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Abstract. The NUM1 gene is involved in the control of 
nuclear migration in Saccharornyces cerevisiae. The 
content of NUM1 mRNA fluctuates during the cell cy- 
cle, reaching a maximum at S/G2 phase, and the trans- 
lation product Numlp  associates with the cortex of 
mother cells mainly during S, G2, and mitosis, as seen 
by indirect immunofluorescence. The nuclear spindle in 
NUMl-deficient large-budded cells often fails to align 
along the mother/bud axis, while abnormally elongated 
astral microtubules emanate from both spindle pole 
bodies. A numl  null mutation confers temperature sen- 

sitivity to the cold-sensitive a-tubulin mutant tubl-1, 
and shows synthetic lethality with the 13-tubulin mutant 
alleles tub2-402, tub2-403, tub2-404, and tub2-405. De- 
letion mapping has defined three functionally impor- 
tant Numlp  regions: a potential EF hand Ca 2+ binding 
site, a cluster of potential phosphorylation sites and a 
pleckstrin homology domain. The latter domain ap- 
pears to be involved in targeting Numlp  to the mother 
cell cortex. Our data suggest that the periodically ex- 
pressed NUM1 gene product controls nuclear migra- 
tion by affecting astral microtubule functions. 

T 
HE proper distribution of segregated chromosomes 
between mother and daughter cells requires the mi- 
gration of the nucleus to the bud neck and the posi- 

tioning of the pre-anaphase spindle along the mother/bud 
axis during the G2 phase of the yeast cell cycle (Byers and 
Goetsch, 1975; Pringle and Hartwell, 1981). Nuclear mi- 
gration and positioning critically depends on the functions 
of astral microtubules (AMTs) 1 emanating from the cyto- 
solic side of the two spindle pole bodies (SPBs) (Palmer et 
al., 1992), as manifested by the effects of microtubule in- 
hibitors (Jacobs et al., 1988) and by the phenotypic prop- 
erties of [3-tubulin (tub2) mutants (Huffaker et al., 1988; 
Palmer et al., 1992). Furthermore, the nuclear migration 
defects of actin mutants suggest that actin may play a role 
in tethering astral microtubules to the cytoskeleton during 
the migration process (Palmer et al., 1992). The asymmet- 
ric segregation of the old and new SPB between mother 
and daughter cell, respectively (Vallen et al., t992), sug- 
gests a specific functional orientation of SPBs toward the 
cortex of mother and bud compartment at G2, presumably 
mediated by AMTs. 
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At least four additional genes (DHC1/DYN1, JNM1, 
ACT3/ACT5 and NUM1) are involved in nuclear migra- 
tion control, since strains lacking one of these nonessential 
genes accumulate cells with misoriented nuclei dividing in 
the mother compartment. DHC1/D YN1 encodes the heavy 
chain of the dynein motor complex which is probably in- 
volved in pulling the bud-proximal astral microtubules 
into the bud (Li et al., 1993; Eshel et al., 1993), whereas 
JNM1 appears to encode an accessory dynein protein 
involved in tethering astral microtubules to the bud cy- 
toskeleton (McMillan and TatcheU, 1994). The actin/Arpl- 
related ACT3/ACT5 protein is a homolog of human et-cen- 
tractin and a major component of a dynactin complex 
believed to support the dynein motor activity (Muhua et 
al., 1994; Clark and Meyer, 1994). 

The NUM1 gene (Kormanec et al., 1991) encodes a 313- 
kD protein containing twelve near-identical tandem repeats 
of a peptide of 64 residues; the repeat unit itself is com- 
posed of two proline-punctuated homologous 32-amino 
acid peptides each containing two a-helical regions. The 
amino-terminal region exhibits a coiled-coil (heptad re- 
peat) domain (Lupas et al., 1991) followed by a potential 
EF hand Ca2+-binding site, and a pleckstrin homology 
(PH) domain was recently detected at a carboxy-terminal 
region of Numlp (Gibson et al., 1994). 

The deletion of the NUM1 gene does not affect viability, 
but causes the accumulation of large-budded cells with two 
DAPI-stained chromosomal regions in the mother com- 
partment. Furthermore, NUMl-deficient cells tend to dip- 
loidize during mitosis, and homozygous numl diploids 
form multispored asci upon sporulation (Kormanec et al., 
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1991). More recently, a polymorphism of the repetitive re- 
gion of NUM1 (allelic with RVS272) was reported in vari- 
ous strains, with repeat numbers varying between 1 and 
24; furthermore, the percentage of binucleated large-bud- 
ded mother cells in rvs272 or numl populations was found 
to increase after entering stationary phase (Revardel and 
Aigle, 1993). 

In this study we report the cell cycle-specific expression 
and cellular localization of the NUM1 gene product, the 
effects of NUM1 deletions on microtubule morphology 
and nuclear positioning, and genetic interactions with tu- 
bulin mutants. We further report evidence that the car- 
boxy-terminal PH domain is required to target Numlp to 
the mother cortex. Our observations suggest that Numlp 
controls the proper alignment of the nuclear spindle along 
the mother/bud axis by affecting microtubule functions. 

Materials and Methods 

Reagents 

13-Glucuronidase/Arylsulfatase, 4',6'-diamino-2-phenylindole (DAPI) and 
restriction endonucleases were purchased from Boehringer (Mannheim 
FRG). Monoclonal anti-chicken brain ~-tubulin, FlTC-labeled goat anti- 
rabbit IgG and FITC-labeled rabbit anti-goat IgG were purchased from 
Sigma Chemical Co. (St. Louis, MO). Rhodamine-conjugated phalloidin 
was purchased from Molecular Probes, Inc. (Eugene, OR). Glutathione- 
Sepharose and protein A-Sepharose were purchased from Pharmacia 
LKB (GmbH, Freiburg, FRG). Plasmids and E. coli strains were pur- 
chased from Stratagene GmbH (Heidelberg, FRG). Reagents for DNA 
purification, RNA, and protein purification were purchased from Sigma 
and from Qiagen GmbH (Hilden, FRG). Restriction enzymes, ligases, and 
nucleases were purchased from New England BioLabs (GmbH, Schwal- 
bach, FRG). a pheromone was a kind gift of W. Schmidt. 

Plasmid Constructions 

Fig. 1 shows the restriction map of the genomic KGD2-NUM1 region, in- 
dicating sites of deletions and subcloned regions of the NUM1 gene. The 
NUM1 flanking and coding region was subcloned in pUC19 as an up- 
stream 4.4-kb SalI-XbaI fragment (pJK23), a central 4.3-kb XbaI frag- 
ment (pJK24), and a downstream 8.4-kb HindflI fragment (pJK27) (Kor- 
manec et al., 1991). pJK28 was obtained by introducing a 1.6-kb YEp24/ 
HindllI(repaired) fragment containing the URA3 gene into the Xbal(re- 
paired) site of pUC19. 

Plasmid pFM18 contains the entire NUM1 flanking and coding region 
in the CEN6/ARSH4/HIS3 vector pRS313. Construction steps: a 4.3-kb 
pJK24-Xbal fragment was inserted into Xbaf-linearized pJK23 to obtain 
pFM10; a 5.2-kb pFM10/PstI fragment was inserted into PstI-linearized 
pEMBL19 to obtain pFM13; a 5.1-kb pJK27/BstEII fragment was inserted 
into BstEll-linearized pFMI3 to obtain pFM15; a 10-kb pFM15/BamHI 
fragment (using a vector-derived BamHI site) was inserted into pRS313 to 
obtain pFM18. 

Plasmid pFM70 (numl-AI::URA3) was obtained by inserting an end- 
repaired 1.6-kb YEP24/HindlII URA3 fragment between the flanking 
SpeI sites of pFM18. Alternatively, the same URA3 fragment was inserted 
between AsufI and SpeI sites of pFM18, followed by the insertion of a 1-kb 
Sacl fragment containing the NUMI 3' end into the single SacI site, to ob- 
tain pFM75 (numl-A2::URA3). The two numl::URA3 alleles were intro- 
duced into yeast as BstEfI-HindlII fragments of pFM70 and pFM75, re- 
spectively. 

Construction of pFM19 (numl-A3): a 4.3-kb pJK24/XbaI fragment was 
inserted into Xbal-linearized pBluescript II KS to obtain pFM4; a 1.2-kb 
BamHI-SalI fragment of pJK28 (using vector-derived sites) was placed 
between the respective sites of pFM4 to obtain pFM6; pFM7 was obtained 
by EcoRI digestion/religafion of pFM6, deleting 11 out of 12 repeats; a 
1.8-kb pFM7/XbaI fragment was inserted into the XbaI site of pJK23 to 
obtain pFM11; a 3.5-kb pFM11/BamHI fragment (using one vector-derived 
BamHI site) was inserted into the BamHI site of pUC19 to obtain pFM12; 
a 5.1-kb pJK27/BstEII fragment was inserted into the BstEII site of pFM12 
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Figure 1. Restriction map of NUM1 clones. ( Upper part) Map of 
the divergently transcribed KGD2-NUM1 chromosomal region. 
(Black boxes) Coding regions; (open boxes) noncoding regions. 
Restriction sites: A, AsulI; a, AseI; B, BamHI; b, BgllI; T, 
BstEII; E, EcoRI; P, PstI; S, SacI; Sa, SalI; s, SpeI; X, XbaI. A 
cluster of 12 regularly spaced EcoRI sites is indicated by dots. 
The protein map of the NUM1 coding region shows the following 
features: (shaded box) coiled-coil (heptad repeat) domain; (black 
dot) a potential EF hand Ca2+-binding site; (heavy boxes) 12 
near-perfect tandem repeats; (waved line) epitope recognized by 
polyclonal antibodies; (black box) PH domain. NUM1 regions 
deleted in alleles numl-A1 to numl-A8 and NUM1 subclones 
(plasmid inserts) are shown in the middle and lower part, respec- 
tively. Deletions of subcloned regions are indicated by dotted 
lines. 

to obtain pFM16; a 8.8-kb pFM16/BamHI fragment was introduced into 
the BamHI site of the centromeric plasmid pRSR313 to obtain pFM19. 

Construction of pFM26 (numl-A3,A4): a 1-kb SacI fragment was de- 
leted from pJK27 to obtain pFM24; a 4.1-kb pFM24/BstEII fragment was 
inserted into the BstEII site of pFM12 to obtain pFM25; a 7.8-kb pFM25/ 
BamHI fragment (using one vector-derived site) was inserted into 
pRSR313 to obtain pFM26. 

Construction of pFM42 (nurnl-A5): pJK24 was partially digested with 
AsulI and religated to obtain pFM37 (deletion of all 12 repeats); a 1.7-kb 
pFM37/Xbal fragment was inserted into the XbaI site of pJK23 to obtain 
pFM38; a 3.3-kb pFM38/BamHI fragment (using a vector-derived BamHI 
site) was inserted into the BamHI site of pUC19 to obtain pFM39; a 5.1- 
kb pJK27/BstElI fragment was inserted into the BstEII site of pFM39 to 
obtain pFM40; an 8.5-kb pFM40/BamHI fragment (using a vector-derived 
site) was inserted into pRSR313 to obtain pFM42. 

Construction of pFM35 (numl-l~,A6): a 0.8-kb Sacf-HindllI fragment 
of pFM12 was inserted between the respective sites of pUC19 to obtain 
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pFM29; a 5'-TAGC'IWAG-3' linker was placed between a AseI (partial 
digestion) and SpeI sites of pFM29 to obtain pFM30; a 1.4-kb BstEII(re- 
paired)/SacI fragment of pJK23 was introduced between the pUC19- 
derived repaired EcoRI site and the insert SacI site of pFM30 to obtain 
pFM31; a 6.4-kb BgllI-SalI pFM16 fragment (flanked by the NUM1 
downstream BgllI site and a vector-derived end-repaired SalI site) was in- 
serted between the single Bglll site and the downstream end-repaired 
HindlII site of pFM31 to obtain pFM34; an 8-kb pFM34/BamHI fragment 
(using one vector-derived site) was inserted into the BamHI site of 
pRS313 to obtain pFM35. 

Construction of pFM52 (numl-AT): a 5.l-kb pFM15/BstEII fragment 
was inserted into a derivative of the two-hybrid vector pGBT9 (Clontech, 
Palo Alto, CA) containing a single BstEII site in the fusion site, to obtain 
pFM52; this plasmid encodes the DNA-binding domain of the GAL4 pro- 
tein fused to the COOH-terminal half of Numlp.  

Construction of pFM41 (numl-d3,A8): a 5.4-kb pJK27/PstI fragment 
was inserted into the PstI site of a pUC19 derivative lacking a EcoRI site, 
to obtain pFM22; a 1-kb pFM22/EcoRI fragment was inserted into EcoRl- 
linearized pFM22 to obtain pFM32; a 4.4-kb pFM32/PstI fragment was in- 
serted into the PstI site of pFM16 to obtain pFM36; a 4.4-kb pFM36/ 
BstEII fragment was inserted between the two BstEII sites of pFM19 to 
obtain pFM41. 

A 1-kb pJK27/EcoRI NUM1 fragment encoding residues 2182-2519 
(Kormanec et al., 1991) was introduced into EcoRI-linearized pGEX-3X 
to obtain the glutathione-S-transferase (GST) fusion plasmid pFM71. 

Yeast Strains and Media 
The genotypes and origins of Saccharornyces cerevisiae strains used in this 
study are shown in Table I. Yeast strains were grown in YPD medium 
(1% bacto-yeast extract, 2% bacto-peptone, 2% glucose). Selective mini- 
mal media contained 0.67% yeast nitrogen base, 2% glucose and aux- 
otrophic requirements. Solid media contained 2% agar. Diploid strains 
were allowed to sporulate on SP2 plates (1% potassium acetate, 2% agar). 
NUM1/URA3 gene exchange was performed by one-step gene replace- 
ment (Rothstein, 1983) and controlled by Southern hybridization of ge- 
nomic DNA (Sambrook et al., 1989). Phenotypical properties of null mu- 
tant strains containing the alleles numl-al::URA3 and numl-~2::URA3 
(see Fig. 1) were found to be identical, and all observed lesions could be 
rescued by introducing the NUM1 plasmid pFM18, indicating that no 
other gene function was affected by the replacement procedure. 

Bacterial Expression and Purification of a GST-Num lp 
Fusion Protein 
The method of Smith and Johnson (1988) was used for induction and puri- 
fication of fusion protein. The GST-Numlp fusion plasmid pFM71 was in- 
troduced into E. coli SURE competent cells (Stratagene, La Jolla, CA), 
and the resulting transformant was grown in M9 medium at 37°C to OD 
(600 nm) = 0.5 before adding isopropyl-13-thiogalactopyranosid to 1 mM. 
Cells were grown for another 2.5 h at 37°C and homogenized by sonica- 
tion in PBS containing 1% Triton X-100. The fusion protein was purified 
by affinity chromatography on glutathione Sepharose. 

Preparation of Antibodies 
100 ~g of affinity-purified GST-Numlp fusion protein was emulsified with 
Freuud's complete adjuvant and injected subcutaneously in several places 
of the back of rabbits. After 14 and 45 d rabbits were boosted after the 
same procedure, except that incomplete adjuvant was used. Blood was 
collected 14 d after the last injection, and preimmune serum was collected 
three weeks before the initial injection. The IgG fractions were obtained 
by chromatography on protein A-Sepharose. Antibodies against GST 
were removed by incubation of IgG with GST immobilized on nitrocellu- 
lose strips, and anti-Numlp antibodies were affinity-purified on immobi- 
lized GST-Nnmlp fusion protein essentially as described (Smith and 
Fisher, 1984). To test the immunological specificity of antibodies, proteins 
of a crude yeast lysate were separated by SDS-PAGE using 5 % polyacryl- 
amide and blotted to nitrocellulose membranes for 20 h at 4°C and 8V/cm 
(Burnette, 1981). The blots were treated with TBST (0.15 M NaCl, 50 mM 
Tris-HCl, pH 7.2, 0.1% Tween 20) containing 5% nonfat milk for 2 h at 
room temperature, and incubated for 1 h at room temperature with 1:200 
diluted affinity-purified anti-Numlp antibodies in the same buffer. Immu- 
nodetection was accomplished by using biotinylated anti-rabbit antibod- 
ies and streptavidin-biotinylated horseradish peroxidase complex with the 
enhanced chemiluminescence Western blotting detection system (ECL, 
Amersham). 

Immunofluorescence Microscopy 
A modification of published protocols (Kilmartin and Adams, 1984; Prin- 
gle et al., 1991) was used. Asynchronously growing cultures of the NUM1 
wild-type strain HKlb  or synchronized cultures of the barl strain RH270- 

Table L Yeast  Strains Used in This Study 

Strain Genotype Source 

HKlb  
DBY1828 
DBY 1829 
FMY 1 
FMY2 
RH270-2B 
CC15 
DBY2499 
DBY2500 
FMY60 
FMY61 
HKY80 
HKY80-2B 
TH 133 
TH 134 
TH135 
TH136 
TH137 
THI38 
FMY13 
FMY14 
FMY15 
FMY16 
FMY17 
FMYI8 

MATa ura 3-52 his3-A200 a 
MATa ura3-52 his3-A200 trpl-1 leu2-3, 112 ade2 b 
MATa ura3-52 his3-A200 trpl-I leu2-3, 112 lys2-801 b 
MATa ura3-52 his3-A200 trpl-1 leu2-3, 112 ade2 numI-AI::URA3 c 
MAT~ ura3-52 his3-A200 trpl-I leu2-3, 112 lys2-801 numl-AI::URA3 c 
MATa ura3-52 leu2-3, 112 his4-539 lys2-801 bar1 d 
MATa ura3-52 his3-A200 ade2-101 cdc15-2 e 
MATa ura3-52 his4-539 lys2-801 tubl-I f 
MATa ura3-52 ade2-101 tub1-1 f 
DBY2499 x DBY2500 c 
MATa/MATc~ ura3-52/ura3-52 his4-539~+ lys2-8Oll+ade2-101/+ tubl-1/tubl-I numt-Al ::URA3/+ c 
DBY2499 X FMY1 c 
MATa ura3-52 his3-A200 trpl-1 leu2-3, 112 ade2-101 tub1-1 numl-AI::URA c 
MATa/MA Tce ura3-52/ura3-52 his4-539~+ ade2-101/ + tub2-104/tub2-104 g 
MATa/MATa ura3-52/ura3-52 lys2-801/ + his4-539~+ ade2-101/ + tub2-4OiZtub2-401 g 
MATa/MATc~ura3-52/ura3-52 lys2-801/+ his4-539~+ ade2-101/+ tub2-402/tub2-402 g 
MATa/MATc~ ura3-52/ura3-52 lys2-801/Iys2-801 his4-539~+ ade2-101/ + tub2-403/tub2-403 g 
MA Ta/MA Tce ura3-52/ura3-52 lys2-801/lys2-801 his4-539~ + ade2-101/ + tub 2-404/tub-404 g 
MATa/MATa ura3-52/ura3-52 lys2-801/+ his4-539/+ ade2-101/+ tub2-405/tub2-405 g 
MATa/MA Ta ura3-52/ura3- 52 his4-539/+ ade2-101/+ tub2-104/tub2-104 numl- zal : : URA3/NUM1 c 
MATa/MATc~ura3-52/ura3-52 1ys2-801/+ his4-539/+ ade2-101/+ tub2-401/tub2-401 numl-Al:: URA3~UM1 c 
MATa/MATc~ ura3-52/ura3-52 lys2-80t/+ his4-539/+ ade2-101/+ tub2-402/tub2-402 nural-AI::URA3/NUM1 c 
MATa/MATa ura3-52/ura3-52 lys2-801/lys2-801 his4-539~+ ade2-101/+ tub2-403Ztub2-403 numl-AI::URA3/NUM1 c 
MATa/MATc~ ura3-52/ura3-52 lys2-801/lys2-801 his4-539/+ ade2-101/+ tub2-404/tub2-404 numl-AI::URA3/NUM1 c 
MATa/MATa ura3-52/ura3-52 lys2-801/+ his4-539/+ ade2-101/+ tub2-405/tub2-405 numl-AI::URA3/NUM1 c 

a, Munder et al., 1988; b, Schatz et al., 1986; c, this study; d, obtained from H. Riezmann; e, Zwerschke et al., 1994;f, Stearns and Botstein, 1988; g, Huffaker et al., 1988. 
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2B were treated with 0.025% glutaraldehyde (added directly to the growth 
medium) for 5 min, followed by the fixation with 3.7% formaldehyde in 
PBS. After 60 min incubation at room temperature cells were washed 3x 
with PBS and suspended in 1 ml of solution A (1.2 M sorbitol, 50 mM Tris- 
HC1, pH 7.5, 0.5 mM MgCI2, 10 mM 2-mercaptoethanol) containing 5 ~1 
glucuronidase and 10 p.l of a 30-mg/ml Zymolase solution. After 90 min 
incubation at 30°C cells were recovered by low speed centrifugation, 
washed twice with solution A, and incubated for 5 rain at room tempera- 
ture with 1% Triton X-100 in PBS. Cells were then washed with PBS con- 
taining 1% bovine serum albumin and allowed to settle for 3 min on poly- 
lysine-treated slides, which were subsequently air-dried and incubated for 
30 min with a blocking solution (PBS containing 4% BSA and 1% nonfat 
dry milk). All subsequent incubations with antibodies were carried out in 
blocking solution at room temperature (or at 4°C if incubated overnight). 
Anti-Numlp and FITC-labeled antibody solutions were preabsorbed with 
numl cells (strain FMY2). 

The first incubation was with a 1:50 diluted solution of affinity-purified 
and preabsorbed anti-Numlp for 3 x 1 h, followed by an overnight incu- 
bation. The second incubation was with 3 txg/ml FITC-labeled goat anti- 
rabbit lgG for 2 x 1 h. The third incubation was with 6 txg/ml FITC- 
labeled rabbit anti-goat IgG for 2 x 1 h, followed by incubation with 1.5 
txg/ml FITC-labeled goat anti-rabbit IgG for 2 x 1 h. 

To costain Numlp, actin, and chromosomal DNA, slides were washed 
after the final antibody treatment with PBS and incubated with a 1-1xM so- 
lution of rhodamine-conjugated phalloidin in PBS for 2 h. In a last step, 
cells were treated with 0.02 ixg/ml DAPI, which was added directly to the 
mounting solution (PBS containing 90% glycerol and 1 mg/ml p-phen- 
ylenediamine). Costaining of microtubules and chromosomal DNA was 
performed by incubating slides (prepared as described above) with a 1:200 
diluted solution of monoclonal anti-chicken brain ct tubulin for 3 x 1 h. 
Slides were then washed with PBS and incubated with 1:40 diluted FITC- 
labeled rabbit anti-mouse IgG for 2 x 1 h. After washing, slides were 
mounted with a DAPI-containing mounting solution as described above. 
Cells were photographed on Kodak T-MAX 3200p using a Zeiss Ax- 
ioskop equipped for epifluorescence microscopy. 

Results 

Immunolocalization of Numlp 

Polyclonal antibodies were raised against a carboxy-termi- 
hal peptide (residues 2182-2519) of Numlp, which was ex- 
pressed in E. coli as a glutathione-S-transferase (GST) fu- 
sion protein and purified by glutathione-Sepharose affinity 
chromatography. Western blot analysis of crude lysate 
proteins has detected a major immunoreactive species cor- 
responding in size to the 310-kD Numl protein, as shown 
in Fig. 2 A. This band is undetectable in lysates of the 
NUMl-deficient strain FMY1 (lane B), but reappears if 
the NUMI plasmid pFM18 is introduced into FMY1 (lane 
C). The 240-kD species seen in lane D corresponds in size 
to the numl-A3 product of plasmid pFM19. Preimmune 
serum did not produce a signal, 

For localizing Numlp in intact cells, we have amplified 
the immunofluorescence signals by using three layers of 
FITC-labeled secondary antibodies. Row A of Fig. 3 shows 
exponentially grown NUM1 cells (strain HKlb)  treated 
with anti-Numlp (left column) or DAPI (middle column) 
to stain Numlp and nuclei, respectively. All four cells visu- 
alized by phase contrast microscopy (right column) con- 
tain a single chromosomal region corresponding to G1, S, 
or G2 nuclei, and at least three cells are budded. The anti- 
Numlp fluorescence pattern indicates a dot-like distribu- 
tion of Numlp concentrated at the cortex of cells, and in 
all budded cells the fluorescing material is found almost 
exclusively in the mother compartment. NUM! cells treated 
with preimmune serum (row B) and numl-Al:: URA3 cells 
(strain FMY2) treated with anti-Numlp (row C) do not 

kD 

A B C D 

310 - 
2 4 0 -  
200 

116 - 

9 7 -  

Figure 2. Western blot analysis of crude lysate proteins using 
anti-Numlp antibodies. (Lane A) Strain DBY1828 (relevant gen- 
otype NUM1); (lane B) strain FMY1 (numl-A1); (lane C) strain 
FMY1 containing plasmid pFM18 (numl-A1 NUM1); (lane D) 
strain FMY1 containing plasmid pFM19 (numl-A1 nurnl-A3). 
Size standards: rabbit myosin (200 kD), E. coil 13-galactosidase 
(116 kD), and rabbit phosphorylase B (97.4 kD). 

contain fluorescing material, supporting the specificity of 
the antibodies. DAPI staining of two budded NUMl-defi- 
cient cells (row C, second column) reveals the presence of 
two chromosomal spots in the mother compartment, a 
characteristic property of these mutants (Kormanec et al., 
1991; Revardel and Aigle, 1993). 

Periodic Fluctuation of NUM1 mRNA 

Two observations prompted us to test a possible periodic- 
ity of NUM1 transcription and translation during the mi- 
totic cell cycle: the NUM1 deletion affects the stage-spe- 
cific process of nuclear migration (Kormanec et al., 1991), 
and Numlp specifically localizes to mother cells (see Fig. 3). 

A pheromone-hypersensitive barl,NUM1 strain was 
synchronized by release from pheromone arrest, and ali- 
quots were removed at 15-min intervals for cytological de- 
terminations (budding state, spindle morphology) and for 
the isolation of total RNA. A mixture of two radiolabeled 
DNA probes (a 740-bp EcoRI-BglII NUM1 fragment and 
a 1.6-kb HindIII fragment containing the URA3 gene) was 
used to determine the levels of the 8.5-kb NUM1 mRNA 
together with the constitutively made 1-kb URA3 mRNA 
by Northern hybridization. As an additional control we 
have also measured CDC6 and CLN1 mRNAs, which ac- 
cumulate at late mitosis and G1 (START), respectively 
(Zwerschke et al., 1994; KOntzel et al., 1994). 

Fig. 4 demonstrates that the NUM1 mRNA content of 
pheromone-arrested cells (zero time) decreases to a mini- 
mum during the "return to the cycle" period at 15 min af- 
ter release, and then reappears at a stage (45 min) where 
bud formation is initiated, while the nuclear spindle has 
not yet elongated. NUM1 mRNA drops to a low level dur- 
ing late mitosis and G1 phase (between 90 and 120 min) 
and reappears again at the onset of bud formation (135 
min). Since bud initiation is a cytological marker associ- 
ated with late S phase (Pringle and Hartwell, 1981), we 
conclude that NUM1 mRNA is induced at S phase and ac- 
cumulates during S/G2. In contrast, CLN1 and CDC6 
transcripts are not detected in pheromone-arrested cells 
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Figure 3. Subcellular localiza- 
tion of Numlp by indirect 
immunofluorescence micros- 
copy (first column from left). 
Nuclear regions were stained 
with DAPI (second column), 
and cells were visualized by 
phase contrast microscopy 
(third column). (Row A) Strain 
HKlb (NUM1) treated with 
anti-Numlp antibodies. (Row 
B) Strain HKlb treated with 
preimmune serum. (Row C) 
Strain FMY2 (numl-Al:: 
URA3) treated with anti- 
Numlp antibodies. Bar, 10 Ixm. 

and reappear already at 15 min after release. The second 
maximum of CDC6 mRNA is formed at the telophase 
stage (elongated spindle) at 90 min, followed by the sec- 
ond CLN1 mRNA maximum between the collapse of the 
mitotic spindle and bud initiation (around 120 min). 

We consistently found that the level of NUM1 mRNA 
starts to decrease already ~15 min after its appearance 
during the second cell cycle (between 135 and 150 min), al- 
though this second wave of expression should be ex- 
tended, rather than shortened, due to a progressive loss of 
synchrony. This apparent discrepancy can be explained, 
however, by a marked instability of NUM1 mRNA in cells 
grown under limiting nutrient supply (Kormanec, J., and 
H. K0ntzel, unpublished observations), and the second 
NUM1 transcription period in pheromone-synchronized 
cells is indeed extended if the culture is diluted into fresh 
medium at 120 min after release (data not shown). 

We have also used an alternative method of cell cycle 
synchronization, the release of cdc15-2 cells from telo- 
phase arrest (Zwerschke et al., 1994), to confirm the 
NUM1 mRNA fluctuation pattern. As observed in phero- 
mone-synchronized bar1 cells, the maxima of the three 
transcripts (CDC6, CLN1, and NUM1) followed in this or- 
der in intervals of 15-20 min, and the NUM1 mRNA max- 
imum coincided with the onset of bud formation (data not 
shown). 

Periodic Fluctuation of  Numlp  

Fig. 5 shows cells representative of populations removed 
from a pheromone-synchronized culture of the barl, NUM1 
strain RH-270-2B at indicated times (A-F, see Fig. 4). Cells 

were subsequently treated with anti-Numlp, rhodamine- 
conjugated phalloidin, and DAPI  to visualize Numlp  (first 
column from left), cortical actin dots (second column), and 
nuclear regions (third column), respectively. The fourth col- 
umn shows cell images by phase contrast microscopy. 

Cells removed at 60 min after pheromone release are 
mainly small-budded, and row A shows such a small-bud- 
ded uninucleate cell with Numlp  cortical dots located ex- 
clusively in the mother compartment, while phalloidin- 
stained actin is seen only in the bud and around the bud 
neck. 15 min later (75 min, row B) buds have increased in 
size, but are still devoid of anti-Numlp staining; actin is 
concentrated to the bud, but is also seen as cortical dots in 
the mother cell. Rows C and D (90 and 105 min, respec- 
tively) present mitotic ceils with two chromosomal regions 
and elongated spindles (anti-tubulin fluorescence not shown 
here). Numlp  remains associated mainly with the mother 
cell periphery, while the cortical actin dots are now evenly 
distributed between mother and daughter compartment. 
Row E (120 min) shows a large-budded cell with two reor- 
ganized nuclei and actin layers concentrated around the bud 
neck, indicating the stage of cytokinesis. Numlp  has reached 
now a low level, while some weakly stained dots are visible 
both in mother and daughter compartment. Finally, row F 
(135 min) shows an apparently unbudded cell with a single 
nuclear region. The asymmetric distribution of cortical ac- 
tin dots (second column) points to the initiation of a new 
bud, and the few Numlp  dots (first column) may represent 
newly synthesized protein of an early S phase cell. 

The cell types shown in Fig. 5 represent at least 60% 
(frequently 90%) of the various populations, indicating a 
reasonable degree of synchrony. The remaining cells were 
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Figure 4. Fluctuation of NUM1 
mRNA in cells synchronized by 
release from pheromone arrest. Ex- 
ponentially grown cells of the pher- 
omone-hypersensitive strain RH- 
270-2B were treated for 1.5 h with 
a-pheromone. Arrested zygote cells 
were released at zero time by resus- 
pension in preconditioned phero- 
mone-free medium (Zwerschke et 
al., 1994), and aliquots were re- 
moved at 15-min intervals for cyto- 
logical determinations, Northern 
hybridization analysis, and immu- 
nofluorescence microscopy. The 
upper part shows the percentage of 
small-budded cells (A--A), large- 
budded cells (O-O), and anaphase 
cells with an elongated nuclear 
spindle (O-O). The lower part 
shows the content of transcripts of 
NUM1, CLN1, CDC6, and URA3 
in total RNA. The RNA input was 
controlled by measuring the O.D. at 
260 nm, and by staining rRNA 
bands upon gel electrophoresis. 
Samples removed at indicated times 
(A-F, top) were used for immuno- 
fluorescence analysis (see Fig. 5). 

also stained by anti-Numlp, but appeared to be in differ- 
ent stages of the cell cycle. Only 1% of cells were not 
stained. 

The intensity of Numlp-specific immunofluorescence is 
not necessarily a function of Numlp content, due to a pos- 
sible epitope masking effect. We have therefore measured 
the fluctuation of Numlp in pheromone-synchronized 
cells by Western blot analysis of total lysate protein, as 
shown in Fig. 6. The cytological determinations of this ex- 
periment (data not shown) indicated a somewhat different 
timing of events as compared with the data of Fig. 4: the 
maximum of telophase cells was reached ~15 rain earlier 
(at 90 min) than in the previous experiment (at 105 min, 
see Figs. 4 and 5 D). The intensity of the immunoreactive 
310-kD band in Fig. 6 suggests a similar fluctuation pattern 
as revealed by the in situ fluorescence data (Fig. 5): the 
Numlp level is low in pheromone-arrested cells (zero 
time) and further decreases before the onset of bud forma- 
tion (30 min after release). Numlp reappears during S 
phase (45 min), reaches a maximum at early mitosis (60 
and 75 min), and drops to a minimum around the telo- 
phase stage at 105 min after release. A low amount of 
Numlp is seen at a stage shortly after cytokinesis (120 
min), possibly produced by early S phase cells. 

Morphology of  Microtubules in Numl-deficient Strains 

Fig. 7 shows some morphological features of microtubules 
in large-budded numl cells (strain FMY2). Ceils were 
grown to early stationary phase, a condition known to in- 
crease the number of binucleate mother cells (Revardel 
and Aigle, 1993), and treated with anti-tubulin and DAPI 
to visualize microtubules (left column) and nuclear regions 
(middle column), respectively. Row A shows a uninucleate 
cell with an abnormally elongated and misoriented bundle 
of AMTs (which should normally extend into the bud), 
and a short nuclear spindle which is not oriented along the 
mother/daughter axis. A misoriented spindle is also seen 
in cells B and C, showing two different stages of elonga- 
tion. Again the two bundles of AMTs are unusually long, 
and one of them is seen to traverse the daughter compart- 
ment. The DAPI-stained cell C suggests an early stage of 
chromosome segregation within the mother compartment. 
Cell D contains a telophase nucleus (two separated chro- 
mosomal spots connected by an elongated nuclear spin- 
dle), which is correctly orientated along the mother/bud 
axis while remaining in the mother compartment. The cell 
contains short mother-oriented AMTs, whereas bud-ori- 
ented AMTs appear to be absent. Mitosis of a single 
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tions, and were virtually absent from NUM1 cells. The 
data of Table II demonstrate that the percentage of cells 
with a misoriented spindle increases with the density of 
cell populations; a similar increase of cells with two chro- 
mosomal regions in the mother compartment is observed 
under the same conditions, confirming earlier findings 
(Revardel and Aigle, 1993). About 4% of cells contained a 
misoriented AMT bundle (as seen in Fig. 7 A), and this 
percentage was independent of the cellular density. Such 
misoriented AMTs were not observed in the isogenic wild- 
type strain DBY1829. It should also be noted that budding 
state and nuclear stain of cells showing extended mother- 
oriented AMTs (as in Fig. 7, B and C) correspond to the S/ 
G2 period of maximal Numlp  expression (see Figs. 4, 5, B 
and C, and 6), although the microtubule morphology was 
not analyzed in synchronized Numlp-deficient cells. 

Figure 5. Numlp distribution in RH-270-2B cells synchronized 
by release from pheromone arrest. Aliquots were removed at 60 
min (A), 75 min (B), 90 min (C), 105 min (D), 120 min (E), and 
135 min (F) after zero time (see Fig. 4, top), and were subse- 
quently treated with anti-Numlp (first column from left), 
rhodamine-conjugated phalloidin (second column), and DAPI 
(third column) to stain Numlp, actin and nuclear regions, respec- 
tively. The fourth column shows cellular images by phase contrast 
microscopy. Bar, 10 Ixm. 

mother nucleus seems to be completed in cells E and F, 
since the nuclear spindle has apparently collapsed, whereas 
one or two AMT bundles per reorganized nucleus are still 
visible. 

All cell types shown in Fig. 7 were frequently detected 
in FMY2 and other numl  cells grown under similar condi- 

Genetic Interactions o f  num I with Mutants  
Affect ing Microtubules 

We have replaced one copy of the NUM1 gene by the 
marker gene URA3 in the cold-sensitive tubl-1/tubl-1 
strain FMY60 (see Table I), and the resulting strain FMY61 
(relevant genotype tubl-1/tubl-1 numl-AI::URA3/+) was 
sporulated and subjected to tetrad analysis, in order to test 
a possible interaction of the hum1 null mutation with the 
et-tubulin mutation tubl-1. All twenty analyzed tetrads 
produced four viable spores with a 2:2 segregation of the 
numl-AI::URA3 marker, and all haploid progeny cells 
were cold-sensitive (growth arrest at 11°C), as expected. 
However, all tubl- l ,numl double mutant descendants 
were also temperature-sensitive (growth arrest at 37°C af- 
ter performing about eight cell divisions) and grew at a 
somewhat slower rate at permissive temperature (30°C) 
than the temperature-resistant tubl- l ,NUM1 descendants. 
At restrictive temperature, the double mutants accumu- 
late large and osmotically fragile cells, often containing 
multiple and/or elongated buds, and most cells have lost 
their viability after 2 d incubation at 37°C. 

Possible interactions of the numl  null mutation with 
cold-sensitive [3-tubulin mutant alleles were tested by 
NUM1/URA3 gene replacement in the six homozygous 
tub2 diploid strains TH133 to TH138 containing the alleles 
tub2-104, tub2-401, tub2-402, tub2-403, tub2-404, and tub2- 
405, respectively. The resulting transformant strains FMY13 
to FMY18 were allowed to sporulate, and 40 tetrad asci of 
each strain were dissected. The strains FMY13 and FMY14 
(relevant genotypes tub2-104/tub2-104 numl-A I :: URA3/ + 
and tub2-401/tub2-401 numl-AI::URA3/+, respectively) 

0 15 30 45 60 75 90 105 120 min 
I I I I I I I I t t 

Figure 6. Fluctuation of immunoreactive 
Numlp  in RH-270-2B cells synchronized 
by release from pheromone arrest. Ali- 
quots were removed at indicated times, 
and crude lysate protein was subjected 
to Western blot analysis. For determina- 
tion of cytological cell cycle markers see 
legend to Fig. 4. 
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Table II. Nuclear Morphology of numl-A1 Cells (FMY2) 
Grown to Increasing Densities 

Cellular density 
Accumulation of cells 

With misoriented With two DNA regions in 
(OD at 600 nm) spindle the mother compartment 

% 

1.8 13 4 
4.0 28 20 

6.8 37 28 

Figure7. Morphology of microtubules in large-budded numl- A l : : 
URA3 cells. Strain FMY2 was grown to early stationary phase, 
and cells were subsequently treated with anti-tubulin (first col- 
umn from left) and DAPI (second column), to visualize microtu- 
bules and nuclear regions, respectively. The third column shows 
cellular images by phase contrast microscopy. Bar, 10 ~zm. 

produced four viable spores per tetrad with a 2:2 segrega- 
tion of the numl-AI::URA3 marker. The double mutants 
tub2-104,numl and tub2-4Ol,numl did not differ signifi- 
cantly from the corresponding tub2 single mutants in 
growth rate and cell morphology. Only two viable spores 
per tetrad were produced by strains FMY15, FMY16, 
FMY17, and FMY18 (relevant genotypes: tub2/tub2 alleles 
402 to 405, numl-al::URA3/+).  All viable spores were 
uracil-requiring (NUM1), and the inviable spores (inferred 
genotype: tub2 alleles 402 to 405, numl-AI::URA3) either 
did not germinate, or arrested their growth after forming a 
microcolony of up to 100 cells. 

We conclude from these observations that the numl null 
mutation shows synthetic lethality with the cold-sensitive 
[3-tubulin mutant alleles tub2-402, tub2-403, tub2-404, and 
tub2-405, but not with the alleles tub2-104 and tub2-401. 

Functional Mapping o f  NUM1 

We have deleted various parts of the NUM1 gene (see Fig. 
1) and introduced the gene variants as centromeric plas- 
mids into NUMl-deficient strains, in order to test four 
functional parameters: (A) intracellular localization by in- 
direct immunofluorescence microscopy, (B) suppression 
of the naml-specific nuclear migration defect, and (C) com- 
plementation of the temperature sensitivity of a tubl-1, 
numl-A1 double mutant. 

Fig. 8 summarizes the protein maps of the resulting dele- 
tion variants together with their functional activities. All 
tested Numlp variants have retained residues 2182 to 
2519, which were used to raise antibodies, and the inten- 
sity of indirect immunofluorescence has indicated that all 
variants are expressed at wild-type levels. 

Fig. 9 A shows the immunofluorescence pattern of numl 
cells expressing the truncated allele numl-A7 as a GAL4(bd) 
fusion protein (pFM52); this pattern (cortical dots in the 
mother cell) is virtually identical to that of NUM1 cells 
(Fig. 3 A) or numl cells containing plasmids pFM18, pFM19, 
pFM26, pFM42, and pFM35 (data not shown). All Numlp 
variants encoded by these plasmids have in common their 
carboxy-terminal PH domain, and the only variant lacking 
this domain (encoded by pFM41) appears to be released 
preferentially into the cytoplasm of the mother compart- 
ment, as shown in Fig. 9 B. These data strongly suggest a 
cortex-targeting function of the PH domain. 

About 30% of large-budded FMY2 cells in cultures ap- 
proaching stationary phase have two DAPI-stained chro- 
mosomal regions in the mother compartment, a morphol- 
ogy reflecting a nuclear migration defect (Kormanec et al., 
1991; Revardel and Aigle, 1993). This defect is efficiently 
suppressed by plasmids pFM18, pFM19, and pFM26, since 
the content of binucleate mother cells is reduced to weight 
level (<0.1%). Plasmid pFM42 is partially active (15% bi- 
nucleate mother cells), and the remaining three plasmids 
(pFM35, pFM52, and pFM41) are inactive in this assay 
(28-30% binucleate mother cells). The tubl-l ,numl-A1 
strain HKY80-2B contains >50% binucleate mother cells, 
if grown at 30°C to early stationary phase, indicating that 
the numl nuclear migration defect is more pronounced in 
the presence of the tubl-1 mutation. The relative suppress- 
ing activity of the tested plasmids (see Fig. 8 B) was about 
the same in this strain. 

Fig. 10 demonstrates the differential activity of these plas- 
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A B C Figure 8. Functional map- 
ping of Numtp. Features of 
the Numlp map (upper line) 

cortex -31- "1- are explained in the legend 
to Fig. 1. Plasmids indicated 
at left were introduced into 

cortex -1 I- -3 L the NUMl-deficient strain 
FMY2, and the resulting 
transformants were analyzed 

cortex -3 I- - -  by (A) indirect immunofluo- 
rescence microscopy, and (B) 
by determining the percent- 

--/"t-'/-- "3 I- age of large-budded cells cortex 

with two DAPI-stained re- 
gions in the mother, after 

cortex ~ - -  growth to early stationary 
phase. Strains containing ac- 
tively suppressing plasmids 

cortex ~ ~ (+) produce less than 1% bi- 
nucleate mother cells, and 

cyto- strains with inactive plasmids 
plasm m ~ ( - )  produce about the same 

percentage (28-30%) as plas- 
mid-less strain FMY2. FMY2 containing pFM42 produces 15% binucleate mother cells ( + / - ) .  (C) Plasmids were introduced into the 
tub1-l ,num1-211 strain HKY80-2B in order to test a complementation of temperature sensitivity (+, growth at 37°; - ,  arrest at 37°). 

mids in complementing the temperature sensitivity of the 
tubl-l,numl-zll strain HKY80-B2. Two plasmids (pFM18 
and pFM19) are active, and three plasmids are inactive in 
both assays (see lanes B and C of Fig. 8), whereas plasmids 
pFM26 and pFM42 behave differently in the two assays: 
pFM26 suppresses the nuclear migration defect of TUB1, 
numl cells, but does not complement the temperature sen- 
sitivity of tubl-l,numl cells, and pFM42 has only a partial 
effect in suppressing the nuclear migration defect, but is 
fully active in complementing the tubl-l,numt-At temper- 
ature sensitivity. 

Discussion 

Previous observations have indicated a role of the NUM1 
gene product in the control of nuclear migration at the G2 
phase of the cell cycle (Kormanec et al., 1991). Here we 
demonstrate a temporal and spatial control of NUM1 gene 
expression: the NUMI transcript transiently accumulates 
at the S/G2 phase of cells synchronized by two different 
methods, and the Numl protein associates at the same pe- 
riod of the cell cycle to the cortex of mother cells, where it 
remains located mainly up to the stage of cytokinesis. 
Thus, NUM1 belongs to the class of periodically expressed 
genes encoding stage-specific cyclins, histones, transcrip- 
tional regulators, and proteins involved in DNA synthesis 
(for a recent review see KiJntzel et al., 1994). 

The NUM1 mRNA fluctuation pattern resembles that 
of histones (Osley, 1991) and of the mitotic cyclins CLB3 
and CLB4 (Richardson et al., 1992). The latter two stage- 
specific activators of the CDC28 protein kinase are re- 
quired for the assembly of a short nuclear spindle in pre- 
anaphase cells (Richardson et al., 1992; Schwob and 
Nasmyth, 1993). 

The NUM1 gene maps close to the dihydrolipoyl trans- 
succinylase gene KGD2 (Repetto and Tzagoloff, 1990), 
and both genes share a 561-bp promoter region control- 
ling a divergent transcription of opposite DNA strands 

(see Fig. 1). However, both genes appear to be differen- 
tially regulated: KGD2 transcription is glucose-repressible 
(Repetto and Tzagoloff, 1990) and constant throughout 
the cell cycle, whereas the periodic NUM1 transcription is 
enhanced in cells grown in glucose media (our unpub- 
lished data). 

Indirect immunofluorescence microscopy of NUM1 cells 
treated with anti-Numlp has visualized the Numlp anti- 
gen as cortical dots located at the periphery of mother 
cells, while the bud region is not stained by antibody. This 
asymmetrical distribution pattern is opposed to that of 
cortical actin patches which concentrate around the bud 
neck and within small buds during the S/G2 stage of the 
cell cycle (for review see Welch et al., 1994). The cellular 
content of Numlp cortical dots decreases at the cytokine- 
sis stage of the cell cycle and increases again when small 
buds are visible. Western blot analysis of pheromone-syn- 
chronized cells has also shown a pronounced fluctuation of 
Numlp during the cell cycle. 

Our functional mapping data suggest that the carboxy- 
terminal PH domain of Numlp serves as a "cortex-target- 
ing" signal: all tested Numpl variants containing the PH 
domain associate with the mother cell cortex, even after 
deleting functionally important regions, and only the re- 
moval of the PH domain leads to a cytosolic localization of 
Numlp. PH domains are found in cytoskeletal proteins 
like spectrin, pleckstrin, and dynamin, but also in many 
proteins involved in signal transduction, such as GTPase- 
activating proteins, protein kinases, and phospholipases 
(Musacchio et al., 1993; Gibson et al., 1994). Interestingly, 
a Numlp region including the PH domain (residues 2301 
to 2742) shows significant sequence similarity with a corre- 
sponding region of the Aspergillus nidulans ApsA protein, 
which is required for nuclear positioning and entry of nu- 
clei into primary buds (sterigmata) during the develop- 
ment of conidiophores (Fischer and Timberlake, 1995). 
The similarity between Numlp and ApsAp is most pro- 
nounced within the PH domain, whereas other common 
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Figure 9. Immunolocalization of truncated Numlp derivatives 
encoded by alleles numl-A7 (A, strain FMY2-52) and numl- 
A3,A8 (B, strain FMY2-41). (Left column) Indirect immunofluo- 
rescence of cells treated with anti-Numlp antibodies. (Right col- 
umn) Phase contrast microscopy. 

features of both proteins (an NH2-terminal coiled-coil do- 
main and central tandem repeats) are not conserved in 
their primary structure. 

A common function of PH domains could be the recog- 
nition of phosphorylated serine/threonine residues in spe- 
cific peptides (Gibson et al., 1994) and/or the interaction 
with the membrane lipid phosphatidyl-inositol-4,5-bisphos- 
phate (Harlan et al., 1994). The latter function would im- 
ply a direct association of Numlp  with lipids of the mother 
cell membrane; alternatively, Numlp  could be anchored 
via its PH domain to proteins associated with the plasma 
membrane of mother cells. 

Several observations suggest that Numlp  affects micro- 
tubular functions: (a) NUMl-deficient strains accumulate 
large-budded cells with a misoriented nuclear spindle and 
elongated AMTs, a phenotype characteristic of condi- 
tional-lethal 13-tubulin and actin mutants (Huffaker et al., 
1988; Palmer et al., 1992), as well as of null mutants lack- 
ing either the dynein heavy chain Dhclp /Dynlp  (Li et al., 
1993; Eshel et al., 1993), the centractin homolog Act3p/ 
Act5p (Muhua et al., 1994; Clark and Meyer, 1994), or the 
dynein-associated protein Jnmlp  (McMillan and Tatchell, 
1994). (b) The AMTs of numl cells are sometimes misori- 
ented and do not extend into the bud (see Fig. 7 A). This is 

in contrast tojnml mutant cells, where bud-oriented AMTs 
always appear to extend to the mother/bud neck (Mc- 
Millan and Tatchell, 1994). (c) Misoriented nuclei tend to 
perform mitosis and nuclear division in the mother com- 
partment of large-budded numl cells (see Fig. 7) leading 
to the accumulation of "binucleate mother cells" (Kor- 
manec et al., 1991; Revardel and Aigle, 1993). Again, this 
behavior is seen in many other mutants affecting microtu- 
bular functions, and it confirms that the mitotic functions 
of the nuclear spindle are not affected by mutations im- 
pairing AMTs (Sullivan and Huffaker, 1992). (d) The de- 
letion of the nonessential NUM1 gene has synthetic effects 
in the cold-sensitive ~-tubulin mutant tubl-1 (Stearns and 
Botstein, 1988) and in certain cold-sensitive [3-tubulin 
(tub2) mutant alleles (Huffaker et al., 1988). The numl-A1 
null mutation confers conditional lethality at 37°C to tubl-1 
strains, and is lethal at all temperatures in combination 
with the alleles tub2-402, tub2-403, tub2-404, and tub2-405. 
The four tub2 mutations interacting with numl-At.are 
clustered within a COOH-terminal [3-tubulin domain (res- 
idues 375-424), while the noninteracting allele tub2-401 
maps more upstream at residues 233-245 (Huffaker et al., 
1988). 

The four numl-interacting tub2 alleles have quite differ- 
ent effects on the content of nuclear and astral microtu- 
bules at restrictive temperature: two mutant alleles (tub2- 
403 and tub2-405) contain greatly diminished levels of 
both kinds of microtubules, one allele (tub2-402) contains 
predominantly astral microtubules, and allele tub2-404 
contains prominent nuclear and astral microtubule arrays; 
the two noninteracting alleles contain predominantly nu- 
clear microtubules (tub2-104) or apparently lack both 
kinds of microtubules (tub2-401) (Huffaker et al., 1988). 

It is difficult to deduce from these data a common prop- 
erty distinguishing numl-interacting from noninteracting 
tub2 alleles; perhaps the ability to produce AMTs is criti- 
cal for lethal interaction with numl-A1. 

The most prominent structural feature of Numlp  is a 12- 
fold near-perfect repetition of a peptide of 64 residues 
(Kormanec et al., 1991). However, our deletion experi- 
ments suggest that the amplification of this peptide is not 
critical for function, since a single repeat unit is sufficient 
to suppress the nuclear migration defect in TUBl,numl 
cells as well as the temperature sensitivity of tubl-l,numl 
mutants. A similar conclusion can be drawn from the ob- 
served polymorphism of the repetitive region in different 
yeast wild-type strains (Revardel and Aigle, 1993). 

The deletion of the remaining single repeat unit in allele 
numl<15 reduces the ability to suppress the nuclear migra- 
tion defect in TUBl,numl cells, but surprisingly does not 
affect the rescue of conditional lethality of the tubl- 
1,numl double mutation. The opposite effect is observed 
if the last 30 residues of Numlp  are removed, which in- 
clude a cluster of potential phosphorylation sites of cAMP- 
dependent protein kinase and protein kinase C (Kor- 
manec et al., 1991): this deletion abolishes the ability to 
rescue the temperature sensitivity of tubl-l,numl double 
mutants, but does not affect the suppression of the nuclear 
migration defect in TUBl,numl cells. Both activities are 
lost by deleting a potential EF-hand Ca2+-binding site 
(A6) or a carboxy-terminal region including the PH do- 
main (A8). 

The Journal of Cell Biology, Volume 131, 1995 1012 



30oc 37oc 

Figure 10. Complementation 
of tubl-l,numl-A1 tem- 
perature sensitivity (strain 
HKY80-2B) by plasmids con- 
taining intact and deleted 
NUM1 variants. Strains and 
relevant genotypes: 18, tubl-1 
numl-A1 pFM18 (NUM1); 
19, tubl-1 numl-A1 pFM19 
(numl-A3); 26, tubl-1 numl- 
A1 pFM26 (numl-Zl3,A4); 42, 
tubl-1 numl-A1 pFM42 
(numl-A5); 35, tubl-I numl- 
~1 pFM35 (numl-A3,A6); 52, 
tubl-1 numl-zll pFM52 
(numl-A7); 41, tubl-1 numl- 
zll pFMY41 (numl-2~3,2x8). 
Cells were incubated for 2 d 
on selective medium at 30°C 
and 37°C. 

These observations point to differential roles of Numlp  
in controlling AMT functions and/or nuclear migration. 
However, the specific association of Numlp  with the 
mother cell cortex is difficult to reconcile with effects on 
mother-distal AMTs, which are sometimes not properly 
oriented towards the bud; furthermore, both mother-distal 
and mother-proximal AMTs are often abnormally elon- 
gated in numl cells. A similar problem concerns the role 
of Jnmlp,  a protein located in the bud or near the bud-ori- 
ented SPB. This protein affects not only bud-oriented, but 
also mother-oriented AMTs, which both appear to be ab- 
normally elongated in JNMl-deficient strains (McMillan 
and Tatchell, 1994). 

The first evidence for a functional orientation of SPBs 
(via their AMTs) toward the cortex of mother and bud 
compartment was provided by the observation that the old 
SPB remains in the mother cell, whereas the new SPB 
(formed by SPB duplication) segregates into the daughter 
cell (Vallen et al., 1992). 

A more recent model of nuclear migration in budding 
yeast has postulated the positioning of the pre-anaphase 
nucleus by transiently tethering AMTs to cortical sites at 
the mother compartment and at the bud or bud/mother 
neck region (Schroer, 1994). Candidates for tethering bud- 
oriented AMTs are components of the dynein/dynactin 
complex encoded by DHC1/DYN1, ACT3/ACT5, and 
JNM1 (Schroer, 1994; Macmillan and Tatchell, 1994), 
whereas Numlp  is a possible candidate for tethering AMTs 
to the mother cortex during its transient expression period 
at S/G2 phase. The failure to attach either mother- or bud- 
oriented AMTs to their respective cortical sites (e.g., by 
deleting NUM1, DHC1/DYN1, ACT3/ACT5, or JNM1) 
could possibly lead to the release from both attachment 
sites, followed by the abnormal elongation of both kinds of 
AMTs. 

Alternatively, Numlp  may control AMT functions more 
indirectly, e.g., by acting in a signaling pathway involved in 
the structural modification of microtubules or microtu- 
bule-associated proteins. Indeed, some functionally im- 
portant elements of Numlp  (a potential EF hand Ca 2+- 
binding site, a PH domain frequently found in signaling 
proteins, and clusters of potential phosphorylation sites 
for cAMP-dependent protein kinase and/or protein kinase 
C) point to a role of this mother-specific protein in signal 
transduction. 
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