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Abstract: The identification of peripheral multi-omics biomarkers of brain disorders has long been
hindered by insufficient sample size and confounder influence. This study aimed to compare
biomarker potential for different molecules and diseases. We leveraged summary statistics of five
blood quantitative trait loci studies (N = 1980 to 22,609) and genome-wide association studies
(N = 9725 to 500,199) from 14 different brain disorders, such as Schizophrenia (SCZ) and Alzheimer’s
Disease (AD). We applied summary-based and two-sample Mendelian Randomization to estimate the
associations between blood molecules and brain disorders. We identified 524 RNA, 807 methylation
sites, 29 proteins, seven cytokines, and 22 metabolites having a significant association with at
least one of 14 brain disorders. Simulation analyses indicated that a cross-omics combination of
biomarkers had better performance for most disorders, and different disorders could associate
with different omics. We identified an 11-methylation-site model for SCZ diagnosis (Area Under
Curve, AUC = 0.74) by analyzing selected candidate markers in published datasets (total N = 6098).
Moreover, we constructed an 18-methylation-sites model that could predict the prognosis of elders
with mild cognitive impairment (hazard ratio = 2.32). We provided an association landscape between
blood cross-omic biomarkers and 14 brain disorders as well as a suggestion guide for future clinical
discovery and application.

Keywords: peripheral biomarker; neuropsychiatric disorder; mendelian randomization; diagnostic
model; prognosis

1. Introduction

The diagnosis of chronic brain disorders at the present day is primarily dependent on
clinical symptom assessments, which suffers from the drawback of subjectivity, symptom
heterogeneity, and disease comorbidity [1]. To overcome these difficulties and aid early
intervention of brain disorders, researchers have made considerable efforts to find objective
diagnostic and predictive biomarkers [2]. Among all potential biomarkers, peripheral blood
molecules, such as RNA [3], methylation site [4], and proteins [5] have gained specific
attention due to the high feasibility and relatively low costs. So far, researchers have found
a large number of potential blood biomarkers for the diagnosis of brain disorders [6].

However, the study and application of blood-based biomarkers has long suffered from
the lack of reproducibility [6]. Overfitting is one of the main challenges: a transcriptome-
wide analysis typically has more than 20,000 RNAs detected, whereas the sample size of
test subjects is usually limited to no more than a few hundred due to the labor cost burden.
The conflicts between feature number and the sample size are even exacerbated when the
biomarkers’ discovery strategy of “multi-omics” is applied [7]. On the other hand, technical,
and biological confounders, such as batch effect, immune state, lifestyle, and influence

J. Pers. Med. 2021, 11, 1247. https://doi.org/10.3390/jpm11121247 https://www.mdpi.com/journal/jpm

https://www.mdpi.com/journal/jpm
https://www.mdpi.com
https://orcid.org/0000-0003-3197-6236
https://orcid.org/0000-0002-6312-0689
https://orcid.org/0000-0001-7929-204X
https://orcid.org/0000-0001-9496-0149
https://doi.org/10.3390/jpm11121247
https://doi.org/10.3390/jpm11121247
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jpm11121247
https://www.mdpi.com/journal/jpm
https://www.mdpi.com/article/10.3390/jpm11121247?type=check_update&version=3


J. Pers. Med. 2021, 11, 1247 2 of 17

from diseases of different organs, dramatically impact the level of blood molecules [6],
which further beclouds the true association between biomarkers and brain disorders.

Theoretically, Mendelian Randomization (MR) [8] could properly overcome the chal-
lenge of overfitting and confounder effects (Figure S1). By using genetic variants that
significantly impact the expression level of a blood molecule (so-called Quantitative Trait
Loci, QTL) [9–13] as instruments, MR separates participants into high- and low-level
groups. Next, MR compares the prevalence of a disorder between two groups to evaluate
the association between the molecule and the disorder. Furthermore, in a 2-sample MR
(2SMR) scenario, the QTL-molecule and QTL-disease associations can be estimated in two
different Genome-Wide Association Studies (GWAS) (Figure S1) and then integrated to
estimate the final molecule-disease association. Such analyses overcome overfitting by
profoundly increasing the effective sample size (i.e., combining samples of two GWAS) and
eliminating confounders’ impact since the genetic instruments are unlikely to be influenced
by environmental factors [8]. Based on the framework of 2SMR, Zhu et al. [14] proposed a
new MR method, Summary statistic-based Mendelian Randomization (SMR), which better
addresses the MR analysis of high-throughput data. Both SMR and 2SMR can serve as the
ideal tools for biomarker discovery.

The explosive growth of large-scale QTL studies demonstrated the significant her-
itability of blood levels of RNA [11], methylation [12], protein [13], cytokine [10], and
metabolite [9], which provided the opportunity of applying 2SMR and SMR to discover
their association with brain disorders. In the current study, we integrated these QTL data
and GWAS summary statistics of 14 brain disorders (Figure S1) to achieve three goals:
(1) comprehensively evaluate the potential of biomarkers for each omic and disorder;
(2) validate some of the top candidates using publicly available high-throughput datasets;
and (3) provide a biomarker potentiality landscape, which could serve as a reference for a
future biomarker study.

2. Materials and Methods
2.1. Data Collection and Pre-Processing

We downloaded blood QTL [9–13] and disease GWAS summary statistics from
the public domain, including SCZ [15], Bipolar Disorder (BP) [16], Major Depressive
Disorder (MD) [17], Anorexia Nervosa (AN) [18], Attention deficit hyperactivity disor-
der (ADHD) [19], General Anxiety Disorder (ANX) [20], Tourette’s syndrome (TS) [21],
Obsessive-Compulsive Disorder (OCD) [22], Autism Spectrum Disorder (ASD) [23], Al-
cohol Dependence (ALD) [24], Post-traumatic stress disorder (PTSD) [25], Alzheimer’s
Disease (AD) [26], Parkinson’s Disease (PD) [27] and Nicotine Dependence (ND) [28]. We
searched for all blood QTL and GWAS studies that (1) provided effect size and standard
error summary statistics for genome-wide variants; (2) recruited only European popula-
tions; (3) for the QTL study, only involved healthy participants. For each omic and disorder,
we chose the study with the largest sample size. Readers who wish to replicate the study
should gain approval from the corresponding authors of these data. We applied uniform
filtration, pre-processing, and Surrogate Variable Analysis [29] (SVA)-based confounder
adjustment on all datasets (Supplementary Notes).

2.2. Summary-Based and 2-Sample Mendelian Randomization (SMR and 2SMR)

For the association between RNA, methylation, protein markers, and brain disor-
ders, we applied multi-SNP-based SMR [30], which utilized all cis-QTLs (p < 5 × 10−8)
within 1-MB window of the markers to estimate the association. For the association be-
tween metabolite, cytokine markers, and brain disorders, we applied 2SMR by R package
TwoSampleMR [31] using SNP with p < 1 × 10−5 on the entire genome. For blood-based
markers of cytokines and metabolites, their QTLs did not have spatial implications, i.e., no
“cis” or “trans” QTLs of a cytokine or a metabolite. Therefore, instead of SMR, we applied
classic 2SMR, which included genome-wide significant QTLs as instruments, regardless of
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their genomic positions. For each QTL i of a marker m, SMR and 2SMR first estimated the
effect of m on a disease d (βmd(i)) by Wald ratio

βmd(i) =
βid
βim

where βid denoted effect of i on d (i.e., GWAS effect size of i) and βim denoted effect of i
on m (i.e., QTL effect size of i). The SE (and corresponding statistics z) for each QTL was
estimated by the delta method

SEmd(i) =
SEid
βim

SMR and 2SMR then applied different methods to integrate multiple QTL results
into the final estimation and corresponding p-value (Supplementary Notes). p-value
adjustment was conducted separately for each omic-disease combination. Inflation factor λ
was calculated on a quantile-quantile plot for each omic disease combination. We defined
λ as the slope of Chi-square regression of actual p-value on expected p-value [32].

Next, we applied the Heterogeneity In Dependent Instruments test (HEIDI) [14] to
evaluate whether these associations were driven by the co-localization (i.e., molecule level
and disease do not share the same causal SNP, but their causal SNPs were in a strong
Linkage disequilibrium). If the association was driven by the same causal SNP instead of
colocalized SNPs, the HEIDI test would be expected to return a p-value > 0.05, for which
we denoted the marker as HEIDI(+), p-value > 0.05 would be denoted as HEIDI(−).

2.3. Simulation Analysis

To quantify the classification power of markers from each omics, we generated simula-
tion data with the hypothesis that SMR-estimated β_md truly reflected reality, and with the
consideration of estimation uncertainty and environmental influence. Specifically, for each
omic-disease combination, we repeated the following procedure 1000 times to generate
1000 simulation datasets:

(1) For marker m (m = 1, 2, . . . , n) from omic o of disease d, we generated normal
distribution

..
βmd ∼ N(βmd, SEmd), where βmd and SEmd were effect size and SE obtained

from SMR or 2SMR. We then generated a random
..

βmd from the normal distribution, which
formed an effect size vector Bod =

{ ..
βmd

}
m=1,2,...n

.

(2) We then generated a random expression matrix E10,000×n by generating n random
vectors of length 10,000 from N(0,1). This was because all OR from GWAS or QTL analysis
has been standardized, such that β_md corresponded to log odds of d per 1-SD increment
of m. To account for environmental confounders, we added a random noise of N(0,0.01) on
each vector.

(3) We calculated the odds of d as ODD(d) = {oddi}i=1,2,...10,000 = E × Bod, and

subsequently, the probability of d as P(d) = {pi}i=1,2,...10,000 =
{

1
1+oddi

}
i=1,2,...10,000

. For

simplicity, the intercept term was set as zero, i.e., the number of cases of d is set to be
identical to that of control.

(4) The label (case or control) for each of the 10,000 simulated samples was randomly
decided, with the probability of being a case = P(d).

On each of the simulation datasets, we applied Logistic regression by rms R package,
and recorded the AUC and R2. We took the median AUC and R2 across 1000 simulation
for comparison. For cross-omic analysis, we pooled all markers of a disease, ranked them
according to the absolute effect size, and generated simulation datasets of all these markers
by the same procedure. In each simulation data, we sequentially applied Logistic regression
on top 1, top2, . . . top n markers and recorded the AUC, R2, and AIC (by MASS R package).
We calculated the median values across 1000 simulations, and chose the optimal model
with the lowest median AIC. All the above simulation analysis was carried out separately
for HEIDI(+) and HEIDI(−) markers.
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2.4. Published Transcriptome and Methylome Data Analysis

For public transcriptome or methylome data, we extracted the value of HEIDI(+) and
HEIDI(−) markers, applied Logistic regression, and recorded the AUC. the obtained AUC
was compared to the corresponding simulation AUC (restricted to markers available in
the real data). To compare the power of HEIDI(+) and HEIDI(−) markers, we ranked the
HEIDI(−) markers according to their SMR p-value and chose top markers with the same
number of HEIDI(+) markers. We applied Logistic regression on these two sets of markers
of the same number and compared their AUC and log-likelihood.

2.5. Diagnostic Model Construction

For SCZ methylation markers, we calculated the Spearman correlation coefficient ρ
between each of the 1897 SMR-identified markers (both HEIDI(+) and HEIDI(−)) and diag-
nostic status, and retained only those with (1) ρ and SMR β of same direction; (2) |ρ| > 0.05.
Then, we applied a Bayesian LASSO (bLASSO) regression by monomvn R package on
the remaining 480 markers. All markers with median posterior coefficients not equal to
zero were chosen as candidate marker. In the training set, we applied classical LASSO
regression on the candidate markers. All remaining markers, together with their non-zero
coefficients, constructed the final diagnostic model. We determined the optimal cut point
using cutpointr R package by maximizing Youden’s Index. Finally, the coefficient as well
as cut point of the identified model were fixed and applied to the validation set

2.6. Predictive Model Construction

We downloaded from ADNI repository all blood methylation data for which the diag-
nosis at sample collection was “MCI” (mild cognitive impairment), except those recovered
from dementia status. ADNI project collected blood samples from elders at MCI status, and
we used these methylation data at the beginning of the observation as potential predictors
of future conversion risk. The sample information could be downloaded from ADNI
repository after application approval. According to whether the participants converted to
AD in the entire follow-up period recorded by ADNI, we classified samples in the training
set as converter and non-converter. We first carried out Spearman correlation analysis and
LASSO regression similar to the diagnostic model. Then, in the validation set, we applied
this model to define high conversion risk and low risk group. The hazard ratio as well
as its p value was calculated by univariate Cox regression using survival and survminer
R package. Details of diagnostic and predictive model construction and be found in the
Supplementary Notes.

3. Results
3.1. Identifying All Potential Blood-Based Biomarkers Associated with Brain Disorders

After data filtering (Supplementary Notes), we collected a set of valid QTLs for blood
expression levels of 15,052 RNA, 89,910 methylation sites, 669 proteins, 41 cytokines, and
119 metabolites, on which we applied the MR Method. By restricting at the genome-wide
significance threshold (p < 0.05/n, where n denoted the number of tested molecules of
the corresponding omics), we identified 1386 blood-based molecular markers, including
524 RNAs, 807 methylation sites, 29 proteins, seven cytokines, and 19 metabolites, which
had a significant association with brain disorders (Tables S1–S5). We then considered them
as potential biomarkers of related diseases in the following analyses.

Next, we applied the Heterogeneity In Dependent Instruments test (HEIDI) to eval-
uate whether these associations were driven by the co-localization (i.e., molecule level
and disease do not share the same causal SNP, but their causal SNPs were in a strong
Linkage disequilibrium). Among all potential biomarkers identified by SMR, we found
that 82% of RNA, 80% of methylation, and 62% of proteins showed a HEIDI p < 0.05
(HEIDI(−)), suggesting that co-localization made a significant contribution to the identified
association between peripheral molecules and diseases. Since we do not know whether
or not co-localization would influence the biomarker predictivity, we analyzed HEIDI(+)
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(HEIDI p > 0.05) and HEIDI(−) markers separately in the following section to deal with
the potential heterogeneity between them.

3.2. RNA and Methylation Levels Showing Strong Associations with SCZ, PD, and AD

To identify the RNA, methylation, and protein biomarkers and their characteristics, we
applied cis-QTL SMR and downstream enrichment analysis on their QTL. When restricted
on candidate biomarkers with HEIDI p > 0.05 (HEIDI(+)), SCZ had the largest number of
RNA (n = 52) and methylation (n = 126) biomarkers, followed by PD (n = 8 and n = 14), BP
(n = 10 and n = 7), and AD (n = 10 and n = 6, respectively, see Figure 1A). These diseases also
had a large number of HEIDI(−) markers, as shown in Figure S2. This association was not
restricted to the top blood molecules with p-value passing the genome-wide significance
threshold, as the general p-value distribution of all molecules was inflated compared to the
null uniform distribution (inflation factor λ > 1; Figure 1A,B). Concordantly, λ was even
higher for HEIDI(−) molecules for these disorders (Figures 1B and S2). In contrast, TS,
OCD, ND, ALD, and PTSD did not have any RNA or methylation candidate markers, and
their λ was also lower than 1 (Figure 1A).
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allylic in fatty acid (Bis.FA.ratio) was observed to be significantly associated with two dis-
orders: BP (β = −0.14, p = 6.20 × 10−6), MD (β = −0.06, p = 2.87 × 10−5), while multiple metab-
olites, such as Glycine and ratio of double bonds in fatty acid, were shown to be associated 
with BP (Figure 2B). 

To further illustrate the extent of pleiotropic association between blood-based mark-
ers and brain disorders, we summarized the number of associated disorders for all mark-
ers (Figure 2A). As stated above, cytokines and metabolites markers exhibited higher plei-
otropic associations at the genome-wide significance: IL18, Tyrosine, the bis-allylic ratio 
in fatty acid, and bis-allylic ratio in double bond were associated with at least three disor-
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Figure 1. Summary of SMR results. (A) Number of HEIDI(+) molecules reaching genome-wide
significance (N.GW; top panel) and inflation factor (middle panel) for each omic and disease. SNP-
based heritability (h2) was estimated by Linkage Disequilibrium Score Regression. (B) QQ plot for
SMR result of RNA-SCZ and methylation-SCZ association. (C) Manhattan plot for the association
between RNA and all diseases. (D) Regional GWAS, QTL, and SMR statistics for SCZ in distal 12q
region (black box in (C)) E: selected top molecules associated with multiple diseases. F: association
between cytokines, metabolites, and diseases. R: RNA, m/methyl: methylation site. P: protein.
C: cytokine. met: metabolite.

For the RNA-disorder association (Figure 1C), we found 95 HEIDI(+) markers and
429 HEIDI(−) markers reaching the genome-wide significance threshold (Table S1), which
gathered on specific regions of the genome. Figure 1D showed an example of a distal
12q region, where five SMR-significant genes (ANAPC7, ARPC3, FAM216A, ABCB9, and
ARL6IP4) had close spatial distribution in accordance with the regional QTL and GWAS



J. Pers. Med. 2021, 11, 1247 6 of 17

loci distribution. However, RNA markers showed neither enrichments in brain-related
biological functions (Supplementary Methods; adjusted p-value of Gene Ontology, GO,
analysis >0.05) nor enrichment in genes preferentially expressed in the brain [33], or
different brain cell types [34] (Fisher’s exact test P, Pfisher > 0.05; Table S6). We concluded
that the identified RNA markers might better reflect global alteration rather than brain
abnormality during brain disorders.

For the methylation-disorder association (Figure S3), we found 164 HEIDI(+) and
643 HEIDI(−) markers reaching the genome-wide significance threshold (Table S2). We ob-
served that the methylation markers enriched in genomic regions of DNase I Hypersensitiv-
ity Site [35] (Pfisher = 9.10× 10−5, Odds Ratio [OR] = 1.42), promotors (Pfisher = 1.99 × 10−5,
OR = 1.51), prefrontal cortex H3k27ac [36] peaks (Pfisher = 1.87 × 10−6, OR = 1.49), and
H3k36me3 [36] peaks (Pfisher = 2.68 × 10−17, OR = 1.88), and the chromHMM [37] state 5
(weak transcription) (Pfisher =1.23 × 10−6, OR = 1.57, Table S7). These methylation markers
tagged 223 proxy genes by falling within the regions, including UTR (17%), gene body
(53%), and 1500 base pairs around the transcript start site (30%) of the corresponding genes.
Interestingly, these proxy genes enriched in neuronal functions, such as long-term synap-
tic potentiation (adjusted Pfisher = 0.002, Figure S3). They were also nominally enriched
in genes preferentially expressed in the brain (Pfisher = 0.013, OR = 1.61, Table S6), but
not in genes specifically expressed in specific brain cell types. These results suggested
that methylation markers might better capture central nervous system abnormality in
brain disorders.

We also analyzed protein biomarkers of brain disorders by SMR. We found 11 HEIDI(+)
markers reaching significance threshold (Table S3), corresponding to eight different pro-
teins, which included ESAM (PSMR for SCZ = 1.57 × 10−7), GPNMB (PSMR = 3.01 × 10−6

for PD), FLRT3 (PSMR for BP = 1.06× 10−5), and MANBA (PSMR for ADHD = 4.62 × 10−5).
However, due to limited numbers (n = 11), they did not show any functional enrichment.

3.3. Cytokines and Metabolites Exhibiting High Pleiotropy

We next analyzed cytokines and metabolites that had an association with brain disor-
ders. As shown in Figure 2 and Table S4, the blood level of IL18 was significantly associated
with four disorders: TS (β = 0.19, p = 3.69 × 10−7), OCD (β = −0.19, p = 6.07 × 10−5),
ANX (β = −0.15, p = 0.0002) and PD (β = 0.10, p = 0.0005). Similarly, another pleiotropic
biomarker, the cytokine MIP1B, was also associated with two disorders (ASD: β = 0.07,
p = 1.33 × 10−6; OCD: β = 0.15, p = 3.10 × 10−6). We also observed the pleiotropic asso-
ciation for metabolite markers, shown in Figure 2A and Table S5. In addition, the ratio
of bis-allylic in fatty acid (Bis.FA.ratio) was observed to be significantly associated with
two disorders: BP (β = −0.14, p = 6.20 × 10−6), MD (β = −0.06, p = 2.87 × 10−5), while
multiple metabolites, such as Glycine and ratio of double bonds in fatty acid, were shown
to be associated with BP (Figure 2B).

To further illustrate the extent of pleiotropic association between blood-based markers
and brain disorders, we summarized the number of associated disorders for all mark-
ers (Figure 2A). As stated above, cytokines and metabolites markers exhibited higher
pleiotropic associations at the genome-wide significance: IL18, Tyrosine, the bis-allylic
ratio in fatty acid, and bis-allylic ratio in double bond were associated with at least three
disorders at genome-wide significance. In contrast, for RNA, methylation, and protein
markers, only the RNA expression levels of MAPK3 were significantly associated with three
disorders (SCZ, PD, and AD). Only when the significance threshold was relaxed to nomi-
nal p < 0.05, seven methylation biomarkers, such as cg20670488 (Figure 2A), were found
associating with eight different disorders. Therefore, in general, at the stringent threshold,
cytokines, and metabolites markers exhibited pleiotropic association with brain disorders.
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Additionally, we applied step-wise outlier removal and MR sensitivity analysis (Sup-
plementary Notes) to test for causality. We found that the MR result was not explained
by pleiotropy or systemic bias (Table S8 and Figure S4), indicating that the association
between biomarkers and disorders was causal. Thus, although biomarkers’ discovery
did not require them to be causal [5], our potential cytokine and metabolite biomark-
ers for brain disorders still provided evidence of causality and yielded insights into the
disease mechanism.

3.4. Simulation Demonstrated the Advantage of Using Cross-Omics Biomarker Combinations

Having identified the potential biomarkers from each of the five omics, we sought
to quantify their diagnostic power and compare them across diseases and omics. Thus,
for each omic-disease combination, we generated 1000 simulation datasets based on the
estimated effect size of each biomarker (Method) and calculated the Area Under Curve
(AUC) and Nagelkerke pseudo-R square (R2) in each dataset.

As shown in Figure 3A, RNA and methylation markers of SCZ and PD had the largest
classification power (AUC = 0.78 to 0.96 for HEIDI(+), 0.92 to 0.99 for HEIDI(−)), which
were mainly due to a large number of markers (Figure 1A and Figure S2). Nonetheless,
some omics had a strong statistical power despite the small number of markers, such as
the protein markers of PD (HEIDI(+): 3 markers, AUC = 0.70, R2 = 0.17), RNA markers of
AN (HEIDI(+): 5 markers, AUC = 0.85, R2 = 0.46). In sum, we observed that RNA markers
generally had the largest classification power: the median AUC for RNA was 0.73, whereas
none of the other omics had a median AUC > 0.65. For six diseases (SCZ, AN, BP, MD,
ADHD, and AD; Figure 3A), RNA HEIDI(+) markers had a larger AUC than other omics.

We further explored whether a combination of different omics would gain a better
diagnostic power. Figure 2B,C showed the examples of BP biomarker combination, which
showed association with four omics. We generated simulation data (Method) of all 26 BP
markers and calculated the Akaike information criterion (AIC) to choose the optimal
combination of markers. The combination with the lowest AIC had the best trade-off
between marker numbers and diagnostic efficiency [38]. We found that the model of the
top 22 markers had the lowest AIC (Table S9), which achieved the AUC of 0.79 and R2 of
0.33. This model included RNA markers such as GLT8D1, methylation markers such as
cg14470998, protein markers such as LMAN2L, and metabolite markers such as CH2.in.FA
(CH2 ratio in fatty acid), suggesting that combining markers from different omics might
gain a better power of classifying BP patients from a healthy control. A similar analysis
was also carried out for HEIDI(−) BP markers, where an 18-marker model consisted of
three omics had the lowest AIC (Figure 3C).
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Figure 3. Comparison of biomarker efficiency among diseases and omics in simulation. (A) Each
grid of the heatmap showed the Area Under Curve (AUC) of the model consisting of all markers
from one omic for one disease. Dots on the heatmap showed the composition of the optimal model
with the lowest Akaike information criterion (AIC). Diamonds (optAUC: AUC for optimal model)
and bar plots (optN: number of markers in optimal model) showed the AUC and number of markers
of the optimal models (black for HEIDI(+) model, grey for HEIDI(−) model). (B,C) example optimal
model of BP. Red dots denoted AIC. R: RNA. M: methylation site. p: protein. (C) cytokine. met:
metabolite. |β|: absolute value of βSMR.
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Taking the results of all diseases together, we found that the optimal models of
seven diseases, from SCZ to AD in Figure 3A, were cross-omics (round dots on Figure 3A
denoted the composition of the optimal model). Of note, the optimal HEIDI(+) model
of AN achieved AUC = 0.87 and R2 = 0.50 with only 10 multi-omics markers. This
model consisted of large-effect markers IMPDH2 (βSMR = 1.48), CADM1 (βSMR = 0.49)
(Figure S5). Another noteworthy disease was AD (Figure S6): its HEIDI(+) model had
poor performance (three RNA markers, AUC = 0.57, R2 = 0.02), but the HEIDI(−) model
(14 markers from three omics, AUC = 0.72, R2 = 0.19) yielded better performance.

3.5. HEIDI(+) and HEIDI(−) Markers Having Comparable Power in Real-World Validation

We next sought to validate the classification power implicated by simulation analysis
in the real-world data. We collected 12 cross-sectional blood RNA data [3,39–49] of seven
diseases and 11 blood methylation data [4,50–58] of six diseases to evaluate the efficiency
of RNA and methylation markers. We did not analyze protein, cytokine, and metabolite
markers since limited public data is available. As shown in Figure S7, methylation markers
of AD, BP, MD, and AN generally had higher AUC in real data than in simulation data,
especially HEIDI(−) markers of AN (real AUC = 0.85, simulation AUC = 0.63). On the
other hand, RNA and methylation markers of SCZ and PD tended to have lower AUC in
the real data, suggesting that only a small proportion truly took effect among the large
number of SMR-identified markers of SCZ and PD.

We then investigated whether the power of HEIDI(−) markers was comparable to
HEIDI(+) markers. We observed that HEIDI(+) and HEIDI(−) markers generally had
similar AUC. Despite a few exceptions, including methylation markers of AN (HEIDI(+)
AUC = 0.76, HEIDI(−) AUC = 0.65), the difference of AUC of HEIDI(+) and HEIDI(−)
markers were generally smaller than 0.05. Concordantly, the Likelihood ratio and the
number of significant variables of Logistic regression were also similar for HEIDI(+) and
HEIDI(−) markers (Table S10), which suggested that their classification power and sig-
nificance were similar. Therefore, we no longer distinguished HEIDI(+) and HEIDI(−)
markers in the following section.

3.6. Construction of Molecular Diagnostic Models for SCZ and AD with Notable Accuracy

Next, we sought to construct optimal models with a subset of top markers by validat-
ing the candidate biomarkers in public datasets. After general consideration of biomarker
effect size and available sample size, we decided to analyze methylation markers of SCZ,
PD, and AD, as well as RNA markers of BP and SCZ (Figures S8 and S9). For SCZ, we
divided blood methylation datasets from Hannon et al. [59] into feature selection set
(N = 675), training set (N = 547), and validation set (N = 300). Since the number of can-
didate methylation SCZ markers (N = 1897; Figure 4A) was extremely large, we applied
Spearman correlation analysis and Bayesian LASSO (Method), which removed a total of
1856 markers without concordant coefficients in SMR and the feature selection set. Then,
we applied classic LASSO on the remaining 41 candidates in the training set (N = 547) and
obtained a linear classification model consisted of 11 methylation sites (Figure 4B) with
AUC = 0.72 (95% CI of 0.67–0.76). Next, we fixed the coefficient of each predictor as well
as the optimal cut point (obtained by maximizing Youden’s Index) [60] and applied the
model to the validation set (N = 300). The model achieved AUC = 0.74 (95% CI of 0.69–0.80,
Figure 4C) with accuracy of 0.70 (sensitivity = 0.71 and specificity = 0.69). The proxy genes
of these markers included GABBR1, which encoded a subunit of gamma-aminobutyric acid
receptor, SYNGAP1, which encoded a member of N-methyl-D-aspartate receptor complex,
and MOG, which took part in oligodendrocyte myelination (Figure 4D). These results
indicated that our 11-site model not only robustly classified SCZ patients from healthy
control but also had a biological significance that could provide insight into SCZ pathology.



J. Pers. Med. 2021, 11, 1247 10 of 17

J. Pers. Med. 2021, 11, x FOR PEER REVIEW 10 of 17 
 

 

a model of 18 methylation sites (Figure S10B). This model had AUC = 0.79 (95% CI, 0.75–
0.83), with diagnostic accuracy = 0.76 (sensitivity = 0.80 and specificity = 0.68). We then 
applied this model to the validation set (N = 321, Figure S10C) and observed diagnostic 
AUC = 0.73 (95%CI, 0.67–0.79) and accuracy = 0.70 (sensitivity = 0.73 and specificity = 0.64). 
These markers recurrently tagged lipoproteins, including, APOE, APOC1, and APOC2 
(three times), and APOC4 (Figure S10D), in line with the popular notion that lipoprotein 
plays a vital role in the pathology of AD [58,61]. 

We also carried out a similar analysis for PD methylation markers as well as SCZ and 
BP RNA markers. For PD methylation markers (Figure S8), we obtained a three-site model 
with AUC = 0.65 (95% CI, 0.62–0.68) in the training set (N = 1200) and AUC = 0.66 (95% CI, 
0.61–0.69) in the validation set (N = 689). For BP RNA markers (Figure S9), we found six 
genes (SPCS1, CTSF, ITGA9, ITIH4, PLAAT3, and PI3) out of 29 candidates in the training 
set (N = 360). This model achieved AUC = 0.71 (95%CI, 0.67–0.77) in training set and AUC 
= 0.63 (95% CI, 0.53–0.73) in the validation set (N = 120). For SCZ RNA markers, the iden-
tified model did not show significant classification power in the validation set. 

 
Figure 4. Validation of methylation markers of SCZ. (A) Manhattan plot for SCZ-methylation association by SMR. Each
dot represents a methylation site. (B) LASSO model of SCZ diagnostic model by methylation markers in the training set
(N = 547). Heatmap showed the expression levels of 11 markers after filtration and model construction in the training
set. Score: diagnostic scores calculated by the sum of methylation levels weighted by the LASSO coefficient. A higher
score corresponded to a higher probability of being an SCZ patient. (C) Receiver-Operation Curve for LASSO model in the
validation set (N = 300). (D) Characteristics of methylation markers chosen by LASSO. Gene symbols denoted the proxy
genes of each methylation marker, and their grid color denoted the position of the methylation markers on the proxy genes.
Purple girds on column “HEIDI” indicated that the markers had p > 0.05 in HEIDI. βFD: coefficients in the feature selection
set. βTD: coefficients in the training set.



J. Pers. Med. 2021, 11, 1247 11 of 17

For AD, we downloaded the methylation dataset from ADNI [4] repository. All
74 SMR candidate markers (Figure S10A) were retained for analysis. In the training set
(N = 600), we removed 45 out of 74 candidates due to discordant effect size compared with
βSMR. We then applied LASSO regression on the remaining 29 candidates and obtained a
model of 18 methylation sites (Figure S10B). This model had AUC = 0.79 (95% CI, 0.75–0.83),
with diagnostic accuracy = 0.76 (sensitivity = 0.80 and specificity = 0.68). We then applied
this model to the validation set (N = 321, Figure S10C) and observed diagnostic AUC = 0.73
(95%CI, 0.67–0.79) and accuracy = 0.70 (sensitivity = 0.73 and specificity = 0.64). These
markers recurrently tagged lipoproteins, including, APOE, APOC1, and APOC2 (three
times), and APOC4 (Figure S10D), in line with the popular notion that lipoprotein plays a
vital role in the pathology of AD [58,61].

We also carried out a similar analysis for PD methylation markers as well as SCZ and
BP RNA markers. For PD methylation markers (Figure S8), we obtained a three-site model
with AUC = 0.65 (95% CI, 0.62–0.68) in the training set (N = 1200) and AUC = 0.66 (95% CI,
0.61–0.69) in the validation set (N = 689). For BP RNA markers (Figure S9), we found six
genes (SPCS1, CTSF, ITGA9, ITIH4, PLAAT3, and PI3) out of 29 candidates in the training
set (N = 360). This model achieved AUC = 0.71 (95% CI, 0.67–0.77) in training set and
AUC = 0.63 (95% CI, 0.53–0.73) in the validation set (N = 120). For SCZ RNA markers, the
identified model did not show significant classification power in the validation set.

3.7. SMR-Identified Methylation Markers Predicting the Risk of AD

As noted, our analysis considered all SMR-identified markers as diagnostic markers
that reflected the current status of patients. However, predicting future disease prognosis is
also an important task of biomarkers. Thus, we analyzed whether SMR-identified markers
could serve as predictive biomarkers. Since a very limited number of the dataset had longi-
tudinal records available, we only analyzed ADNI data of mild cognition impairment (MCI)
elders and managed to predict their future conversion to AD by blood methylation data.

As shown in Figure 5A, we analyzed all 74 SMR-identified AD methylation candi-
dates. In the training set (N = 600), LASSO regression returned an 18-site model which
could distinguish converters from non-converters at the accuracy of 0.76 (sensitivity, 0.71;
specificity, 0.77). The AUC in the training set was 0.79 (95% CI, 0.75–0.83). Using this model
and its optimal cut point estimated in the training set, we classified the validation set into a
high conversion risk group (N = 102) and a low-risk group (N = 227). In survival analysis
(Figure 5B), we found that the high-risk group had a significantly lower interval of non-
conversion survival (Hazard ratio = 2.32, p = 3.1 × 10−5). In the low-risk group, 74% (137)
of the MCI patients did not convert to AD in the follow-up period of 300 days, whereas, as
in the high-risk group, the median non-conversion survival times were 159 days. Similar
to the diagnostic model (Figure S10D), these predictive markers’ proxy genes, including
APOC1, GPC2, and SLC24A4 (Figure 5C). In sum, our results indicated that SMR-identified
markers of AD could serve as both diagnostic and predictive markers.
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4. Discussion

In the current study, we applied SMR and 2SMR on the QTL and GWAS statistics
to evaluate the association between blood-based molecular markers and different brain
disorders. We confirmed that blood levels of various multi-omics molecular markers
had a significant association with brain disorders and may serve as both diagnostic and
predictive biomarkers.

One of our major findings of the current study is that the peripheral molecules indeed
carry information reflecting the central nervous system. The peripheral blood receives
substance from all organs and tissues of the body, and its molecular composition is very
different from the brain [62]. Traditional cross-sectional analysis has restricted power to
decode the potential signals hidden within. In contrast, our MR-based approach, which
enabled satisfactory statistical power and confounder-free estimation [8], demonstrated
the existence of an association between peripheral signal and brain disorders. Another
controversy is that, judging from the biological significance, MR association from colocal-
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ized QTL and GWAS SNP is of little interest [14]. However, we found that biomarkers
identified by such association (HEIDI(−) markers) generally had comparable power with
non-colocalized markers (HEIDI(+) markers). Thus, although co-localization introduced
a challenge to GWAS and causality inference, their signals are still valuable for clinical
biomarker study. After confirming the significant associations by MR, we further validated
a subset of top candidate markers in the public data, and showed that this association was
not masked by confounders and could be confidentially detected in the real world. To-
gether, these results showed that the MR-identified candidate markers are highly promising
for clinical application.

Furthermore, our result highlighted the importance of multi-omics analysis. Cur-
rent blood-based biomarker studies were predominantly restricted to transcriptome and
methylome, while only a few studies focused on metabolites [63], proteins [5], and cy-
tokines [64]. This discrepancy may be due to the different pace of technology advance-
ment: next-generation sequencing and methylation array could comprehensively quantify
genome-wide targets, whereas proteome and metabolome techniques could only cover
a proportion of analytes. As a result, researchers might be prone to study transcriptome
and methylome. However, our result showed that different brain diseases were associated
with different omics, and not one omic could serve as biomarkers for more than half of
the involved diseases. Thus, a reasonable solution might be a two-step design: selecting a
few promising candidates from multiple omics and applied low-throughput validation in
a large cohort. By validation of a few top molecules, we showed that potential markers
identified MR in the current study could serve as promising candidates. However, these
results could not rule out the impact of medications.

It should be noted that whether a biomarker is diagnostic or predictive is, theoretically,
indistinguishable in MR analysis alone. The effect size β of MR is typically interpreted as:
(1-SD) increment in biomarker levels changes the odds of disease to (eβ)-fold [65], similar
to the coefficients of Logistic regression. Here, the “odds of disease” could be interpreted
in the manners of both diagnosis and prediction: it could be “odds of being a patient
now”, or “odds of becoming a patient in the future”. In our analysis of AD methylation
markers in ADNI data [4], MR-identified markers fulfill the task of both diagnosis and
prediction properly. This result suggested that it is reasonable to interpret the MR-identified
markers as either diagnostic or predictive, and it is valuable to validate these markers in
both manners.

However, there are still some limitations to the current study. MR requires that the
tested molecule has a valid genetic basis. However, many of the blood-based molecules
are not controlled by any genetic variants and could not be evaluated by MR. For these
molecules, we could not draw conclusion about the lack of biomarker potentiality. Fur-
thermore, there are minimal public data of blood proteome, cytokines, and metabolome
available, which prevented us from validating candidate markers using them. The applica-
bility of these candidates should be tested in future real-world studies.

5. Conclusions

In conclusion, our MR revealed that a blood biomarker study should focus on the most
promising omics and molecules for the targeted disorders that we highlighted. We summa-
rized all identified biomarkers and highlighted omics in the Supplementary Table S11. Our
validation analysis using published data has shown that using this result as reference could
profoundly improve the study efficiency and avoid overfitting. Future large multi-omic
validation studies could prioritize the highlighted biomarkers in our study to achieve the
final clinical models, which would reduce the risk of overfitting and confounder effects.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jpm11121247/s1, Supplementary notes, including supplementary methods, supplementary
Figures S1–S10 and supplementary Tables S1–S11. Supplementary Table S1–S5 All significant SMR
result for transcriptome, methylome, proteome, cytokines, and metabolome. Supplementary Table S6
tissue- and cell type-specific expression. Supplementary Table S7 regional enrichment of methylation
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markers. Supplementary Table S8 Sensitivity tests for all heterogeneous MR result. Supplementary
Table S9 Simulation analysis for BP. Supplementary Table S10 summary of results of real data analysis.
Supplementary Table S11 Summary and comparison of blood multi-omic biomarkers. Supplementary
Figure S1 Flowchart and data summary of the study. Supplementary Figure S2 summary of SMR
HEIDI(−) results for each omic and disease. Supplementary Figure S3 methylation markers and its
biological interpretation. Supplementary Figure S4 Step-wise outlier removal test for Bis.DB.ratio.
Supplementary Figure S5 Simulation analysis of AN markers. Supplementary Figure S6 Simulation
analysis of AD markers. Supplementary Figure S7 Comparison of HEIDI(+) and HEIDI(−) markers
in real-world data. Supplementary Figure S8 Diagnostic model of PD by methylation markers.
Supplementary Figure S9 Diagnostic model of BP by RNA markers. Supplementary Figure S10
Validation of methylation diagnostic markers of AD.
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