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ABSTRACT
Cytokines are molecules that play critical roles in the regulation of a wide range of normal 
functions leading to cellular proliferation, differentiation and survival, as well as in 
specialized cellular functions enabling host resistance to pathogens. Cytokines released 
in response to infection, inflammation or immunity can also inhibit cancer development 
and progression. The predominant intracellular signaling pathway triggered by cytokines 
is the JAK-signal transducer and activator of transcription (STAT) pathway. Knockout mice 
and clinical human studies have provided evidence that JAK-STAT proteins regulate the 
immune system, and maintain immune tolerance and tumor surveillance. Moreover, aberrant 
activation of the JAK-STAT pathways plays an undeniable pathogenic role in several types 
of human cancers. Thus, in combination, these observations indicate that the JAK-STAT 
proteins are promising targets for cancer therapy in humans. The data supporting this view 
are reviewed herein.
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INTRODUCTION

The importance of inflammation for tumorigenesis and malignant progression has become 
the considerable interests for good reasons. Inflammatory conditions can initiate or promote 
various accessary responses such as oncogenic transformation, and genetic and epigenetic 
changes in malignant cells that further enhance tumor progression. The presence of specific 
inflammatory cells and mediators, including cytokines and chemokines provoke cancer-related 
inflammation and cytokines apply broad immunoregulatory roles to human disease (1-3).

Over the last 25 years, it has been shown that the majority of cytokines transfer their signals 
via the JAKs and signal transducer and activator of transcriptions (STATs). The different JAKs 
associate constitutively with different cytokine receptors. Binding of specific ligands to such 
receptors induces conformational changes in the receptors, resulting in activation of JAKs. 
The activated JAKs subsequently induce phosphorylation of specific tyrosine-based motifs 
in the cytokine receptors, which provide docking sites for Src homology 2 (SH2)-containing 
STATs, as well as for other proteins with SH2 domains (4-6). Inactivating JAK3 mutations 
in humans are seen is a severe combined immunodeficiency syndrome, whereas mutations 
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of tyrosine kinase 2 (Tyk2) result in another primary immunodeficiency such as autosomal 
recessive hyperimmunoglobulin E syndrome (7). These findings imply a critical role of JAK-
STAT pathways in promoting normal immunity (2).

Conversely, activating mutations of JAKs are found in the connection with malignant 
transformation in humans as gain-of-function mutation of JAK2 in myeloproliferative 
disorders (8). Moreover, JAK3 and Tyk2 are also related with clinical disorders in humans and 
mouse models (9,10). In addition, recent evidences provide important roles for STAT family 
that potentiate candidates to induce a pro-carcinogenic inflammatory microenvironment 
as well as the initiation of malignant transformation and cancer progression (10). STAT3 
is linked to inflammation-associated tumorigenesis initiated by genetic alterations in 
malignant cells and induced by various environmental factors such as chemical carcinogens, 
sunlight, infection, cigarette smoking, and stress (11). Thus, JAK-STATs have complex roles, 
either direct or indirect, in promoting cancer progression.

In this review, we will discuss the role of JAK-STAT pathways in promoting cancer 
development and progression. We will show that the involvement of JAK-STAT pathways in 
these processes can be either direct or indirect. We will also summarize the data regarding 
the creation and testing of pharmacological inhibitors of the JAK-STAT pathways for the 
treatment of various types of human cancers.

THE JAK-STAT PATHWAYS

As referred to above, cytokine receptors are non-covalently associated with the JAK family 
member of cytoplasmic protein tyrosine kinases (PTKs) (2,4,5). JAK kinases are so called, 
because they have 2 tandem kinase-like domains, one true kinase domain and one pseudo-
kinase domain, and thus reminiscent of the 2-headed mythical Roman god Janus (2,12). 
There are 4 common members of the JAK family, which are JAK1, JAK2, JAK3, and Tyk2 (10). 
Most JAK family members are ubiquitously expressed except JAK3 predominantly expressed 
in hematopoietic cells.

As mice deficient for individual JAK family members show different phenotypes, it is 
presumed that each kinase has a distinct function (4). JAK family members show very similar 
structures and functions and are more than 1,000 amino acids, which consist of unique 7 
JAK homology (JH) regions (JH1 to JH7), and these form the alleged domains of JAK family 
members (Fig. 1A and 1B) (2).

It is likely that the usage of different combinations of JAKs by different cytokine receptors 
enables a diversity of signaling responses. The dimerization or clustering of the signaling 
chains allows the JAKs to cross-phosphorylate each other, thus stimulating their kinase 
activity. The activated JAKs then phosphorylate the cytokine receptors on specific tyrosine 
residues to generate binding sites for proteins with SH2 domains (Fig. 1A). Some of the 
tyrosine phosphorylated sites recruit SH2 domain-containing latent transcription factors 
known as STATs (5,12).

There are 7 known STATs (1–4, 5a, 5b, and 6) (4,12). The specificity of particular STATs 
for a particular receptor is determined by the recognition of distinctive phosphotyrosine 
sequences on the activated receptors by the SH2 domain of the STATs. Recruitment of 
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a STAT to an activated receptor brings the STAT close to the activated JAK, which can 
then phosphorylate the STAT (4). This leads to a conformational change in the STAT that 
allows it to bind to another STAT and form a STAT dimer. STATs can form homodimers or 
heterodimers. The phosphorylated STAT dimer then dissociates and enters the nucleus to 
initiate the transcription of particular genes (4). These STAT-regulated genes contribute to 
the growth and differentiation of specific subsets of lymphocytes.

As cytokines have so many powerful effects, the activation of cytokine signaling pathways 
must be tightly controlled; breakdown in control can lead to significant pathological effects. 
A variety of cytokine-specific inhibitory mechanisms ensure that cytokine signaling pathways 
can be efficiently terminated (3,13). As cytokine receptor signaling depends on tyrosine 
phosphorylation, dephosphorylation of receptor complexes by protein tyrosine phosphatases 
is one important means of signal termination. A variety of protein tyrosine phosphatases 
have been implicated in the dephosphorylation of cytokine receptors, JAKs or STATs; these 
include CD45, SH2 domain-containing phosphatase-1 (SHP-1) or SHP-2, and the T-cell 
protein tyrosine phosphatase (TCPTP) (14,15).

216https://doi.org/10.4110/in.2017.17.4.214

JAK-STAT Signaling in Cancer

https://immunenetwork.org

Cytokine receptor
Interacting domain

FERM domain SH2 domain

A

B

N C

IL-2R, IL-4R
IL-7R, IL-9R

IL-6R, IL-11R
IL-7R, IL-9R

IL-3R, IL-5R
GM-CSFR

EPOR, TPOR
G-CSF

IFN-α, β, γ
IL-10R, IL-19R

Type I receptors Type II receptors

JAK2

STAT

Pseudokinase domain Kinase domain

Transactivation
domain

JH4–7 JH3

JAK1, JAK3 JAK2 JAK2JAK1, JAK2, TyK2 JAK1, JAK2, TyK2

JH2 JH1

PP

PP

N CAmino-terminal Coiled-coil DNA-binding Linker TADSH2

V617

Figure 1. Schematic representation of JAK-STAT structure. (A) The domain structure of JAKs and STATs. Four JAKs consist of the domains JH1 to JH7 based on 
their sequence similarity including 2 tyrosines after cytokine stimulation. JH1 is kinase domain and JH2 is the pseudo-kinase domain. The JH6 and JH7 domains 
introduce the binding of JAKs to main receptors. STATs consist of 7 specific domains, which are involved with various responses resulting in the regulation of 
protein modification by tyrosine and serine phosphorylation, methylation, sumoylation, and acetylation. (B) Classification of cytokine receptors which are type I 
and II according to their ligands and the association with JAKs to deliver their signals to the downstream. 
FERM, 4.1, ezrin, radixin, moesin; TAD, transactivation domain; GM-CSFR, granulocyte-macrophage colony-stimulating factor receptor; EPOR, erythropoietin 
receptor; TPOR, thrombopoietin receptor; G-CSF, granulocyte-colony stimulating factor; IFN, interferon.
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Cytokine signaling can also be terminated by a negative feedback process involving specific 
inhibitors induced by cytokine activation. One class of inhibitors contains the suppressors of 
cytokine signaling (SOCS) proteins, which terminate signaling in variety of ways, including 
promoting the ubiquitination and subsequent degradation of receptors, JAKs and STATs 
(16). Another class of inhibitory proteins consists of the protein inhibitors of activated STAT 
(PIAS) proteins, which also seem to be involved in promoting the degradation of receptors 
and pathway components (17).

Among the genes known to be transcriptionally upregulated by mammalian STAT proteins 
are some encoding cell survival factors, such as the B-cell lymphoma 2 (Bcl-2) family 
of proteins, others involved in cell proliferation, such as cyclin D1 and Myc, and some 
implicated in angiogenesis or metastasis, such as vascular endothelial growth factor (16,18). 
Since it is conceivable that upregulation of genes promotes cancer formation, it has been 
presumed that upregulation of these genes mediates the physiological effects of STAT 
activation on cell behavior and, also, may promote cancer formation.

INVOLVEMENT OF JAK FAMILY KINASES IN CANCER

Several lines of evidence have directly implicated the JAK-STAT pathways in the pathogenesis 
of cancers. Abnormal translocations or mutations involving certain genes coding for 
JAKs have been observed in leukemias and other hematologic malignancies in humans. 
Moreover, JAK-STATs are hyperactivated in a variety of hematological malignancies and 
solid tumors, and such abnormal activations are likely involved in the pathogenesis of these 
diseases (34,35).

Discovery of mutations in JAK2, in particular JAK2 valine 617 to phenylalanine 617 (V617F) 
mutation in myeloproliferative neoplasms (MPNs) such as polycythemia vera (PV), essential 
thrombocythemia (ET), and primary myelofibrosis (PMF) has caused remarkable interest 
in examining the direct involvement of JAK-STAT pathways in cancer (19). These mutations 
result in a constitutively active kinase domain, leading to gain-of-function and tumor 
development. The V617F mutation happens in the pseudokinase domain of JAK2 and results 
in an impaired ability of the pseudokinase domain to regulate negatively the kinase domain 
(the active part of an enzyme) (20). JAK2 V617F mutation exists in most PV patients and 
about half of PMF patient as well as ET have a JAK2 V617F mutation, even though different 
levels of allele burden (21). Although JAK2 V617F is mostly related with MPNs, abnormally 
activated JAK2 mutation have been recognized in a few patients with MPN without a JAK2 
V617F mutation. These mutations include JAK2 mutations residing in exon 12 and mutations 
in the myeloproliferative leukemia virus oncogene (MPL) receptor (MPL W515L) (Fig. 2) 
(21). All these mutations result in abnormal proliferation and survival of stem cells and 
hypersensitivity or independence from hematopoietic cytokines (6,22). Enforced expression 
of these mutant proteins in mice, either by transgenesis or by retroviral transfer in bone 
marrow stem cells, cause PV, ET, and post-PV/ET myelofibrosis (MF) phenotypes implying a 
direct causal role for these mutations in MPNs (23,24).

Recently, several published studies identified a genetic haplotype that affect the development 
of JAK2 V617F mutation and MPN through somatic mutation (25,26). These reports 
suggested that the JAK2 V617F mutation is not causing MPN, but rather is a contributing 
factor for disease existence (25,27). Identification of the abnormalities that lead to the 
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existence of MPN and the occurrence of JAK2 V617F mutations, and to the distinct clinical 
entities of PV, ET, and PMF in humans, is a subject of intense investigation (28,29).

It has been reported that acute lymphoblastic leukemia (ALL), acute myelogenous 
leukemia (AML), and acute megakaryoblastic leukemia (AMKL) are also affected by JAK2 
mutations (30). Point mutations of V617F enhance cell proliferation and survival via tyrosine 
phosphorylation of JAK2. Rare cases of point mutations in JAK3/STAT5 phosphorylation 
causing AMKL have been reported contrast to high prevalence of patients with JAK2 
alterations. Interestingly, JAK3 mutations have been reported in solid cancers such as breast 
cancer or gastric cancer (31).

Another abnormal translocation, which results in production of the E26 transformation-
specific leukemia (TEL)-JAK2 fusion protein, has been identified in myeloid and lymphoid 
malignancies in humans (32). Direct evidence that this abnormal JAK protein with 
constitutive activation of its kinase domain can induce leukemia-like syndromes was 
obtained by the creation of TEL-JAK2 transgenic mice, which exhibited uncontrolled 
expansion of CD8+ T cells (32,33). Studies to understand how the TEL-JAK2 fusion protein 
promotes leukemogenesis have shown that the constitutive activity of JAK2 in the fusion 
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protein results in phosphorylation/activation of STAT proteins (STAT1, STAT3, and STAT5) 
(32,34). The ability to induce myelo- and lymphoproliferative diseases in STAT5a/b-deficient 
mice, using a bicistronic retrovirus encoding both TEL-JAK2 and STAT5a, established the 
critical role of STAT5 in the pathogenesis of TEL-JAK2-induced syndromes (35). The TEL-
JAK2 fusion protein induces the transformation of a hematopoietic pro-B cell line (Ba/F3), 
seemingly through constitutive STAT3 and STAT5 activation (36,37).

Besides TEL-JAK2, different JAK2 fusion proteins are involved with atypical chronic 
myelogenous leukemias (CMLs), including pericentriolar material 1 (PCM1)-JAK2 or B-cell 
receptor (BCR)-JAK2 fusions (38). Similarly, in the setting of acute leukemias, JAK2 fusion 
proteins have been reported (38). The oncogenic potential of such PTK fusion proteins 
was featured by translocations leading to production of TEL-platelet-derived growth factor 
receptor (PDGFR) or TEL-Abelson kinase (Abl) with chronic myelomonocytic leukemia 
(CMML) or ALL, respectively (39-41).

Another important hematologic malignancy in which JAK-STAT pathways appear to play 
roles in pathogenesis is multiple myeloma. Studies have shown that constitutive activation 
of STAT3 occurs in bone marrow mononuclear cells from patients with multiple myeloma 
(42,43). Similarly, STAT3 was found to be activated in IL-6-independent multiple myeloma 
cell lines and such activation was associated with activation of JAK1, JAK2, or JAK3 (43). 
STAT3 inhibitors were found to downregulate B-cell lymphoma-extra large (Bcl-xL) 
expression and increase Fas-mediated apoptosis (44). In addition, they were shown to 
suppress cell proliferation and inhibit JAK2 kinase activity, as well as extracellular signal-
regulated kinase (ERK2) and STAT3 phosphorylation, in IL-6-dependent multiple myeloma 
cell lines.

STAT3 was also shown to be constitutively activated in solid tumors. These include primary 
breast carcinoma cells, breast cancer cell lines, and primary melanoma cells (45,46). 
STAT3 is also constitutively activated in prostate carcinomas (46). Blockade of activated 
STAT3 in prostate cancer cells expressively suppressed their growth and tumorigenicity. 
Constitutive activation of STAT3 has also been described in squamous cell carcinomas of 
the head and neck, and such an activation decreases apoptosis through increased Bcl-xL 
expression (47-49). In addition, correlation between increased levels of the activated form 
of phosphorylated STAT3 and cyclin D1 levels was found in one study in which 51 primary 
tumor samples (50).

Thus, in combination, these results clearly established that constitutive and aberrant 
activation of JAK-STAT pathways can have a direct pathogenic role in various hematological 
malignancies, as well as in certain types of solid tumors, in humans.

INDIRECT PARTICIPATION OF JAK-STAT PATHWAYS IN 
HUMAN MALIGNANCIES
There is also indication that the JAK-STAT pathways can participate indirectly in the 
pathogenesis of human malignancies. Indeed, JAKs regulate signaling pathways activated 
by a variety of cytokines and growth factors such as various interleukins; granulocyte-
macrophage colony-stimulating factor receptor (GM-CSFR), granulocyte-colony stimulating 
factor (G-CSF), and erythropoietin (10). As a result, members of the JAK family activate 
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normal mitogenic pathways and this feature may contribute to creation of the oncogenic 
state. For instance, JAK kinases activate the Ras-Raf-mitogen activated protein kinase 
(MAPK) cascade that is implicated in malignant transformation and neoplastic cell growth 
(51). JAK kinases have also been linked to malignant transformation by other oncogene 
proteins such as v-Abl (52). The capacity of v-Abl to transform cells is directly linked to its 
ability to induce constitutive activation of STAT5 and STAT6, and v-Abl-dependent STAT 
activation correlates with its ability to activate JAK1, JAK2, and JAK3, depending on the 
cellular context and cell type involved (52).

Another mechanism by which JAK kinases appear to promote malignant cell survival and 
growth is modulation of apoptosis via regulation of the activities of anti-apoptotic the Bcl-2 
family proteins. JAK kinases regulate the levels of Bcl-xL, Bcl-2, and Bcl-2-associated X 
protein (Bax), independently of their effects on STATs and other associated pathways such 
as the phosphatidyl inositol 3 kinase (PI3K) and the Ras-MAPK pathways (53,54). JAKs also 
regulate apoptosis and p53 dependent cell cycle arrest.

Lastly, the JAK-STAT pathways can indirectly favor malignant transformation by promoting 
immune cell-mediated inflammation at sites of tumor development. While immunity can 
help prevent or terminate the oncogenic process, it is now becoming abundantly clear that 
inflammation at tumor sites can also have pro-oncogenic effects. This activity is mediated 
through multiple mechanisms by way of the ability of some immune cells, in particular 
macrophages, to secrete growth factors that promote tumor cell growth, to stimulate blood 
vessel development that enhances blood perfusion and arrival of nutrients at tumor sites and 
to suppress anti-tumor-specific immune reactions (55).

JAKS AS CLINICAL DRUG TARGETS

Considering the evidence that activation of JAK-STAT pathways plays a role, direct or, at 
times, indirect in malignant transformation of hematopoietic and non-hematopoietic cells, 
there has been significant interest in developing and using pharmacological inhibitors of the 
JAK-STAT pathways to treat these disorders (Table 1). In support of this, JAK-specific kinase 
inhibitors have been shown to inhibit cell proliferation in several systems (56).

At first, the quinazoline derivatives such as WHI-P131 and WHI-P154, which were therapeutic 
agent for glioblastoma, are also considered to potential activity against JAK3 (57-59). 
However, in retrospect, these compounds were neither selective nor potent JAK3 inhibitors 
(60). Other inhibitors such as tyrphostin AG 490 (Sigma-Aldrich, St. Louis, MO, USA) or 
PNU156804 (Pfizer Inc., New York, NY, USA) were also observed to inhibit JAK3 and show 
significant effects in vitro, but, again, their selectivity was not confirmed in vivo (61,62). 
Another study showed that CP-690,550 (Tofacitinib; Pfizer Inc.) had high affinity for JAK3, 
with little effect on unrelated kinases (63,64). But the clinical efficiency of this compound 
remains unproven.

More significantly, the discovery of an activating mutation (JAK2 V617F) in hematological 
malignancies like MPNs, PV, ET, and PMF led to the accelerated development of JAK2 
inhibitors, of which are in clinical studies. Various JAK2 inhibitors such as pacritinib (SB1518; 
S*BIO Pte Ltd., Singapore, Singapore), XL019 (Exelixis, Inc., South San Francisco, CA, 
USA), ruxolitinib (INCB018424; Incyte Corporation, Wilmington, DE, USA), TG101348 
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(Sanofi, Paris, France), and lestaurtinib (CEP701; Abcam Biochemicals, Cambridge, UK) 
are under being examined to develop for hematological malignancies (65-70). Clinical 
studies of ruxolitinib are being conducted for prostate cancer, multiple myeloma, AML, 
and CML (71,72). Lestaurtinib is a U.S. Food and Drug Administration (FDA)-designated 
orphan drug for AML, which was considered by targetting Fms-like tyrosine kinase 3 (FLT3) 
and tropomyosin-related kinase A (TrkA) (73-76). However, lestaurtinib was also reported 
to inhibit JAK2. Consequently, phase II clinical trials are testing this drug in AML patients 
with JAK2 mutations (70,77). Furthermore, although imatinib (Gleevec®, STI571; Novartis 
Oncology, East Hanover, NJ, USA) show activity towards JAK2, efficacy of imatinib was tested 
in clinical trials for PV (78). Finally, dasatinib (Sprycel®, BMS-354825; Bristol-Myers Squibb, 
Princeton, NJ, USA), a PTK inhibitor approved for CML after imatinib, is a potential inhibitor 
of Src family PTKs and BCR-Abl (79). Dasatinib is less efficacious in vivo model of JAK2 
mutant dependent PV model though in vitro dasatinib inhibit myeloid and erythroid colony 
growth in peripheral blood cells (80). Dasatinib can inhibit JAK2 activity in vitro at least at 
high-doses and more clinical trials are underway to determine how it inhibits JAK2 mutation-
driven proliferation. Moreover, several FDA-approved tyrosine kinase inhibitors already in the 
clinic, including sorafenib (Nexavar®, BAY43-9006; Bayer HealthCare Pharmaceuticals Inc., 
Wayne, NJ, USA) and sunitinib (Sutent®, SU11248; Pfizer Inc.), were found to inhibit STAT3 
signaling indirectly, resulting in tumor cell cycle arrest and apoptosis (81,82). Sorafenib 
inhibits of phosphotyrosine site of STAT3 and decreases expression of anti-apoptotic 
protein myeloid cell leukemia 1 (Mcl-1), a member of Bcl-2 family (82,83). Sunitinib has 
further been found to inhibit STAT3 activity in tumor-associated immune cells, modulating 
the tumor immunological microenvironment in favor of cancer therapy (84). It inhibits 
immunosuppressive myeloid lineage-derived suppressor cells (MDSCs) and regulatory T cells 
both in mouse models and in human clinical trials (85,86). Although the inhibition of STAT3 
signaling contributes to the anti-tumor activities of sorafenib and sunitinib, their precise 
molecular mechanisms of action in terms of STAT3 inhibition remain to be determined. In 
sum, targeting of JAKs-STATs — a central regulatory node on which many oncogenic and 
inflammatory pathways converge — hold great promise for cancer therapy. In addition to 
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Table 1. Type of JAK-STAT inhibitors
Type Name Efficacy Clinical stage
JAK2 inhibitor SB1518 (pacritinib) Hematological malignancies, CIMF, MF, MDS Phase III

XL019 MPD, MF Phase I/II
TG101348 MF, renal impairment Phase I/II
INCB018424 (ruxolitinib) Prostate cancer, multiple myeloma, AML, CML, IBC, advanced hematologic 

malignancies, MF
Phase II/III

CEP701 (lestaurtinib) AML, pancreatic cancer, prostate cancers, Neuroblastoma Phase II
Dasatinib JAK2 mutant dependent PV, CML, prostate cancer Phase IV

JAK3 inhibitor WHI-P131 Glioblastoma N/A
WHI-P154 Glioblastoma N/A
Tyrphostin AG 490 Pre-B acute leukemia (ALL) N/A
PNU156804 Block allograft rejection N/A
CP-690,550 (tofacitinib) RA, psoriasis, inflammatory bowel disease, organ transplant rejection, ulcerative 

colitis, ankylosing spondylitis
Phase III

NC1153 Block allograft rejection N/A
STAT3 inhibitor Sorafenib HCC, RCC, breast cancer, thyroid cancer Phase II/III

Sunitinib GIST, esophageal cancer, RCC, pNET Phase II/III
Bendamustine CLL, multiple myeloma, non-Hodgkin's lymphoma Phase II/III
Napabucasin Colon cancer, rectal cancer, colorectal cancer Phase II

CIMF, chronic idiopathic myelofibrosis; MDS, myelodysplastic syndrome; MPD, myeloproliferative disorder; IBC, inflammatory breast cancer; N/A, not applicable; 
RA, rheumatoid arthritis; HCC, advanced hepatocellular carcinoma; RCC, advanced renal cell carcinoma; GIST, gastrointestinal stromal tumor; pNET, pancreatic 
neuroendocrine tumor; CLL, chronic lymphocytic leukemia.
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the inhibitory functions for the tumor cell proliferation and survival, such JAK2 or STAT3 
inhibitors may convert inflammation in the tumor microenvironment from tumor-promoting 
to tumor-suppressing. This possibility deserves consideration.

CONCLUSION

Significant progresses have occurred over the recent years in the field of JAK-STAT signaling. 
The original identification of the components of the JAK-STAT pathways led to the 
development of important basic research studies that have provided valuable information for 
mechanisms by which different combinations of JAK kinases and their substrates participate 
in the regulation of malignant cell growth, survival and death. Depending on the specific 
JAK kinase involved and the downstream effectors activated, different biological outcomes 
can occur. While it is clear that JAK-STAT pathways negatively regulate neoplastic cell 
proliferation under certain circumstances, activation of JAKs or STATs promotes malignant 
transformation and neoplastic cell growth in most of cases. The tumor-promoting activity 
of JAKs and STATs is highly relevant both to hematologic malignancies and to solid tumors, 
and has provided potential targets for the development of specific anti-tumor therapies. 
The several reports of JAK2 inhibitors in the treatment of various cancer models were a 
remarkable scientific and clinical advance in the field of leukemia. The studies of these drugs 
have provided a model for the development of other small molecules that target kinases 
involved in the pathogenesis of malignancies. It is likely that continuation and expansion of 
current research efforts will provide additional important information that could be applied 
towards the future development of novel anticancer therapies.
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