0.0051,
and 0.0015, respectively. +eir Kaplan–Meier curves are
plotted in Figures 5(b)–5(d).

HCC expression dataset from TCGADownload NAFLD datasets from GEO

WGCNA analysis of NAFLD WGCNA analysis of HCC

Similarity between NAFLD and HCC

Characterization of HANM by motif 
analysis and survival analysis

Validation of the preserved module 
(HANM) in NAFLD human patients and 

the mouse model

Figure 1: Flowchart of this study. Validation of the preserved module (HANM) in NAFLD human patients and the mouse model.

Journal of Oncology 3

http://iregulon.aertslab.org/
http://iregulon.aertslab.org/
https://bioconductor.org/


4. Discussion

In this study, we had inferred multiple coexpressed gene
modules in NAFLD and HCC patients. Association analysis
between NAFLD and HCC identified three overlapping gene
modules (blue, yellow, and brown gene modules). Only in a
part of NAFLD patients, the gene expression was positively
correlated with the eigengene of HANM, which was rea-
sonable since not all HCC patients came from NAFLD. In
this sense, direct NAFLD vs. HCC comparison was defective
to identify the faithfully associated genes between NAFLD
and HCC.

Comparing the gene modules of NAFLD to those of
HCC, the brown and yellow gene modules of NAFLD were
found associated with the turquoise and brown modules of
HCC, respectively. +ough the brown and yellow gene

modules were overlapped in NAFLD and HCC, only the
yellow gene module showed consistency in the independent
NAFLD human and mouse datasets. +us, we only con-
sidered the yellow gene module as HANM. Besides, HANM
has the highest Zsummary score in the choline-deficient,
L-amino acid-defined high-fat diet mouse model
(GSE137449), which implies the usefulness of this mouse
model in the study of pathogenesis from NAFLD to HCC.

HANM was enriched in immune and metabolism-re-
lated biological processes including inflammatory response,
positive regulation of the metabolic process, positive regu-
lation of the nitrogen compound metabolic process, and
regulation of the apoptotic process. +ese biological pro-
cesses had a high association with NAFLD-related HCC.
Specifically, of the inflammatory response biological process,
IL-17, TNF-α, NF-κB signaling pathways were enriched
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Figure 3: Module overlap between human NAFLD and HCC samples. (a) Module overlap is indicated by the number of shared genes and
the negative log10-transformed p value (in parenthesis). (b) Comparison of biological processes between the yellow module of human
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Module

0

10

20

Z s
um

m
ar

y

GSE126848GSE59045 GSE83452

Brown
Turquoise
Red

Green
Yellow
Blue

(a)

0

5

10

Z s
um

m
ar

y

GSE128940 GSE114261GSE137449 GSE83596

Module
Brown
Turquoise
Red

Green
Yellow
Blue

(b)

Figure 4: Gene module preservation between human and mouse. (a)+e gene module preservation of the human NAFLD gene modules in
human NAFLD. (b) +e gene module preservation of the human NAFLD gene modules in mouse NAFLD models.

Journal of Oncology 5



(Supplementary Table 2). A mechanism study demonstrated
that TNF-alpha and IL-6 can enhance HCC in NAFLD or
obesity population [24], which could be activated by the
elevated ER stress in NAFLD patients [25].

To further characterize HANM, we investigated the
upstream transcription factors in accord to the enriched
motifs upstream of HANM genes. Nine transcription factors
were retrieved. Of the nine transcription factors, three

transcription factors (FLI1, NRF1, and ZBTB33) were
conserved in the mouse models. +e function of FLI1 and
ZBTB33 in NAFLD is still unclear. FLI1 is a protooncogene
and can promote metastasis by regulating MMP2 signaling
[26]. ZBTB33 is also found to be associated with diabetes
mellitus and hepatocellular carcinoma [27]. NRF1 is clearly a
NAFLD pathogenic gene. As reported, NRF1 is involved in
mediating the activation of oxidative stress response genes
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Figure 5: Transcription factors regulating the HCC-associated NAFLD module. (a) +e enriched motifs of the HCC-associated NAFLD
module. (b) +e Kaplan–Meier plot for YY1 in human liver cancer. (c) +e Kaplan–Meier plot for ZNF143 in human liver cancer. (d) +e
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[28]. After liver-specific deletion of NRF1, mice could de-
velop all NAFLD features including steatosis, fibrosis, cir-
rhosis, and liver cancer [29, 30].

Of the nine transcription factors, six (ZBTB33, YY1,
TAF1, E2F1, SF1, and ZNF143) were significantly highly
expressed in the NAFLD patients with FDR < 0.05. YY1,
E2F1, and ZNF143 also have survival significance in HCC.
+e three genes have a strong association with NAFLD
according to the literature. It has been reported that YY1 is
associated with NAFLD progression undergoing bariatric
surgery [31]. +e expression level of YY1 is significantly
correlated with NAFLD biomarkers including serum
glucose, insulin, HDL, LAT, and AST. E2F1 was con-
sidered a novel regulator of metabolism [32]. E2F1 de-
letion can completely abrogate hepatic steatosis in
different murine models [33]. ZNF143 in NAFLD has been
identified in an independent study [34]. ZNF143 plays a
key role in the regulation of the metabolic network about
cell survival and differentiation [35, 36]. +ese results
demonstrated the reliability of the identified gene module,
HANM.

It was noteworthy that NAFLD would express higher
alcohol-metabolizing genes including ADH, ALDH,
CYP2E1, and CAT [37]. But we failed to find any of those
genes in HANM, which suggested that the alcohol-metab-
olizing genes, as characteristics of NAFLD, could not be the
cause of further development of HCC.

In summary, this study identified an HCC-associated
NAFLD module. It was then validated in multiple datasets
from human and mouse models. Its functions were char-
acterized by gene ontology, KEGG pathway, motif, and
survival analysis. +e identification of this HCC-associated
NAFLD module could help to understand the pathogenesis
from NAFLD to HCC.
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WGCNA analysis of expression profiles of human HCC
samples. Gene expression of human HCC samples was
hierarchically clustered and dynamically cut into gene
modules named by different colors. Gene modules with
highly correlated eigengenes (Pearson’s correlation coef-
ficient > 0.75) were merged. Supplementary Figure 3.
Functional association between NAFLD and HCC. (a)
Molecular function similarity between the turquoise
module in HCC and the yellow module in NAFLD. (b)
Molecular function similarity between the brown module
in HCC and the yellow module in NAFLD. (c) +e cellular
component similarity between the turquoise module in
HCC and the yellow module in NAFLD. (d) +e cellular
component similarity between the brown module in HCC
and the yellow module in NAFLD. (Supplementary
Materials)

Table 1: Enriched transcription factors in human.

TF NES #Targets #Motifs/Tracks
FLI1 5.356 373 84
NRF1 4.853 247 10
ZBTB33 4.559 114 5
ELK1 4.437 246 4
YY1 3.896 121 12
ZNF143 3.858 47 2
TAF1 3.138 405 2
SF1 3.114 115 1
E2F1 3.010 29 1

Table 2: Enriched transcription factors in mouse.

TF NES #Targets #Motifs/Tracks
ZBTB33 5.367 152 5
NRF1 5.089 253 12
FLI1 5.006 520 86
ZFP143 4.139 110 4
UQCRB 3.713 114 2
ZFP42 3.392 71 4
E2F3 3.166 43 2
RARA 3.101 122 1
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[23] O. Menyhárt, Á. Nagy, and B. Győrffy, “Determining con-
sistent prognostic biomarkers of overall survival and vascular
invasion in hepatocellular carcinoma,” Royal Society Open
Science, vol. 5, no. 12, Article ID 181006, 2018.

[24] E. J. Park, J. H. Lee, G.-Y. Yu et al., “Dietary and genetic
obesity promote liver inflammation and tumorigenesis by
enhancing IL-6 and TNF expression,” Cell, vol. 140, no. 2,
pp. 197–208, 2010.

[25] C. Ma, Q. Zhang, and T. F. Greten, “Nonalcoholic fatty liver
disease promotes hepatocellular carcinoma through direct
and indirect effects on hepatocytes,” �e FEBS Journal,
vol. 285, no. 4, pp. 752–762, 2018.

[26] H. Wang, Y. Ou, J. Ou et al., “Fli1 promotes metastasis by
regulating MMP2 signaling in hepatocellular carcinoma,”
Molecular Medicine Reports, vol. 17, pp. 1986–1992, 2018.

[27] G.-M. Liu, H.-D. Zeng, C.-Y. Zhang, and J.-W. Xu, “Key
genes associated with diabetes mellitus and hepatocellular
carcinoma,” Pathology-Research and Practice, vol. 215,
no. 11, Article ID 152510, 2019.

[28] C. Podrini, M. Borghesan, A. Greco, V. Pazienza,
G. Mazzoccoli, and M. Vinciguerra, “Redox homeostasis and
epigenetics in non-alcoholic fatty liver disease (NAFLD),”
Current Pharmaceutical Design, vol. 19, no. 15, pp. 2737–2746,
2013.

[29] P. Maurizio and E. Novo, “Nrf1 gene expression in the liver: a
single gene linking oxidative stress to NAFLD, NASH and
hepatic tumours,” Journal of Hepatology, vol. 43, no. 6,
pp. 1096-1097, 2005.

[30] G. Baskol, M. Baskol, and D. Kocer, “Oxidative stress and
antioxidant defenses in serum of patients with non-alcoholic
steatohepatitis,” Clinical Biochemistry, vol. 40, no. 11,
pp. 776–780, 2007.

[31] X. Yuan, J. Chen, Q. Cheng et al., “Hepatic expression of Yin
Yang 1 (YY1) is associated with the non-alcoholic fatty liver
disease (NAFLD) progression in patients undergoing bariatric
surgery,” BMC Gastroenterology, vol. 18, p. 147, 2018.

[32] P. D. Denechaud, L. Fajas, and A. Giralt, “E2F1, a novel
regulator of metabolism,” Frontiers Endocrinology (Lau-
sanne), vol. 8, p. 311, 2017.

[33] P. D. Denechaud, I. C. Lopez-Mejia, A. Giralt et al., “E2F1
mediates sustained lipogenesis and contributes to hepatic

8 Journal of Oncology



steatosis,”�e Journal of Clinical Investigation, vol. 126, no. 1,
pp. 137–150, 2016.

[34] A. D. Lake, A. L. Chaput, P. Novak, N. J. Cherrington, and
C. L. Smith, “Transcription factor binding site enrichment
analysis predicts drivers of altered gene expression in non-
alcoholic steatohepatitis,” Biochemical Pharmacology, vol. 122,
pp. 62–71, 2016.

[35] C. E. Grossman, Y. Qian, K. Banki, and A. Perl, “ZNF143
mediates basal and tissue-specific expression of human
transaldolase,” Journal of Biological Chemistry, vol. 279,
no. 13, pp. 12190–12205, 2004.

[36] B. Ye, G. Yang, Y. Li et al., “ZNF143 in chromatin looping and
gene regulation,” Frontiers in Genetics, vol. 11, p. 338, 2020.

[37] R. Zhu, S. S. Baker, C. A.Moylan et al., “Systematic transcriptome
analysis reveals elevated expression of alcohol-metabolizing
genes in NAFLD livers,”�e Journal of Pathology, vol. 238, no. 4,
pp. 531–542, 2016.

Journal of Oncology 9


