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Abstract

Background

A better understanding of sickle cell anemia (SCA) and improvements in drug therapy and

health policy have contributed to the emergence of a large population of adults living with

this disease. The mechanisms by which SCA produces adverse effects on the respiratory

system of these patients are largely unknown. Fractional-order (FrOr) models have a high

potential to improve pulmonary clinical science and could be useful for diagnostic purposes,

offering accurate models with an improved ability to mimic nature. Part 2 of this two-part

study examines the changes in respiratory mechanics in patients with SCA using the new

perspective of the FrOr models. These results are compared with those obtained in tradi-

tional forced oscillation (FOT) parameters, investigated in Part 1 of the present study, com-

plementing this first analysis.

Methodology/Principal findings

The data consisted of three categories of subjects: controls (n = 23), patients with a normal

spirometric exam (n = 21) and those presenting restriction (n = 24). The diagnostic accuracy

was evaluated by investigating the area under the receiver operating characteristic curve

(AUC). Initially, it was observed that biomechanical changes in SCA included increased val-

ues of fractional inertance, as well as damping and hysteresivity (p<0.001). The correlation

analysis showed that FrOr parameters are associated with functional exercise capacity (R =

-0.57), pulmonary diffusion (R = -0.71), respiratory muscle performance (R = 0.50), pulmo-

nary flows (R = -0.62) and airway obstruction (R = 0.60). Fractional-order modeling showed
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high diagnostic accuracy in the detection of early respiratory abnormalities (AUC = 0.93),

outperforming spirometry (p<0.03) and standard FOT analysis (p<0.01) used in Part 1 of

this study. A combination of machine learning methods with fractional-order modeling fur-

ther improved diagnostic accuracy (AUC = 0.97).

Conclusions

FrOr modeling improved our knowledge about the biomechanical abnormalities in adults

with SCA. Changes in FrOr parameters are associated with functional exercise capacity

decline, abnormal pulmonary mechanics and diffusion. FrOr modeling outperformed spiro-

metric and traditional forced oscillation analyses, showing a high diagnostic accuracy in the

diagnosis of early respiratory abnormalities that was further improved by an automatic clini-

cal decision support system. This finding suggested the potential utility of this combination

to help identify early respiratory changes in patients with SCA.

Introduction

The term sickle cell disease (SCD) is associated with a group of inherited red blood cell disor-

ders. People with SCD have abnormal hemoglobin, called hemoglobin S or sickle-shaped

hemoglobin, in their red blood cells. The most severe type of SCD is sickle cell anemia (SCA).

This disease originated due to a mutation that protected the population from a Malaria epi-

demic [1]. The erythrocytes of these individuals undergo structural changes, adopting a sickle

shape that confers high morbidity and mortality [2]. This disease is one of the most prevalent

disorders among existing hereditary diseases, affecting approximately 300,000 children annu-

ally [3–5]. These irregularly shaped cells can get stuck in small blood vessels, introducing

abnormal repercussions in various organs due to the reduction or even blockage of blood flow.

Pulmonary complications account for the largest proportion of deaths among adults with SCA

[6]. The lungs of these patients are frequently affected by acute thoracic syndrome (ATS),

which correlates with pulmonary wheezing and cognitive dysfunction due to vaso-occlusion of

the capillaries that supplement the brain tissue [7–12]. Thus, the early diagnosis of ATS is fun-

damental for reversing unfavorable clinical outcomes [7].

Due to the dramatic improvement in SCD care over the last decades, associated with new-

born screening, penicillin prophylaxis, primary stroke prevention, and hydroxyurea treatment,

life expectancy has improved significantly. The childhood mortality is now close to that in the

general population, with an observed median survival of more than 60 years in high income

countries [5]. Thus, the number of patients with SCD is expected to increase [6], and the emer-

gence of such a large population of adults living with SCA demands further understanding of

the overall changes in their respiratory function.

Spirometric and plethysmographic tests are usually used to evaluate patients with SCA.

However, these exams demand an understanding of reliable forced expiratory maneuvers [13].

The performance of these tests in SCA may be difficult due to the usual presence of cognitive

deficiency in these patients. This limitation may result in the under diagnosis of pulmonary

abnormalities in a timely manner, compromising adequate follow-up and treatment [14].

The forced oscillation technique (FOT) allows us to measure respiratory mechanics, includ-

ing resistance and reactance, noninvasively during normal tidal breathing. Instead of using the

respiratory muscles as the source of force, this method superimposes oscillations onto sponta-

neous breathing using an external loudspeaker. Particularly in SCA, which has been linked to
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impaired cognitive function [15], the fact that this technique does not require complex panting

maneuvers is a significant advantage. Another important characteristic is that FOT provides

information about lung mechanics that cannot be obtained using the classical pulmonary

function tests. In this sense, fractional-order (FrOr) modeling is increasingly used to interpret

FOT measurements. These models have a high potential to improve pulmonary clinical science

[16, 17] and could be useful for diagnostic purposes, offering parsimonious yet accurate mod-

els with an improved ability to mimic nature [18]. Recently, new FrOr models were introduced

[19–23] and are especially useful for the clinical analysis of several respiratory diseases [17],

including children with asthma [22] and cystic fibrosis [23], as well as in patients with chronic

obstructive pulmonary disease (COPD) [20, 21]. Further studies from our group have pro-

vided additional evidence that FrOr models may contribute to the early identification of mild

lung abnormalities in adults with asthma [24] and asbestos-exposed workers [25] and the

detection of the early effects of COPD [26]. Despite several attractive characteristics of the

FrOr models, they have not been widely used in clinical practice. One of the major limitations

is the difficulty encountered by pulmonologists in interpreting the resulting FrOr parameters

because the physiological or clinical meaning of the derived parameters is not clear.

The six-minute walk test (6MWT) is widely used to assess functional exercise capacity. The

6MWT evaluates the integrated response of all of the organs and systems involved in exercise,

including the lungs, heart, circulatory and neuromuscular systems [27], closely reflecting the

activities of daily living. Therefore, the 6MWT has the potential to increase our knowledge

concerning the relationship between FrOr parameters and functional exercise capacity, help-

ing to elucidate the physiological or clinical meaning of these parameters. In this context,

important questions have recently arisen [18]: what does the fractional-order dynamic behav-

ior tell us, and what is the link in the underlying structure and function of the systems that pro-

duce them? Although the 6MWT may help to answer this question, to the best of our

knowledge, there are no reports in the literature focusing on these associations.

Part 1 of this two-part study (presented in the December 2017 issue of PLoS ONE) contrib-

uted to improve our knowledge about the respiratory abnormalities in SCA using the FOT

[28]. This study also evaluated the associations of FOT with the functional exercise capacity

and investigated the early detection of respiratory abnormalities using traditional FOT param-

eters associated with machine learning (ML) methods. This association achieved adequate

diagnostic accuracy, suggesting the potential utility of these methods as markers of early respi-

ratory abnormalities in patients with SCA. However, this association was not enough to diag-

nose respiratory abnormalities in SCA with a high accuracy.

Part 2 of this study provides a FrOr analysis from the same dataset of SCA patients, which

complements and deepens the analysis described in Part 1 [28]. In this context, we initially

examine the changes in respiratory mechanics in patients with SCA using the new perspective

of the FrOr model. Then, we investigate the association between this model and changes in dif-

fusing capacity, respiratory muscle performance and functional exercise capacity. Finally, we

evaluate the diagnostic accuracy of FrOr parameters in the early diagnosis of respiratory

abnormalities in patients with SCA. These results are compared with those obtained in tradi-

tional FOT parameters, investigated in Part 1 of the present study [28].

Methods

Subjects, pulmonary function, 6MWT measurements and machine learning

algorithm

The Research Ethics Committee of the Pedro Ernesto University Hospital (HUPE) approved

the study, which was registered at ClinicalTrials.gov (identifier: NCT02565849) and obeys the

Diagnosis of respiratory disorders in adults with sickle cell anemia

PLOS ONE | https://doi.org/10.1371/journal.pone.0213257 March 7, 2019 3 / 21

https://doi.org/10.1371/journal.pone.0213257


Declaration of Helsinki. A detailed description of the methods, including the flowchart of the

study, pulmonary function, reference ranges, FOT and 6MWT measurements and the

machine learning algorithms evaluated are presented in Part 1 of the present study [28] and

will not be repeated here for the sake of simplicity.

Statistical analysis

Briefly, the results are present as the mean±SD. Initially, the sample distribution characteristics

were assessed using Shapiro-Wilk’s test. A one-way ANOVA with Tukey’s test was performed

to analyze the normally distributed data; conversely, a non-parametric analysis (Kruskal-Wal-

lis) with a Mann-Whitney test was performed for the non-normally distributed data. Differ-

ences with p�0.05 were considered statistically significant. These analyses were performed

using Origin 8.0 (Microcal Software Inc., Northampton, Massachusetts, United States).

Correlations were studied using Pearson‘s correlation coefficient in the presence of normal

distributions, while Spearman’s correlation was used in non-normal distributions. These cor-

relations were classified as follows [29]:

• Small or no correlation: between 0 and 0.25 (or -0.25);

• Reasonable correlation: between 0.25 and 0.50 (or -0.25 to -0.50);

• Moderate to good correlation: between 0.50 and 0.75 (or -0.50 to -0.75);

• Very good to excellent correlation: greater than 0.75 (or -0.75).

As several correlations were computed, we performed a correction in the significance level

to minimize the chances of making a Type I error. We used a modified Bonferroni approach,

which requires dividing usual p-value by an estimate of the effective number of independent

correlations used [30]. FOT describes resistive and reactive properties, thus, two independent

variables were considered. In general, four independent variables are observed in other exams,

which results in eight independent correlations and a corrected significance level for correla-

tion analysis of 0.0063 (0.05/8).

The clinical potential of the FOT indexes in the detection of respiratory alterations was

investigated using receiver operation characteristic (ROC) analysis. The values of sensitivity,

specificity, and area under the curve (AUC) were obtained based on the optimal cut-off point,

as determined by the ROC curve analysis. According to the literature, ROC curves with AUCs

between 0.50 and 0.70 indicate low diagnostic accuracy, AUCs between 0.70 and 0.90 indicate

moderate accuracy, and AUCs between 0.90 and 1.00 indicate high accuracy [31, 32]. Goed-

hart et al. [33] considered 0.7 to be a good cut-off value for a useful discriminator for clinical

use. In the present study, we considered 0.75 to be the minimum value of the AUC for ade-

quate diagnostic accuracy. The ROC analyses were conducted using MedCalc 12 (MedCalc

Software, Mariakerke, Belgium). This part of the study follows the STARD requirements for

studies of diagnostic accuracy [34].

The sample size was calculated based on the criteria of the comparison of the area under a

ROC curve with a null hypothesis value. The aim was to show that an AUC of 0.75, describing

adequate diagnostic accuracy [33], was significantly different from the null hypothesis value of

0.5, which indicates no discriminating power. This analysis was performed based on the results

obtained in a pilot study including 14 controls and 14 patients using MedCalc 13 (MedCalc

Software, Mariakerke, Belgium), according to the theory described by Hanley and McNeil

[35]. A type I error of 0.10 and a type II error of 0.10 were assumed as adequate, which resulted

in a minimum of 20 volunteers per group.
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Fractional-order modeling

The model used in the present work was proposed recently by Ionescu et al. [22], and it was

the most sensitive model observed in a previous study in asthma [24]. The parameters of the

respiratory impedance (ZFrOr) fractional model were estimated according to previous works

[24, 25], including a frequency-dependent fractional-order inertance (FrL) and a fractional

inertance coefficient (α):

ZFrOr joð Þ ¼ FrLðjoÞa þ
1

FrCðjoÞb
ð1Þ

The fractional-order values and coefficients will change according to the properties (morphol-

ogy, geometry) of the respiratory system [17]. FrL describes the joint effect of the resistive and

inertial properties of the airways. The degree of the influence of FrL in the frequency dependence

of airway resistance and inertance is related with the α coefficient. Lower values of α are related

with an increased influence of FrL in the airway resistance and a reduced influence in airway

inertance. In respiratory impedance curves it reflects increased resistance and more negative val-

ues of reactance in higher frequencies. The model also includes a more peripheral component

described as the constant-phase fractional-order compliance (FrC) associated with a fractional

compliance coefficient (0� β� 1). Lower values of β are related with an increased influence of

FrC in the resistance and a reduced influence in compliance. In respiratory impedance curves it

reflects increased resistance and more negative values of reactance in lower frequencies.

These results were interpreted physiologically using the damping (G), elastance (H) and the

hysteresivity coefficient (η) as described by the following equations:

G ¼
1

C
cos

p

2
b

� �
ð2Þ

H ¼
1

C
sin

p

2
b

� �
ð3Þ

Z ¼
G
H

ð4Þ

Damping is a measure of the energy dissipation in the respiratory tissues [17], while elastance

is a measure of potential elastic energy accumulation. Hysteresivity is a concept that addresses

the heterogeneity of ventilation in the lung, with greater values often associated with more het-

erogeneity [17].

Curve fitting of the FrOr model was performed using the ModeLIB program, which was

also developed in our laboratory. This program employs the Levenberg-Marquardt algorithm

to determine the set of parameters of the model that best represents the input dataset in terms

of least squares. Together with the model estimates, this analysis also provides the calculated

total error value (MSEt), an overall measure of the “goodness of fit” of the model. The square

root of the sum of the real (MSEr) and imaginary (MSEx) impedance estimation errors is used

for this purpose.

Results

The clinical, biometrical and spirometric characteristics of the studied subjects were described

in Part 1 of the present study [28], which also described plethysmographic and pulmonary dif-

fusion results. Inspiratory pressures, expiratory pressures and functional exercise capacities

were also described previously.
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Fig 1 describes the results of the FrOr modeling. The progression of respiratory involve-

ment in SCA resulted in highly significant increases in FrL, G and η (p<0.0001, Fig 1A, 1E

and 1G, respectively) while FrC showed a significant increase (p<0.05, Fig 1C). Additionally,

α presented a significant decrease with airway obstruction in SCA (p<0.01; Fig 1B). β and H

also showed a significant reduction (p<0.0001; Fig 1D and 1F, respectively).

Table 1 shows that FrL presented the best correlations among spirometric and FrOr param-

eters [R = -0.62, forced expiratory flow between 25% and 75% of the forced vital capacity—

FEFmax (%)] and that FrOr parameters were not correlated with the ratio of the forced expira-

tory volume in the first second and the forced vital capacity (FEV1/FVC). The degrees of asso-

ciation were reasonable to good.

The relationships among plethysmographic and FrOr parameters are described in Table 2.

Reasonable to good associations were observed, and FrL presented the best correlations, show-

ing a good direct association with airway resistance (Raw; R = 0.60).

The associations between FrOr and pulmonary diffusion parameters presented reasonable

to good values (Table 3). FrOr parameters were not correlated with the ratio of carbon monox-

ide diffusion capacity and alveolar volume (DLCO/AV). Table 3 also shows that FrL, β and η
presented the best correlations among FrOr parameters [R = 0.71, DLCO percentage of the

predicted values without correction (DLCOa%)] while G showed a good inverse correlation

with AV (%).

FrL, G and η presented reasonably significant inverse associations with maximum expira-

tory pressure (Pe) while β was directly associated with Pe (Table 4). In contrast, α, FrC, and H

did not present significant correlations with respiratory pressures.

Table 5 describes the associations between the FrOr and functional exercise capacity. FrL

was associated with the Final Borg Scale, while β was correlated with final peripheral oxygen

saturation (SpO2) and final Borg scale. Additionally, G presented a significant degree of associ-

ation with 6MWT and final SpO2. Among the FrOr parameters, the highest degree of associa-

tion with the functional exercise capacity parameters was between η and final SpO2 (R =

-0.57). In the first part of this study [28], the maximum values of correlation were 0.55, 0.48,

and -0.38, for spirometry, plethysmography and traditional FOT parameters, respectively.

Four of the studied FrOr parameters showed high sensitivity to detect changes in the pres-

ence of normal spirometric exams (FrL, β, H, η; Table 6). These parameters also showed ade-

quate diagnostic performance in the initial ROC analysis of patients with abnormal

spirometric exams.

Leave-one-out cross-validation (LOOCV) analysis [36] performed in the most discrimina-

tive parameters described in Table 6 showed a high diagnostic accuracy for FrL, β, and η in the

presence of normal spirometric exams (Fig 2A). These parameters also presented a high diag-

nostic accuracy (AUC>0.9) in patients with abnormal spirometry (Fig 2B).

Comparing the ability of the best parameters from spirometry, traditional FOT and FrOr to

identify initial respiratory changes in SCD (Fig 3), the AUCs of FEF% and the slope of the

resistance values (S) were similar in the NE group (p = ns). In contrast, η showed a signifi-

cantly higher AUC than FEF% (p<0.03) and S (p = 0.01). In patients with abnormal spiromet-

ric exams (Fig 3B), η had a significantly higher AUC than the best traditional FOT parameter

[dynamic compliance (Cdyn), p = 0.005].

However, a more restrictive analysis using leave-one-out cross-validation in the first part of

this research [28] showed that none of these parameters reached adequate values for clinical

use. The use of machine learning methods resulted in an improvement in the diagnostic accu-

racy (Fig 4). Interestingly, in the present study, the improvement in diagnostic accuracy using

FrOr modeling was higher than that obtained using ML methods, allowing us to achieve high

accuracy (Fig 4).
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Fig 1. Changes of the parameters obtained from the fractional-order model in the control group and patients with normal

(NE) and abnormal (AE) spirometry: Fractional inertance (FrL; A) and associated fractional-order angle (α; B), the fractional

compliance (FrC; C) and associated fractional-order angle (β; D), respiratory damping (G; E), elastance (H; F) and

hysteresivity (η; G). The top and the bottom of the box plot represent the 25th- to 75th-percentile values while the circle

represents the mean value, and the bar across the box represents the 50th-percentile value. The whiskers outside the

box represent the 10th-to 90th-percentile values. �p<0.05, ��p<0.01 and ���p<0.001 related to the control group.

https://doi.org/10.1371/journal.pone.0213257.g001
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The analysis of the diagnostic accuracy combining ML methods and all FrOr parameters is

described in Table 7. Table 8 shows the results obtained using an exhaustive search of the best

FrOr parameters. The use of cross products did not improve the results, even when a search

for the best parameters in the cross products was performed.

Discussion

To the best of our knowledge, this is the first study to investigate the concept of fractional

order modeling of respiratory impedance in adults with SCA. The major findings are that (1)

Table 1. Correlation analysis among fractional-order parameters and spirometric results. Significance was analyzed after Bonferroni correction. The highest associ-

ations are described in bold.

FEV1

(L)

FEV1

(%)

FVC

(L)

FVC

(%)

FEV1/FVC FEF max

(L)

FEF max

(%)

FrL -0.51

<0.0001

-0.49

<0.0001

-0.49

<0.0001

-0.54

<0.0001

-0.08

ns

-0.58

<0.0001

-0.62

<0.0001

α -0.22

ns

0.001

ns

-0.27

ns

-0.04

ns

0.09

ns

-0.26

Ns

0.002

ns

FrC 0.44

<0.0005

0.11

ns

0.45

0.0001

0.13

ns

0.01

ns

0.09

Ns

-0.20

ns

β 0.42

<0.0005

0.53

<0.0001

0.38

0.001

0.56

<0.0001

0.15

ns

0.31

Ns

0.49

<0.0001

G -0.60

<0.0001

-0.49

<0.0001

-0.57

<0.0001

-0.52

<0.0001

-0.19

ns

-0.30

Ns

-0.23

ns

H -0.27

ns

0.02

ns

-0.28

ns

0.02

ns

-0.01

ns

-0.02

Ns

0.30

ns

η -0.45

0.0001

-0.54

<0.0001

-0.40

<0.001

-0.57

<0.0001

-0.17

ns

-0.31

Ns

-0.47

<0.0001

FEV1: forced expiratory volume in the first second; FVC: forced vital capacity; FEF: forced expiratory flow between 25% and 75% of the FVC; %: percentage of the

predicted values. FrL: fractional-order inertance; α: fractional inertance coefficient; FrC: fractional-order compliance; β: fractional compliance coefficient; G: damping

factor; H: elastance; η: hysteresivity coefficient.

https://doi.org/10.1371/journal.pone.0213257.t001

Table 2. Correlation analysis among fractional-order parameters and volumetric results. Significance was analyzed after Bonferroni correction. The highest associa-

tions are described in bold.

TLC

(L)

TLC

(%)

FRC

(L)

FRC

(%)

RV

(L)

RV

(%)

RV/TLC RV/TLC (%) Raw

FrL -0.34

<0.005

-0.51

<0.0001

-0.35

<0.005

-0.32

ns

0.02

ns

-0.12

ns

0.44

<0.0005

0.42

<0.0005

0.60

<0.0001

α -0.12

ns

0.06

ns

-0.12

ns

0.05

ns

0.08

ns

-0.11

ns

0.29

ns

0.13

ns

0.03

ns

FrC 0.29

ns

0.04

ns

0.34

<0.005

-0.02

ns

0.03

ns

0.18

ns

-0.31

ns

-0.13

ns

0.03

ns

β 0.27

ns

0.59

<0.0001

0.35

<0.005

0.35

<0.005

0.05

ns

0.15

ns

-0.27

ns

-0.35

<0.005

-0.49

<0.0001

G -0.28

ns

-0.46

<0.0001

-0.43

<0.0005

-0.17

ns

0.02

ns

-0.35

<0.005

0.45

0.0001

0.34

<0.005

0.33

ns

H -0.14

ns

0.10

ns

-0.17

ns

0.15

ns

0.03

ns

-0.17

ns

0.23

ns

0.02

ns

-0.15

ns

η -0.26

ns

-0.59

<0.0001

-0.36

<0.005

-0.34

<0.005

-0.04

ns

-0.19

ns

0.29

ns

0.35

<0.005

0.47

<0.0001

TLC: total lung capacity; FRC: functional residual capacity; RV: residual volume; Raw airway resistance.

https://doi.org/10.1371/journal.pone.0213257.t002
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adults with SCA showed increased fractional inertance, damping and hysteresivity when com-

pared with community controls, 2) fractional-order parameters are correlated with functional

exercise capacity decline and pulmonary diffusion abnormalities, 3) fractional-order analysis

outperformed standard FOT, as well as FOT measurements associated with machine learning

methods, in the detection of early abnormalities, and 4) fractional-order analysis combined

with machine learning methods further improved diagnostic accuracy, allowing us to attain a

high accuracy in the detection of early respiratory abnormalities in patients with SCA.

Recently, the concept of FrOr modeling of the respiratory system has received significant

interest in the research community [18, 22, 24, 42, 43]. Theoretically, these emerging models

Table 3. Correlation analysis among fractional-order parameters and pulmonary diffusion capacity results. Significance was analyzed after Bonferroni correction.

The highest associations are described in bold.

DLCOa DLCOa (%) DLCOc DLCOc (%) DLCO/AVc DLCO/AVc (%) AV

(L)

AV

(%)

FrL -0.65

<0.0001

-0.71

<0.0001

-0.43

<0.0005

-0.51

<0.0001

-0.06

ns

-0.11

ns

-0.51

<0.0001

-0.63

<0.0001

α -0.17

ns

0.07

ns

-0.29

ns

-0.01

ns

-0.17

ns

-0.06

ns

-0.26

ns

-0.05

ns

FrC 0.22

ns

-0.07

ns

0.31

ns

0.00

ns

-0.04

ns

-0.08

ns

0.41

0.0005

0.14

ns

β 0.51

<0.0001

0.71

<0.0001

0.23

ns

0.51

<0.0001

-0.16

ns

-0.03

ns

0.39

<0.001

0.65

<0.0001

G -0.54

<0.0001

-0.51

<0.0001

-0.42

<0.0005

-0.44

<0.0005

0.01

ns

-0.02

ns

-0.54

<0.0001

-0.57

<0.0001

H -0.08

ns

0.23

ns

-0.24

ns

0.10

ns

-0.10

ns

0.00

ns

-0.24

ns

0.06

ns

η -0.51

<0.0001

-0.71

<0.0001

-0.25

ns

-0.52

<0.0001

0.15

ns

0.02

ns

-0.41

<0.001

-0.65

<0.0001

DLCO: carbon monoxide diffusion capacity; AV: alveolar volume; diffusion coefficient (DLCO/AV); a: values without correction; c: corrected for the concentration

level of hemoglobin; %: percentage of the predicted values.

https://doi.org/10.1371/journal.pone.0213257.t003

Table 4. Correlation analysis among fractional-order parameters and respiratory muscle pressure. Significance

was analyzed after Bonferroni correction. The highest associations are described in bold.

Pi Pi (%) Pe Pe (%)

FrL 0.23

ns

-0.27

ns

-0.48

<0.0001

-0.44

<0.0005

α 0.02

ns

-0.06

ns

-0.10

ns

0.10

ns

FrC -0.10

ns

0.10

ns

0.17

ns

-0.07

ns

β -0.25

ns

0.23

ns

0.41

0.0005

0.50

<0.0001

G 0.18

ns

-0.20

ns

-0.34

<0.005

-0.25

ns

H -0.01

ns

-0.03

ns

-0.02

ns

0.20

ns

η 0.24

ns

-0.22

ns

-0.40

<0.001

-0.46

<0.0001

Pi: maximal inspiratory pressure; Pe: maximum expiratory pressure.

https://doi.org/10.1371/journal.pone.0213257.t004
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have an improved sensitivity to pathologic changes, due to an improved ability to capture the

characteristics of the respiratory mechanics.

FrL in controls presented small values (Fig 1A), similar to previous studies [26]. This

parameter increased in SCA patients, which is consistent with the interpretation that resistive

properties are captured, at least in part, by the real component of the FrL term [21]. Additional

support to this hypothesis is provided by the findings of inverse good correlations with spiro-

metric indexes of airway obstruction (Table 1), and the highest association with airway resis-

tance measured with the plethysmograph (Table 2). Another interesting finding was the

presence of inverse good correlations with diffusion capacity indexes (Table 3) and reasonable

associations with respiratory pressures (Table 4). In close agreement with the involved physiol-

ogy, the increase in FrL was associated with an increase in Final Borg Scale (Table 5).

The values of α were slightly reduced in patients with SCA (Fig 1B). This finding is consis-

tent with the observation that in the SCA subjects there is a negative dependence of the

Table 5. Correlation analysis among fractional-order parameters and 6MWT results. Significance was analyzed after Bonferroni correction. The highest associa-

tions are described in bold.

6MWT 6MWT (%) RR Initial RR

Final

SpO2 Initial SpO2

Final

Borg Scale Initial Borg Scale Final

FrL -0.30

ns

-0.23

ns

0.23

ns

0.30

ns

-0.23

ns

-0.29

ns

0.04

ns

0.36

<0.005

α -0.06

ns

0.09

ns

-0.12

ns

0.01

ns

0.29

ns

0.25

ns

-0.18

ns

-0.06

ns

FrC 0.11

ns

-0.11

ns

0.06

ns

-0.03

ns

-0.08

ns

-0.03

ns

-0.07

ns

0.07

ns

β 0.27

ns

0.29

ns

-0.35

<0.005

-0.31

ns

0.50

<0.0001

0.56

<0.0001

-0.17

ns

-0.41

<0.001

G -0.38

<0.005

-0.25

ns

0.19

ns

0.22

ns

-0.30

ns

-0.38

<0.005

0.03

ns

0.28

ns

H -0.11

ns

0.09

ns

-0.15

ns

-0.06

ns

0.25

ns

0.21

ns

-0.14

ns

-0.15

ns

η -0.29

ns

-0.30

ns

0.35

<0.005

0.30

ns

-0.51

<0.0001

-0.57

<0.0001

0.16

ns

0.41

0.0005

6MWT: Six-minute walk test distance; (%): predicted percentage; RR: Respiratory rate; SpO2: Peripheral oxygen saturation.

https://doi.org/10.1371/journal.pone.0213257.t005

Table 6. Diagnostic accuracy of the fractional-order parameters in the detection of respiratory alterations in patients with sickle cell disease. Values obtained in

patients with normal values in the spirometric exam and abnormal spirometry.

FrL α C β G H η

Normal exam

AUC 0.910 0.786 0.763 0.967 0.743 0.892 0.967

Se (%) 90.48 66.67 76.19 95.24 76.19 90.48 95.24

Sp (%) 91.30 82.61 65.22 95.65 69.57 91.30 95.65

Cut-off >0.137 �0.606 >0.033 �0.623 >14.098 �25.06 >0.599

Abnormal exam

AUC 0.918 0.731 0.624 0.989 0.859 0.850 0.989

Se (%) 87.50 58.33 66.67 100.00 70.83 79.17 100.00

Sp (%) 91.30 86.96 65.22 95.65 95.65 91.30 95.65

Cut-off >0.137 �0.598 >0.033 �0.623 >18.341 �24.931 >0.599

AUC: area under the receiver-operator curve; Se: sensibility; Sp: specificity.

https://doi.org/10.1371/journal.pone.0213257.t006
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resistance as a function of frequency (Fig 3A in the first part of this study [28]). It is also consis-

tent with a recent work in asbestosis [25], a restrictive disease, and in contrast with previous

studies in obstructive patients with COPD [20] and asthma [22].

FrC and its corresponding fractional-order parameter β in controls were in the normal

range (Fig 1C and 1D) [25, 26]. The modifications observed in these indexes must be

Fig 2. Leave-one-out cross-validation analysis performed in the most discriminative parameters described in Table 6 in

the presence of normal spirometric exams (A) and abnormal spirometry (B).

https://doi.org/10.1371/journal.pone.0213257.g002
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interpreted with care. Although the small increase observed in the fractional-order compliance

FrC may appear to contradict the restrictive characteristic of SCA, the reduction observed in β
describes a reduction of the influence of the FrC in the elastic energy sense (reactive compo-

nent), with a concomitant increase of the influence of this parameter in the dissipative energy

Fig 3. ROC curves, AUCs and the 95% confidence interval for the most accurate parameters observed in spirometry,

classical FOT analysis and for the FrOr model in patients with normal exams (A) and with abnormal spirometric

exams (B). The AUCs of FEF% and S were similar in the NE group (p = ns) and η showed a significantly higher AUC

than FEF% (p<0.03) and S (p = 0.01). In patients with abnormal spirometric exams (B), η had a significantly higher

AUC than the best traditional FOT parameter (Cdyn, p = 0.005).

https://doi.org/10.1371/journal.pone.0213257.g003
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Fig 4. Results considering the more restrictive analysis using leave-one-out cross-validation in the best FOT parameter and FOT associated

with machine learning methods (obtained in the first part of this research [28]). These results are compared with those obtained in the present

study using FrOr modeling and FrOr modeling combined with machine learning methods in patients with normal (A) and abnormal (B)

spirometry.

https://doi.org/10.1371/journal.pone.0213257.g004

Table 7. Evaluation of the diagnostic accuracy of the machine learning algorithms using all FrOr parameters in detecting respiratory alterations in patients with

sickle cell anemia and normal and abnormal spirometric exams.

SVML

[37, 38]

ADAB

[39]

1-NN

[37, 38, 40]

RF

[39, 40]

SVMR

[40]

PARZEN

[41]

Normal exam

AUC 0.92 0.82 0.96 0.95 0.92 0.90

Se (%) 95.2 85.7 95.2 95.2 95.2 81.0

Sp (%) 95.7 82.6 95.7 95.7 95.7 95.7

Abnormal exam

AUC 0.96 0.92 0.97 0.96 0.90 0.89

Se (%) 100.0 100.0 100.0 100.0 97.5 91.7

Sp (%) 95.7 82.6 95.7 95.7 91.3 95.7

SVML: Support Vector Machine with Linear Kernel

ADAB: Adaboost with decision tree classifiers

1-NN: K Nearest Neighbor (K = 1)

RF: Random Forests

SVMR: Support Vector Machine with Radial Basis Kernel

PARZEN: Parzen classifier

https://doi.org/10.1371/journal.pone.0213257.t007
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sense (resistive component). Thus, these findings are consistent with the typical restrictive pat-

tern associated with SCA [44] and describe pathological changes similar to those related with

the reduction in Cdyn described in the first part of this study [28]. Consistent to this hypothe-

sis, FrC was directly related with pulmonary volume parameters, such as FVC (Table 1), FRC

(Table 2), and AV (Table 3).

Increased restriction in SCA patients resulted in increased values of G (Fig 1E). These find-

ings are consistent with previous studies in patients with asbestosis [25] and may reflect the

presence of increased energy dissipation in the respiratory system [17]. This effect may be

explained, at least in part, by the increase in parenchymal distortion associated with interstitial

pulmonary fibrosis due to the repeated episodes of ATS. Another possible explanation is

related to the increase in airflow heterogeneity throughout the lung due to changes in periph-

eral compliance and resistance. The good correlation observed with parameters related to

obstruction and restriction (Tables 1 and 2), as well as pulmonary diffusion (Table 3), provide

experimental support to this hypothesis. In addition, the inverse associations between Pe

(Table 4) and six minute walking test distance (6MWTD) and final SpO2 (Table 5) are in close

agreement with these physiological interpretations.

The values of H in controls (Fig 1F) were in the same range observed in previous studies

[25, 26]. This parameter was significantly reduced in SCA patients in comparison to controls.

This change was not related to spirometric (Table 1) or plethysmographic indexes of restric-

tion and airway obstruction (Table 2). These findings may reflect the inability of this parame-

ter to describe the main effects of SCA pathophysiology.

The results observed for η in controls (Fig 1G) were consistent with that obtained in previ-

ous studies [25, 26]. The presence of restriction introduced an increase in η, which is in close

agreement with previous studies [16, 25, 45] and reflects increased structural changes and het-

erogeneity in the lungs. This parameter is associated with the work of breathing [20], propor-

tional to the area in the hysteresis of the pressure–volume loop and is associated with the

heterogeneity of the lung tissue. Table 1 provides support for this interpretation describing the

presence of inverse and good correlations with spirometric indexes of obstruction and restric-

tion. Similar findings were observed in plethysmographic analysis (Table 2). As expected due

to its physiological meaning, η presented the highest correlation among all of the studied FrOr

parameters and pulmonary diffusion capacity, presenting good inverse correlations with

DLCOa (%) and AV (%) (Table 3). This parameter also showed the highest correlation with

functional exercise capacity. The closer associations were observed with final SpO2 and Borg

Scale (Table 5).

Table 8. Evaluation of the diagnostic accuracy of the machine learning algorithms using an exhaustive search of the best FrOr parameters in detecting respiratory

alterations in patients with sickle cell anemia and normal spirometric exams.

SVML ADAB 1-NN RF SVMR PARZEN

Normal exam

AUC 0.95 0.89 0.95 0.97 0.95 0.95

Se (%) 95.2 95.2 95.2 95.2 95.2 95.2

Sp (%) 95.7 91.3 95.7 95.7 95.7 91.3

Parameters (FrL,β) (α,η) (β,G,η) (FrL,G,η) (L,β) (L,β,η)

Abnormal exam

AUC 0.97 0.95 0.96 0.99 0.93 0.98

Se (%) 100.0 91.7 100.0 100.0 87.5 91.7

Sp (%) 95.7 87.0 95.7 95.7 95.7 100.0

Parameters (FrL,β) (FrL,G,η) (β,G,η) (β,G,η) (FrL,α,C,G,η) (β)

https://doi.org/10.1371/journal.pone.0213257.t008
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These findings indicate that η clearly describes the pathophysiology of SCA, which includes

reduced functional exercise capacity associated with restrictive functional defects [46] and

increases in respiratory work.

In general, the correlations among the FrOr parameters and spirometry (Table 1), plethys-

mography (Table 2), pulmonary diffusion (Table 3), respiratory pressures (Table 4) and func-

tional capacity (Table 5) were reasonable to good. This may be explained, at least in part, by

the different conditions observed during the measurements; while spirometry and plethys-

mography are performed using maximal effort maneuvers, the exams used in FrOr modeling

are conducted using spontaneous ventilation. Spirometry and plethysmography provide infor-

mation concerning airflow and volumes, while FrOr modeling provide parameters describing

with respiratory hysteresivity, damping, etc. Although these parameters are related, they are of

different nature. In fact, these reasonable to good values of correlation were expected, and rep-

resents an interesting finding. It confirms that FrOr parameters can provide additional infor-

mation on the mechanical characteristics of the respiratory system, which are complementary

to spirometry and plethysmography, each method providing unique information.

Perhaps more important is the contribution of this analysis to our understanding of the

interplay among the changes in the new FrOr parameters, the pathophysiological changes and

the performance of the patients in daily life activities. We demonstrated that respiratory FrOr

parameters are linked to underlying structural (Tables 1 and 2) and functional changes in the

systems that produce them (Table 5). These parameters presented changes that were highly

consistent with the pathophysiological changes. For example, the increase in η (Fig 1G)

describes an increase in airway resistance and a decrease in pulmonary volumes (Tables 1 and

2), diffusion capacity (Table 3), respiratory muscle performance (Table 4) and functional exer-

cise capacity (Table 5). This analysis contributes to elucidating an important debate in the liter-

ature [18, 21] and to provide support for the use of FrOr parameters in respiratory diseases.

There is general agreement in the literature about the importance of developing new, non-

invasive and sensitive lung-function methods for the early and accurate detection of pulmo-

nary abnormalities [47–50]. To contribute in this direction, in the particular case of SCA, the

first part of this study initially investigated the clinical use of traditional FOT parameters [28].

This analysis considered AUCs > 0.75 to be a good cut-off value for a useful clinical discrimi-

nator and that values between 0.90 and 1.00 indicate high diagnostic accuracy [31–33]. Analy-

sis using LOOCV showed that none of these traditional parameters reached adequate values of

diagnostic accuracy (Fig 4). An important improvement was obtained using a combination of

FOT and machine learning classifiers (Fig 4, AUC = 0.82 and AUC = 0.86 in normal and

abnormal spirometry, respectively). Both classifiers achieved an appropriate value for clinical

use (AUC>0.75) [28].

In the second part of this study, using a new and different analytical approach (FrOr model-

ing), we describe an additional improvement in diagnostic accuracy (Fig 4). FrOr modeling

allowed us to achieve values indicating adequate (H = 0.79, Fig 2A) and high diagnostic accu-

racy (FrL = 0.93, β = 0.98 and η = 0.98) in SCA patients with normal spirometry. In patients

with abnormal spirometry, three parameters presented high diagnostic accuracy (FrL = 0.91, β
= 0.93, η = 0.93, Fig 2B), suggesting that FrOr parameters may be useful in the pulmonary

function analysis of patients with SCA. These improvements may be associated with an

enhanced description of the complex biomechanics of the respiratory system. Similar improve-

ments were observed in previous studies in which FrOr modeling led to a more detailed

description of the properties of the arterial wall in brain aneurysms [51] and improved the

analysis of mechanics of the red blood cell membrane [52] and the simulation of blood flow in

the cranial network [53].
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Another interesting finding of the present work was that FOT associated with FrOr model-

ing resulted in parameters with higher sensitivity than spirometry in detecting an initial

decline in lung function of patients with SCA (Fig 3A). FrOr parameters were also more accu-

rate than the traditional ones in patients with abnormal spirometric exams (Fig 3B), which

provides additional evidence of the usefulness of FrOr modeling in diagnostic purposes. These

results are in close agreement with recent studies in which the use of fractional-order dynamics

provided a significant improvement in peripheral arterial disease screening for hemodialysis

patients [54], cancer detection [55], differentiation of low- and high-grade pediatric brain

tumors [56] and the differentiation between malignant and benign breast lesions detected on

X-ray screening mammography [57].

It has been previously indicated that recurrent fractal geometry may lead to the appearance

of fractional-order terms, with the intrinsic property of phase constancy [19]. Thus, fractional-

order dynamic behavior may be linked to fractal structure, implying that properties of both

structure and function are fundamentally linked [58]. The bronchial tree is a highly complex

fractal structure, in which the presence of self-similarity in its spatial structure is closely related

to the healthy lung, whereas a diseased lung contains considerable inhomogeneities and thus

asymmetry. A typical patient with SCA shows a loss of complexity in its spatial structure asso-

ciated with architectural remodeling throughout its length; many segments show marked

tapering, irregular constrictions, longitudinal ridges, and surface protrusions. Previous studies

from our group have demonstrated a reduction in respiratory impedance complexity [59] and

a significant increase in η and G with airway obstruction in asthma [24], indicating that η and

G are inversely related with respiratory complexity. Thus, we can hypothesize that the increase

observed in these parameters (Fig 1) may be explained, at least in part, by the progressive

reduction in the complexity of the spatial structure of the airway tree of patients with SCA.

This finding is consistent with the involved physiology as η is associated with the lung hetero-

geneity. Considering the good diagnostic performance observed in these parameters (Figs 2

and 3), this fact provides additional evidence of the clinical utility of the analysis of lung com-

plexity reduction in the diagnosis of respiratory diseases.

The classifiers algorithms used in the development of the clinical decision support system

(Table 7) have been successfully applied in respiratory research [60–65]. In the present study,

experiments show that the FrOr parameters alone present a high capability in discriminating

the control subjects from the patients with sickle cell anemia with normal and abnormal spiro-

metric exams (Fig 2). Particularly, the parameters FrL, β and η present AUCs higher than 0.9,

which provides a high diagnostic accuracy level. The experiments with the machine learning

algorithms have shown a minor improvement (AUC = 0.97) in detecting respiratory alteration

in patients with abnormal spirometric exams (Table 7). It is important to note that the dataset

is small and the algorithms would require more data or a reduction in complexity, which

could be accomplished with a search for the best parameters (Table 8). When the ML algo-

rithms use a small number of the best parameters, their results were improved (AUC = 0.99,

Table 8, Fig 4). Additionally, the chosen parameters for all classifiers usually include FrL, β or

η, which have presented the best performance alone. As expected, the use of cross products did

not improve the results. When we performed a search for the best parameters in the cross

products, the results were not better than those observed using a search for the best parameters

due to the small dataset and the increased complexity when one uses the cross products.

Clarifying the limitations of the present study allows the reader to better understand under

which conditions these results should be interpreted. First, the present work is limited to

patients with hemoglobin SS. This focus allowed us to exclude possible confounding factors

regarding severity and clinical profile. Another important point is that it is often the most

severe and common type of SCD. Many other types of SCD exhibit disparate features,
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including different structural changes within the respiratory system. Therefore, further studies

are needed to assess these specific disorders.

One could argue that there is a higher number of females in the control group in relation to

the groups of patients (Table 1, first part of the study [28]). However, the analyzed groups can

be considered homogeneous because height is the determinant parameter in FOT analysis,

and this parameter is homogeneous among the studied groups.

The subjects were from a Brazilian population at a single practice site, which affects the

study’s generalizability. Therefore, multicenter studies are necessary in the future to expand

the generalizability of these findings. The study used broad inclusion criteria and was per-

formed in a typical setting under usual clinical procedures, which enhanced its generalizability.

Another important point in this sense is that interested researchers may evaluate if they are

likely to obtain similar outcomes in their own patient population analyzing the adopted inclu-

sion and exclusion criteria and the demographic characteristics of the used population.

The present study investigated a relatively small sample size. Although this limitation was

minimized using the LOOCV method, it is still a limitation, and additional studies including a

larger number of subjects are necessary.

Conclusion

Using a combination of FOT and fractional-order modeling, this work initially improved our

knowledge regarding the respiratory changes in adults with SCA. It was shown that this disease

introduces an increase in fractional inertance, damping and hysteresivity. Then, the physiolog-

ical and functional meaning of the fractional-order parameters were investigated, and showed

that FrL, η and β are associated with functional exercise capacity, pulmonary diffusion, respira-

tory muscle performance, pulmonary volumes and airway obstruction. Finally, we demon-

strated that fractional-order modeling led to a high diagnostic accuracy in the detection of

early respiratory abnormalities in patients with SCA, outperforming standard FOT analysis

and spirometric measurements. A combination of ML methods with fractional-order model-

ing further improved diagnostic accuracy, composing a potentially useful clinical decision sup-

port system to help identify respiratory changes in patients with SCA.
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Supervision: Agnaldo José Lopes, Pedro Lopes de Melo.

Validation: Cirlene de Lima Marinho, Maria Christina Paixão Maioli, Pedro Lopes de Melo.

Visualization: Cirlene de Lima Marinho, Maria Christina Paixão Maioli, Pedro Lopes de

Melo.

Writing – original draft: Cirlene de Lima Marinho, Maria Christina Paixão Maioli, Jorge Luis

Machado do Amaral, Agnaldo José Lopes, Pedro Lopes de Melo.
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