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Abstract

Viruses have developed numerous and elegant strategies to manipulate the host
cell machinery to establish a productive infectious cycle. The interaction of viral
proteins with host proteins plays an important role in infection and pathogenesis,
often bypassing traditional host defenses such as the interferon response and
apoptosis. Host–viral protein interactions can be studied using a variety of
proteomic approaches ranging from genetic and biochemical to large-scale
high-throughput technologies. Protein interactions between host and viral proteins
are greatly influenced by host signal transduction pathways. In this review, we will
focus on comparing proteomic information obtained through differing technologies
and how their integration can be used to determine the functional aspect of the
host response to infection. We will briefly review and evaluate techniques
employed to elucidate viral–host interactions with a primary focus on Protein
Microarrays (PMA) and Mass Spectrometry (MS) as potential tools in the
discovery of novel therapeutic targets. As many potential molecular markers and
targets are proteins, proteomic profiling is expected to yield both clearer and more
direct answers to functional and pharmacologic questions.

Introduction

Viruses have evolved an arsenal of mechanisms for infect-
ing their host and to establish a productive infectious cycle.
Hosts in turn have developed innate cellular defenses to
block infection and replication of these viruses. It has been
well established that the introduction of a virus into a host
cell alters the host’s proteome resulting in novel protein
interactions. The novel interactions may not only occur
between integral host components, but may also involve
viral proteins. A comprehensive understanding of the
molecular mechanisms underlying these protein–protein
interactions (PPIs) would therefore enable the utilization of
these mechanisms for the discovery of antiviral drugs and
the identification of virally altered host proteins (Zheng et al.,
2011; Kshirsagar et al., 2013; Mancone et al., 2013).
“Omics” technologies have advanced tremendously over

the last few years, with genomics and transcriptomics

pushing the gene expression field ahead (Braun and
Gingras 2012; Mancone et al., 2013; Noisakran et al.,
2008; Keating et al., 2013). However, gene expression
profile datasets are limited in that they do not necessarily
correlate with steady state protein products and are often
not truly representative of the interactome (Graves &
Haystead, 2002; Noisakran et al., 2008; Mancone et al.,
2013). For the purposes of this review, we consider host
proteins that interact with one another and with viral proteins
forming distinct complexes as an interactome. Furthermore,
genomics and transcriptomics studies alone cannot eluci-
date PPIs on a structural and functional level (Mancone
et al., 2013).
PPIs can be studied using a variety of proteomic

approaches ranging from biochemical and genetic to
large-scale high-throughput technologies (Zheng et al.,
2011; Kshirsagar et al., 2013). Here, we will review and
evaluate techniques employed to elucidate PPIs with a
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primary focus on Protein Microarrays (PMA) and MS as
potential tools in the discovery of novel therapeutic strate-
gies.

Traditional approaches

There are multiple traditional molecular biological and
biochemical approaches that have been used for many
decades to successfully detect PPIs. However, discussion
of all of the methods is out of the scope of this review. In this
review, we will include contextual information on the most
popular classical methods employed for analyzing PPIs
which include yeast two-hybrid systems (Y2H) and co-im-
munoprecipitations (co-IP) (Drewes & Bouwmeester, 2003;
Miernyk & Thelen, 2008; White & Howley, 2013). Together,
these two methods were responsible for deciphering over
70% of interactions in the IntAct database as of May 2008
(Aranda et al., 2010; Chen et al., 2010).
The Y2H system is popular for the detection of binary

physical interactions (Drewes & Bouwmeester, 2003; Hsu &
Spindler, 2012; White & Howley, 2013). This method relies
on the interaction between a ‘bait’ fusion protein and a ‘prey’
fusion protein to activate reporter genes or selectable
markers. The advantages to this system are that it is
economical and can be used to process large sample sizes
(Drewes & Bouwmeester, 2003; White & Howley, 2013). For
example, a pooled library screen approach can be used
where a library of known ‘prey’ clones are combined and
tested as pools against ‘bait’ strains. An example of
determining PPI by the Y2H system was demonstrated by
the influenza virus NS1 protein and human Staufen proteins
in vivo (Falc�on et al., 1999; Cho et al., 2013), where
coupling genome wide expression profiling with the Y2H
system suggested a large number of host–viral protein
interactions (Shapira et al., 2009; Tafforeau et al., 2011).
Additionally, this system was used to identify: nine putative
host cell proteins interacting with NSm of Rift Valley Fever
Virus (RVFV); Vaccinia virus interactions with a variety of
proteins (McCraith et al., 2000); Severe Acute Respiratory
Syndrome-CoronaVirus (SARS-CoV) proteins self-interact-
ing and/or interacting with other viral proteins to form
multimeric complexes (Von Brunn et al., 2007); and numer-
ous cellular proteins binding to Dengue virus (DENV)
proteins (Khadka et al., 2011). Unfortunately this procedure
is also limited in that interactions between more than two
proteins cannot be detected (Drewes & Bouwmeester, 2003;
White & Howley, 2013) and the PPIs are observed outside
of their natural context and will always require independent
validation in relevant model systems.
The analysis of PPIs traditionally involves binding sys-

tems, where the protein of interest is tagged for recovery in
methods such as co-immunoprecipitations (co-IP Miernyk &
Thelen, 2008; Noisakran et al., 2008). Co-IPs rely on the
idea that a fairly strong interaction between two proteins is
stable under stringent elution conditions (such as high salt).
When one partner of such an interaction is precipitated, the
interacting protein is also precipitated and can be detected
by antibody-based methods. Co-IP usually uses a sepha-
rose-protein A column. Briefly, an antibody specific to the

protein of interest is incubated with prepared protein
samples to form an antibody-protein complex, which is then
analyzed by SDS-PAGE and Western blotting, or further
processed for more modern approaches including Matrix
Assisted Laser Desorption/Ionization – Time of Flight Mass
Spectrometry (MALDI-TOF MS) Drewes & Bouwmeester,
2003; Miernyk & Thelen, 2008; Zheng et al., 2011). As
examples, the use of co-IP has allowed for the identification
of host–viral PPIs such as: DENV nonstructural protein 1
and human heterogeneous nuclear ribonucleoprotein C1/C2
(Noisakran et al., 2008); the methyltransferase domain of
West Nile Virus NS5 protein and mammalian cGMP-depen-
dent protein kinase, protein kinase G (Keating et al., 2013);
and Vaccinia virus p37 with the host Rab9 and tail
interacting protein of 47 kDa (TIP47) Chen et al., 2009).
Additional examples of co-IP studies include the Venezue-
lan Equine Encephalitis Virus, nonstructural protein 2 with
the host’s major ribosomal phosphoprotein RpS6(Montgom-
ery et al., 2006) and Ebola virus VP35 protein with the host
inhibitor of jB kinase e (IKKe) and TANK-binding kinase 1
(TBK-1) (Prins et al., 2009). While valuable information has
been determined through co-IP studies, the major draw-
backs to this technique are that it may not be an accurate
representation of an in vivo scenario, and weak or transient
PPIs may be overlooked (Hsu & Spindler, 2012).
Additional methods are emerging to analyze PPIs that

utilize a new generation of aptamers that contain chemically
modified nucleotides. Aptamers are short single-stranded
oligonucleotides that bind with high affinity and specificity to
proteins, peptides, and small molecules (Gold, 1995; Brody
& Gold, 2000). One method uses Systematic Evolution
of Ligands by EXponential enrichment (SELEX) to select
aptamers from libraries of randomized sequences (Ellington
& Szostak, 1990; Gold, 1995). Although this technology has
high potential for high-throughput biomarker identification,
there have been some difficulties creating high affinity
aptamers for some protein targets (Gold, 1995). In address-
ing this problem, a new form of aptamers has been
developed, called Slow Off-rate Modified Adapters (SOMA-
mers). The basis for SOMAmers is that the addition of
functional groups can give aptamers protein-like properties
that enable a wider variety of high affinity aptamers (Gold
et al., 2010). The aptamer-based technology wave has
advantages, but requires further characterization, validation
and standardization with standards such as affinity
capture-MS (Gold et al., 2010).
Due to the limitations of traditional methods, improved

approaches for assessing PPIs are in demand, which can
not only increase our capacity to analyze broad ranges of
interactions in a systems biology approach, but also function
synergistically with traditional methods. PPIs cannot
be observed in isolation as binary interactions, which
strengthen the need for new approaches that would
encompass both the ability to identify PPIs but also relevant
biological pathway information. More recently, large-scale
‘precision proteomics’ based on MS and microarrays have
enabled the system-wide characterization of host-based
events at the levels of post-translational modifications, PPIs
and changes in protein expression. This advancement
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delivers accurate and unbiased quantitative information
regarding protein modifications in response to any pertur-
bation. As large-scale proteomics-based signaling research
continues to develop and integrate existing and novel
technologies alongside improved databases, it is likely that
our understanding of signaling networks will undergo signif-
icant change in the coming years.

Protein microarrays

PMA have been used to profile PPIs leading to the
discovery of possible drug targets at the molecular level
(Wulfkuhle et al., 2004; Gulmann et al., 2006; Wilson
et al., 2010; Mancone et al., 2013). The basis of a protein
microarray is an array of immobilized protein spots,
arranged on a slide so that each spot contains either a
homogenous or heterogeneous set of bait molecules (Liotta
et al., 2003). Currently there are two popular types of
PMAs: traditional or forward phase microarrays (FPMA)
and reverse phase protein microarrays (RPMA; Liotta
et al., 2003; Sheehan et al., 2005; Wilson et al., 2010;
Zhu et al., 2012; Sutandy et al., 2013). In FPMA, bait
molecules, usually antibodies are immobilized on a glass
slide and a cell lysate sample (the antigens) is placed on
the array. A layer of signal-generating antibodies is then
added to allow for binding. A signal is emitted only at
positive spots on the array (Fig. 1a). In contrast, RPMA
methodology immobilizes the test sample analytes (the
antigens) on the slide, and then antibodies are applied as
the second mobile phase. The RPMA format immobilizes a
different test sample in each spot, meaning that one array
can be comprised of hundreds to thousands of different
samples. The array is incubated with a signal-generating
antibody to obtain positive signals (Fig. 1b). Each of these
arrays will be described further below.

Forward phase protein microarrays

FPMA is a protein microarray that is designed by fixing and
immobilizing multiple bait molecules on a glass slide
surface, where the baits are usually antibodies (Fig. 1a),
but can also be nucleic acids, peptides and phage lysates
(Liotta et al., 2003; Wulfkuhle et al., 2004; Sheehan et al.,
2005; Gulmann et al., 2006; Wilson et al., 2010; Hu et al.,
2011). FPMA allows the simultaneous measurement of
multiple proteins from a single sample (Liotta et al., 2003;
Sheehan et al., 2005; Gulmann et al., 2006; Wilson et al.,
2010; Hu et al., 2011). The analytes from either serum or
tissue samples are prelabeled, often with fluorophores such
as Cy3 or Cy5, is placed over the array. A layer of
signal-generating antibodies is added to the analytes to
allow binding such that a signal will be emitted only at
positive spots on the array (Liotta et al., 2003; Gulmann
et al., 2006; Wilson et al., 2010; Hu et al., 2011).
Studies using FPMA have been used in the study of a

wide range of topics such as, determination of proteomic
profile of endogenous proteins in LoVo colon carcinoma
cells exposed to ionizing radiation to identify regulatory sites
for radiation-induced apoptosis signaling (Sreekumar et al.,
2001). Additional applications of FPMA involved profiling
protein tyrosine phosphorylation and characterizing changes
in post-translational modifications, such as acetylation and
ubiquitination in mammalian cells (Ivanov et al., 2004).
Other studies have developed a proteomic profile of cancer
progression in oral cavity cancer tissue samples where a
combination of FPMA was employed with Laser Capture
Microdissection (LCM) (Knezevic et al., 2001). LCM
enables researchers to isolate cells of interest from heter-
ogeneous tissue (with multiple kinds of cells) and arrive at a
homogeneous cell population without contamination from
surrounding nonrelevant cells (Espina et al., 2006). For

(a)

(b)

Fig. 1 Comparisons between Forward and Reverse Protein Microarrays. (a) The forward phase microarray format is based on immobilization of an

analyte capture reagent, such as an antibody, onto a solid support which is then exposed to analytes. Immobilized analytes are then probed with a

suitably conjugated antibody for visualization, utilizing a sandwich assay-based approach that requires two well-performing antibodies. (b) RPMA is

characterized by immobilization of analytes onto the substrate, allowing direct comparison of hundreds of samples side by side, and requiring only one

well-performing antibody, increasing chances of epitope recognition while decreasing the likelihood of non-specific interactions.
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additional technical information on LCM, the reader is
directed to Espina et al. (2006). The data obtained from
these studies illustrate just a few examples of applying
FPMA as a high-throughput tool to profile a variety of
post-translational modifications in cells under different
treatments.
The two major limitations for this procedure are as follows:

fluorophore labels can potentially disrupt binding capabilities
of the analyte, and labeling all of the proteins in the sample
can result in a high background due to non-specific binding.
This is because analytes in a complex mixture may be
present in low abundance, alongside an excess of other
proteins. Performing serial dilutions of the samples is often
necessary to dilute protein concentrations to alleviate high
background issues (Gulmann et al., 2006). An additional
limitation is that FPMA requires specific antibodies to
targeted proteins, with differences in antibody design further
introducing potential variability when comparing indepen-
dent experiments (Gulmann et al., 2006).

Reverse phase protein microarrays

RPMA is a protein microarray that immobilizes the test
sample analytes on the slide, and then antibodies are
applied on top of those analytes (Fig. 1b, compared to
FPMA in Fig. 1a). RPMA is a newer iteration of traditional
FPMA technology developed in 2001 for the cancer field by
Drs. Lance Liotta and Emanuel Petricoin III, where cell
populations from samples taken from cancer tissue were
subjected to LCM and used to analyze the state of
pro-survival checkpoints and growth regulation proteins
(Wulfkuhle et al., 2004; Paweletz et al. 2001). Since this
publication, RPMA technology has been adopted by many
research groups and applied not only to LCM tissue, but
also to heterogenous tissue samples, cell culture lysates
(Nishizuka et al., 2003), and serum/plasma samples (Janzi
et al., 2005; Mueller et al., 2010), ovarian effusions (David-
son et al., 2006), vitreous (Davuluri et al., 2009), fine needle
aspirates (Rapkiewicz et al., 2007), and peptides (MacBe-
ath & Schreiber, 2000). Moreover, the use of RPMA has not
been limited to pre-clinical research studies, but has been a
critical component of several clinical trials [for review see
Mueller et al. (2010)], cancers (VanMeter et al., 2008;
Wilson et al., 2010; Einspahr et al., 2012), cellular pathway
characterizations, bacterial infection mechanisms (Popova
et al., 2009), immunological disorders and viral–host inter-
actions (Wilson et al., 2010; Einspahr et al., 2012; Agui-
lar-Mahecha et al., 2009; Narayanan et al., 2012; Baer
et al., 2012; Austin et al., 2012; Popova et al., 2010). RPMA
is capable of monitoring protein dynamics as a function of
time, in diseased vs. nondiseased states before, during, and
after treatments (Sheehan et al., 2005; Spurrier et al., 2008)
and to quantitatively monitor protein expression levels of
many samples simultaneously (Liotta et al., 2003; Wulfkuhle
et al., 2004; Sheehan et al., 2005; Gulmann et al., 2006;
Hultschig et al., 2006; Spurrier et al., 2008; Wilson et al.,
2010; Hu et al., 2011; Sutandy et al., 2013).
RPMA technology provides the necessary analytical

sensitivity to measure even ultra-low abundant proteins.

For this reason, the combination of LCM technology with
RPMA creates a powerful analytical tool based on its
increased sensitivity, reduced sample volume/concentration
input requirements and combination of hundreds to thou-
sands of samples on a single array. Moreover, because the
RPMA is not a two-site sandwich-type antibody array and
requires only one well-performing primary antibody for
detection, the number of analytes that can be measured is
much greater than what could be performed on a for-
ward-phase array. Typically, with the RPMA nanoliters (nl)
of each sample are printed in duplicate or triplicate onto
glass-backed nitrocellulose slides using either contact
(Sheehan et al., 2005; Gulmann et al., 2006; L€obke et al.,
2008) or non-contact (Schena, 2000) arrayers. The source
of these analytes could be in vitro samples generated from
cultured cells or in vivo samples generated from animal
tissue or clinical samples. With a spot size of only tens to a
few hundred microns in diameter, the RPMA platform allows
for thousands of samples to fit on one slide and hundreds of
slides can be analyzed in every array run giving this
approach a high throughput flavor. Each array is then
probed with a single primary antibody, in principle similar to
other immunoassays.
The biggest challenge for RPMA is the same as for any

immunoassay: the need and availability of high quality,
specific antibodies. Prior to application to RPMA, antibodies
have to be validated using Western blotting to demonstrate
high target specificity. Currently, the development of vali-
dated antibody libraries is an individual effort by each lab. In
George Mason University, we currently possess a large
repertoire of more than 400 validated antibodies relevant to
phosphorylated and unphosphorylated proteins which map
to diverse nodes in many phospho-signaling cascades. It will
be beneficial for the protein microarray field to combine such
efforts in the future and assemble and maintain a central
repository of validated and “RPMA-certified” antibodies.

Diagnostics and current applications of RPMA

To describe the workflow for RPMA (Fig. 2), we will follow
an example of a RPMA study conducted by Popova et al.
(2010). In this study, Popova et al. used RPMA to identify
phospho-signaling protein pathways modulated in cultured
human cells at very early (of the order of a few minutes) to
late time points after RVFV infection. Human cells were
infected with the wildtype strain of RVFV, ZH-501 and cells
were lysed at various time points. For the RPMA procedure,
c. 30 nL of each sample (equivalent to the amount of
material from 40 lysed cells) was arrayed on nitrocellulose
slides. An advantage of the array layout is that each sample
is printed in a 4–8 point dilution series which ensures that
the quantification of positive signals can be performed in the
linear range. Each slide was then probed with one of 60
different antibodies specific against phosphorylated or total
forms of signaling proteins. The antibodies were selected to
monitor the molecular networks involved in host responses
most likely affected by virus exposure such as apoptotic and
cell survival pathways. To validate the RPMA data, the
levels of multiple selected proteins were analyzed by
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Western blots using antibodies against phosphorylated and
total forms of proteins; both procedures were in agreement
with each other. This demonstrated that while RPMA has
enormous technical utility independently, it can also function
in a synergistic capacity with traditional methods.
Following imaging of arrays, the software technology used

to capture and quantify the analyte spots is similar to
software used for DNA microarray analysis [i.e. IMAGEQUANT

(GE Healthcare Life Sciences, Pittsburgh, PA) or MICROVI-

GENE
TM (VigeneTech, North Billerica, MA)]. Some software

packages, such as MICROVIGENE, include several features to
facilitate quantification of array data: automated spot-bound-
ary detection with image contrast enhancement, dust/
scratch removal, outlier flagging, regional background cor-
rection and total protein, negative controls and internal
reference standard normalization options (Gulmann et al.,
2006). Data normalization algorithms range from calibration
curve normalization (Sevecka & MacBeath, 2006), spiked-
in internal standard normalization (Korf et al., 2008),
Robust-Linear-Model normalization (Sboner et al., 2009),

to normalization of respective sample total protein. In the
example of Popova et al. (2010), the average total level of
cellular protein at every time point was determined by
staining with Sypro Ruby Protein Blot Stain of four randomly
selected slides throughout the print run (Popova et al,
2010). Spot finding software programs convert pixel density
for each spot into numerical values (Mueller et al., 2010).
The MICROVIGENE software offers automated curve-fitting
approaches to quantify the analyte across a five-point
dilution curve, including replicates (Gulmann et al., 2006).
For additional technical information about the software the
reader is directed to Gulmann et al. (2006).
The downstream biostatistical analysis of the raw, nor-

malized array data depends highly on the type of samples
printed on the array and the scientific questions that are
being addressed. In general, many of the statistical methods
employed in RPMA data analysis are traditional methods
used to evaluate confidence intervals. Methods such as
unsupervised hierarchical clustering, k-means clustering,
self-organizing maps and principal component analysis are
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Target priori�za�on

Patient samples
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Reverse phase protein microarray workflow
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Fig. 2 Protein Microarrays. Representative RPMA workflow schematic. The source of analytes may be infected cells as shown here or in vivo

samples. The lysed samples are then arrayed on a nitrocellulose glass slide in a multiplexed manner. This allows for many hundreds of slides to be

imprinted with sample at the same time. The size of the pins that imprint the samples on the slides determine how many hundreds to thousands of

analytes can be printed on every slide. Each slide also is imprinted with positive controls – known analytes of predetermined concentration (high and

low controls shown on the slide). Finally, each slide also contains calibrator spots in a dilution series. The high and low control spots and the calibrators

not only permit quantitative interpretation of data within a slide, but permit comparisons between slides and between multiple experiments. Each slide in

the array is queried with a single predetermined antibody. The total number of slides in each experiment is determined by the total number of antibodies

(in other words, total number of desired targets). Following an antigen : antibody interaction, the slides are stained and the intensities of the spots on

each slide are quantified. Relative differences in signal intensities between biologically distinct analytes can then be plotted in a graphical format.
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tools used to determine a relationship between the data
points generated from the microarray (Gulmann et al.,
2006). Clustering of closely related data points can be
determined with a cut-off point that makes the data
biologically sensible; however, statistically significant differ-
ences between data points cannot be provided with hierar-
chical clustering methods (Gulmann et al., 2006). Other
common statistical methods such as, ANOVA, t-tests and
Mann–Whitney U-test can be employed to determine differ-
ences between data sets provided prior knowledge of the
classification of the samples is known (Gulmann et al.,
2006).
Several technologies exist to graphically map protein

signaling pathway activation data from RPMA. One
approach is to overlay the RPMA data over a static image
of PPIs that are generally accepted by the larger scientific
community, such as the well-known “Pathways in Human
Cancer” cell signaling map by Dr. Robert Weinberg. CScape
uses the Google Maps API to overlay this cell signaling map
with relative protein/phosphoprotein abundances, enabling
the visual identification of “hot spots” within the cell signaling
architecture or whole activated/nonactivated signaling path-
ways (Fig. 3). Another approach is to visualize protein
abundance and protein–protein correlations (i.e. as calcu-
lated by Spearman’s Rho analysis) in a Bayesian network
like computational analysis using general network analysis
systems such as Gephi (Bastian et al., 2009). The graphs
generated with this application graphically illustrate influ-
ences of pathway components on each other in the form of
nodes and arcs, where nodes represent the variables and
the arcs statistically significant relationships between the
variables.
One of the strongest advantages of RPMA is its ability to

generate multiple hypotheses for subsequent testing and
development of the field. The outcome of each RPMA run is
a virtual treasure trove of information on multiple signaling
events analyzed as a single snapshot in time. Each one of
those altered signal events will form a basis of an individual
hypothesis. If this involved specific viral strains or individual

viral proteins, for example, we can go to great lengths in
deciphering functional consequences of PPIs. This was
exemplified by a RPMA study conducted by Popova et al.
(2012) that revealed phosphorylation and activation of the
NF-jB signaling cascade. Narayanan et al. (2012) demon-
strated in a follow up study that phosphorylation of p65
(serine 536) involved phosphorylation of IjBa through the
classical NFjB cascade and that RVFV utilized the host
NF-jB signaling cascade to establish a robust infection. In
addition, this group demonstrated that inhibition of the
NF-jB cascade was able to inhibit viral replication (Naraya-
nan et al., 2012). The more important outcome of that study
was that the viral protein NSs may have an influence on the
activation status of the cascade. The same RPMA study
also revealed that the tumor suppressor protein, p53 was
phosphorylated in the event of ZH501 infection (Austin
et al., 2012). A study by Austin et al. (2012) expanded on
this data to show that in RVFV infections, p53 was activated,
phosphorylated and localized in the nucleus following
transient interaction with the RVFV virulence factor NSs.
Further characterization of p53 phosphorylation prompted
investigation into the DNA damage signaling pathway during
RVFV infection. Baer et al. (2012) demonstrated that RVFV
infection induced an NSs-dependent DNA damage signaling
response and concurrent S-phase arrest, providing evi-
dence for a novel function of NSs that was shown to directly
impact viral replication. Collectively, modifications in
phospho-protein signaling in RVFV examined by a single
RPMA study resulted in the elucidation of numerous cellular
mechanisms that played important roles during viral infec-
tion and that were subsequently exploited in targeting viral
replication. The results drawn from these studies illustrate
how the high throughput identification of PPIs between the
host and the virus can lead to the identification of potential
therapeutic targets during viral infection (Baer et al., 2012).
In 2009 Popova et al., utilized RPMA to characterize and

measure the innate cell signaling responses of lung epithe-
lial cells to Bacillus anthracis infection (Popova et al., 2009).
The authors demonstrated RPMA that B. anthracis infection
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inhibited MAPK and PI3K/AKT signaling pathways and
characterized host signaling from nonlethal and lethal
strains of B. anthracis (Popova et al., 2009). By virtue of
the comparative nature of RPMA, this study opened
avenues for detecting previously unrecognized host
responses silenced upon infection as part of the pathogenic
process (Popova et al., 2009).
Another example of diagnostic and current applications of

RPMA technology involves an effort to create a rapid,
accurate and sensitive diagnostic tool to detect biomarkers
for SARS-CoV. To address this problem, Zhu et al. (2006)
developed the first coronavirus protein RPMA. The entire
proteome of the human SARS-CoV, HCoV-229E virus and
partial proteomes of other coronaviruses were imprinted on
the microarray and probed with symptomatic patient sera
(Zhu et al., 2006). The presence of viral-specific antibodies
was detected using Cy3-labeled goat anti-human IgG
antibodies (Zhu et al., 2006). Analysis of the microarray
revealed increased sensitivity, reactivity and accuracy for
biomarker detection in SARS infected individuals (Zhu et al.,
2006). This example demonstrates the feasibility of using
RPMA technology in a clinical environment to detect
biomarkers.

Mass spectrometry

While the advent of novel and high throughput techniques
such as RPMA have greatly expanded on the ability to
generate informative datasets, complementary approaches
are necessary to account for the dependence on antibodies.
Additionally, antibodies have to be selected by the
researcher and are inherently directed to a small number
of known signaling events and modifications, giving rise for
the need to complement antibody validation using a tech-
nique that is independent of these limitations. To get around
the inherent limitations and biases of antibody-based
research, modern quantitative MS is increasingly being
used to balance and direct antibody-based approaches (De
Chassey et al., 2012; Zhou et al., 2011; Patwa et al., 2010;
Patwa et al., 2009). MS-based proteomics is not limited to
specific sites or proteins of interest which makes it suitable
for use in an unbiased (hypothesis free) and systems-wide
manner, representing a fundamentally different approach to
studying cell signaling (Go et al., 2006; Zheng et al., 2011).
One commonly used MS approach depends on peptide
separation normally performed by liquid chromatography
(LC) tandem MS or LC-MS-MS (Gonzalez-Galarza et al.,
2012).
When looking at host cell signaling responses, complex

protein samples may be derived from whole cells or from
biological fluids, and while all of the proteins in an entire
sample may be processed as is, it is often preferable to
perform separation techniques to better characterize infor-
mation on proteins of particular biological interest (Brewis &
Brennan, 2010). Protein separation is initially performed
prior to this step, by methods such as one dimensional (1D)
or two dimensional (2D) gel electrophoresis, column chro-
matography, or affinity purification, followed by enzymatic
digestion (often using trypsin). Sample preparation is critical

to subsequent data interpretation, particularly when dealing
with large datasets such as those generated by LC-MS.
Techniques such as subcellular fractionation can provide
cleaner samples while also giving valuable protein localiza-
tion information compared with that from whole cell lysates
alone (Brewis & Brennan, 2010; Gonzalez-Galarza et al.,
2012). With biological fluids, it is also possible to remove the
most abundant proteins by immunodepletion or enrichment.
An alternative or complimentary method for global protein

separation is to resolve proteins by 1D or 2D electrophoresis
before subjecting individual protein bands to digestion and
LC-MS (Brewis & Brennan, 2010). In both methods, many
gel segment/protein band cuts can be processed to identify
numerous separated proteins. In a typical workflow, an
individually separated protein is physically isolated and
removed, trypsin digested and the resulting peptides are
separated on the basis of relative hydrophobicity through LC
before tandem MS (MS/MS Brewis & Brennan, 2010). The
tandem MS data are then used to search existing protein
databases to achieve a matching protein spectra based on
amino acid sequences typically derived from MS/MS spec-
tra. Low abundance, very large, or very small proteins have,
however, proved difficult to resolve using 2D gels, and for
global analysis it is now much more commonplace to trypsin
digest the entire solubilized protein mixture to produce a
peptide “soup” of all the proteins in the sample (gel-free
LC-MS proteomics) (Petricoin et al., 2002). Peptides can
then be separated by LC on the basis of relative hydro-
phobicity and charge as a multidimensional separation
(Petricoin et al., 2002). Extensive MS/MS and database
searches can then be performed to identify many of the
proteins in the original sample.
One of the advantages of this protein interactome

mapping workflow is that it is possible to achieve quantita-
tive data at the same time by introducing a peptide labeling
step, such as isobaric Tags for Relative and Absolute
Quantification (iTRAQ) method, using labeled peptides as
internal standards, or to perform protein labeling, such as
stable isotope labeling by amino acids in cell culture
(SILAC), without the need for additional LC-MS (Brewis &
Brennan, 2010). iTRAQ represents a method for differenti-
ating between multiple conditions (up to eight samples)
simultaneously (Wiese et al., 2007; Brewis & Gadella,
2010). This approach lends itself to the labeling of in vivo
samples and/or primary cells as such labels are applied
postsample preparation. As an example, iTRAQ has been
used to investigate influenza virus infection in primary
human macrophages (Lietz�en et al., 2011). Typically, two
sets of samples are differentially labeled with a stable
isotope, one sample with the light form, the other with the
heavy form of the label. Depending on the type of the
chemical labeling reagent used, samples are labeled before,
during, or after enzymatic digestion, combined then sub-
jected to a separation/enrichment technique followed by
analysis with MS for a quantitative comparison. Changes in
protein expression levels are then quantified by determining
the ratio of the peak intensities of the light and heavy forms
of the generated peptides (Brewis & Brennan, 2010). The
pairwise comparison of the peak intensities of peptides
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labeled with the heavy and light form of the label serves as
the basis for quantitative protein analysis (Brewis & Bren-
nan, 2010). It should be noted that the accuracy of the
quantitative measurement depends on when the label was
incorporated, with the highest level of accuracy being
achieved when the label is incorporated early on in the
process due to sample loss and processing variability.
SILAC has also been applied to study viral infections in

cell culture to provide quantitative information regarding
pathogen–host cell interactions (Brewis & Gadella, 2010;
Zhou et al., 2011; Toss et al., 2013). During SILAC, cells
and viruses are differentiated by growing each cell popula-
tion (or the virus within a cell population) in media containing
unique stable isotope labeled amino acids that become
incorporated into newly synthesized proteins, eventually
supplanting their equivalent nonlabeled homologs (Brewis &
Gadella, 2010). This labeling technique greatly reduces
sample complexity and increases labeling efficiency prior to
sample preparation, while allowing the relative quantification
of proteins in samples by MS (Brewis & Gadella, 2010).
When analyzed on a mass spectrometer, pairs of chemically
identical peptides of different isotope composition can then
be differentiated, as the labeled amino acids induce a shift in
the mass/charge ratio (m/z) in comparison to the unlabeled
peptides (Brewis & Brennan, 2010; Brewis & Gadella, 2010).
By comparing the intensities of the labeled and unlabeled m/
z peaks, it is possible to obtain accurate quantitative data on
the relative abundance of labeled and unlabeled peptides
present in the sample (Brewis & Brennan, 2010; Brewis &
Gadella, 2010). In this way, proteins that are increased or
decreased in abundance in virus-infected, compared with
mock or drug-treated cells, can be simultaneously identified
and quantified (Brewis & Brennan, 2010; Brewis & Gadella,
2010).
The relative quantification of peptides using iTRAQ or

SILAC labeling, coupled to LC-MS/MS and bioinformatic
analysis, is one of the most popular and powerful options for
global proteomic quantification and has provided an excel-
lent resource for studying host cell proteomes and is readily
being applied in the study of host–pathogen infections
(Wiese et al., 2007; Brewis & Brennan, 2010; Brewis &
Gadella, 2010; Munday et al., 2012).

Biomarker identification

In the proteome biomarker discovery pathway, the aim is to
combine multidimensional fractionation and labeling meth-
ods along with MS/MS analysis to identify proteins that are
unique or highly abundant in complex samples obtained
from specific disease states and comparing those profiles to
healthy matched controls. Through the use of peptide
labeling such as the previously mentioned iTRAQ or SILAC,
samples from both disease-affected and healthy controls
samples can be run side by side through an MS workflow
with the data obtained then processed using bioinformatic
algorithms and programs such as iTRACKER for iTRAQ that
search for differences in peak intensities between the
sample sets or SILACAnalyzer for SILAC which is an open
source tool for the fully automated analysis of quantitative

proteomics data (Petricoin et al., 2002; Wiese et al., 2007;
Munday et al., 2012). SILACAnalyzer identifies pairs of
isotopic envelopes with fixed m/z separation and requires no
prior sequence identification of the peptides. The discrimi-
nating pathogenic pattern formed by the key subset of
proteins or peptides buried among the entire repertoire of
thousands of proteins represented in the sample spectrum,
can then be compared to its control group and potentially
identified.
A recent study of the Human respiratory syncytial virus

(HRSV) using SILAC in conjunction with LC MS/MS allowed
the direct and simultaneous identification and quantification
of both cellular and viral proteins (Munday et al., 2010). To
reduce sample complexity and increase data return on
potential protein localization, cells were further fractionated
into nuclear and cytoplasmic extracts (Munday et al., 2010).
Novel HRSV-host cell interactions, including those associ-
ated with the antiviral response and alterations in subnu-
clear structures such as the nucleolus and ND10
(promyelocytic leukemia bodies) were identified (Munday
et al., 2010). In addition, novel changes in mitochondrial
proteins and functions, cell cycle regulatory molecules,
nuclear pore complex proteins and nucleocytoplasmic traf-
ficking proteins were observed in infected A549 cells
(Munday et al., 2010). Commonly available bioinformatics
programs such as Ingenuity Pathway Analysis were used in
the organization, expansion and interrogation of the derived
data sets from virus-infected cells which were then validated
using tradition orthogonal assays (Munday et al., 2010;
Lietz�en et al., 2011). In this study, the use of SILAC in
conjunction with LC MS/MS resulted in the identification and
potential interaction of 1140 cellular proteins along with six
viral proteins (Munday et al., 2010). In another study using
Flock House Virus (FHV)-infected Drosophila cells, profile
changes in the protein expression levels were found based
on the direct analysis of intensities using labeling in
combination with LC-MS/MS (Go et al., 2006). Overall a
total of 1500 host proteins were identified and quantified, of
which 150 were up-regulated while 66 were down-regulated
in response to viral infection (Go et al., 2006).
While stable isotope labeling has traditionally been used

in comparative host–viral proteomics, a label-free approach
is becoming a viable and attractive alternative, through the
use of chromatographic separation and high mass accuracy
measurements along with data normalization methods.
Moreover, informatics algorithms are employed to facilitate
the data analysis due to the large datasets that can be
obtained from LC-MS experiments. Overall, this is highly
effective in comparative proteomics due to its comprehen-
siveness and high throughput nature. To date, label-free
quantitative proteomics approaches have been successfully
applied in the analysis of numerous samples and organisms
such as: human serum, yeast, and Shewanella oneidensis
(Fang et al., 2006; Brewis & Brennan, 2010). Despite these
significant advances and efforts, challenges remain with
current label-free methods such as those associated with
the dynamic range of measurements and the extent of
proteome coverage, confidence in peptide/protein identifi-
cations, quantization accuracy, analysis throughput, and the
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robustness of present instrumentation are all issues that still
need to be addressed and improved on before these
technologies can be reliably used in a clinical setting (Qian
et al., 2006; Findeisen & Neumaier, 2009).
There are many options available for quantitative, unbi-

ased proteome studies, only some of which have been
discussed in this review. New techniques utilizing traditional
and novel next-generation targeted proteomics have started
to shift the traditional paradigm from using discovery-based
identification to targeted quantification, such as in the
utilization of triple quadruple mass spectrometers (QQQ;
Boja & Rodriguez, 2012; Shi et al., 2012; Fung et al., 2013).
With a discovery-based strategy, the goal is usually to
identify as many proteins as possible, while the goal of a
targeted proteomics is to monitor a select few proteins of
interest with high sensitivity, reproducibility and quantitative
accuracy. In the traditional discovery-based approach pep-
tide ions are automatically selected in the mass spectrom-
eter for fragmentation on the basis of their signal intensities,
generating rich but complex tandem mass spectra for each
peptide sequence, requiring careful analysis and complex
bioinformatics. In contrast when using a targeted workflow,
the QQQ mass spectrometer can be programmed to detect
specific peptide ions derived from proteins of interest, and
can select specific ‘precursor’ ions (on the basis of their m/z
ratio) for fragmentation. In the second mass filter, target ions
are selected and guided to the detector for quantification,
resulting in a trace of signal intensity vs. retention time for
each precursor ion–product ion pair. This process is called
selected reaction monitoring (SRM) or multiple reaction
monitoring (MRM; Lange et al., 2008). While this up-front
approach is much more labor intensive to develop than a
traditional discovery-based pipeline, once a reliable assay is
generated for a specific protein, analysis of the MS data is
relatively straightforward and uncomplicated in comparison.
While SRM is the most mature MS-based technology for
targeted proteome analysis, new methodologies that obviate
the need for laborious SRM assay optimization are currently
being developed. One example of several novel methodolo-
gies is SWATH; complex mass spectra generated by
data-independent acquisition (in which peptides are selected
for fragmentation without regard to signal intensity) are
queried for the presence of specific peptides using libraries
of qualified peptide fragment spectra (Gillet et al., 2012).
For MS, novel approaches and developments continue to

improve and push the field rapidly forward towards targeted
approaches and provide many viable options when looking
at proteome interactomes from a host–pathogen perspec-
tive. While every toolset discussed in this review has its
strengths and weakness, combining MS along with other
high throughput methods of protein detection such as
RPMA, in conjunction with the use of traditional tools and
means of validation such as Y2H screens or immunoblot
analysis, have demonstrated the ability to greatly strengthen
the inherent deficiencies of any individual approach. The
use of these orthogonal methods in conjunction is thus able
to arrive at a much more well-rounded and comprehensive
picture of the proteome and its mechanisms when used in
combination (Patwa et al., 2009; Mancone et al., 2013).

Informatics approaches for integrating
proteomics data

As previously discussed, cellular function is driven by a
complex network of interacting proteins that are controlled
by various signaling cascades among other mechanisms.
The proteomics experiments described here aim to paint a
molecular portrait of the essential proteins activated in
specific cellular states, such as comparing infected vs.
uninfected states (Fig. 3). Following statistical analysis to
identify proteins that are significantly changed between
desired analytical states (described above), protein lists are
generated that must be transformed into informative net-
works that are representative of the functional changes
observed in the disease state.
There are several key analytical steps that must be

undertaken to develop these comprehensive networks,
including mapping protein IDs to function, cross-comparing
protein function, and identifying, visualizing and analyzing
protein interaction networks (Sanz-Pamplona et al. 2012).
Additionally, protein function, structure and interaction data-
bases are sparse and represent only a small fraction of
known human proteins, with host–pathogen interaction data-
bases even more sparse (Kshirsagar et al., 2013; Kshirsa-
gar, Carbonell, and Klein-Seetharaman 2012). Trying to find
commonalities among functions is therefore essential for
generating the most complete networks possible. Tools such
as Ingenuity Pathway Analysis (IPA) (Goulet et al. 2013),
National Institute of Allergy and Infectious Diseases’ Data-
base for Annotation, Visualization and Integrated Discovery
(DAVID; Huang, Sherman, and Lempicki 2009), and Cyto-
scape (Sanz-Pamplona et al. 2012) among others can be
used to identify common and statistically overrepresented
pathways and ontological terms (functions) from protein lists
which can then be used to interrogate broader protein
interaction networks. These tools draw from large public
databases that describe protein functions—such as the Gene
Ontology (GO), pathways—such as KEGG, Reactome and
Biocarta, and protein interaction databases— such as DIP,
BIND, and IntAct among others. These tools can also be
used to identify important pathways and interactions between
host and pathogen proteins (Kshirsagar et al. 2012; Goulet
et al. 2013).
Although MS experiments are comprehensive in their

measurements of cellular proteins, issues described above
such as variability in protein abundance, can confound
experiments and result in results that cannot reproducibly
identify individual proteins. This can confound the types of
basic network analyses described in the previous para-
graph. Several existing tools can help with assessing the
similarities of identified gene functions and merging similar
proteins into like functional groups, including SORA and
simGIC (Teng et al. 2013). These tools can be used to
merge protein expression information by protein function
across different methods such as RPMA and tandem MS to
help cluster proteomics data into functional bins which can
then be used to identify pathways and interaction networks.
SORA and simGIC, among others, measure the functional
similarity among proteins in terms of information content in
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the context of GO terms, which allows for more precise
binning of proteins with similar functions and roles (Teng
et al., 2013).
Networks generated from proteomics experiments are

often highly complex and benefit greatly from further
analysis with interactive visualization tools that can help to
tease out key subnetworks for further analysis or laboratory
validation experiments. Tools such as IPA (Goulet et al.
2013), Cytoscape (Kacprowski, Doncheva, and Albrecht
2013; Sanz-Pamplona et al. 2012) and CScape (Einspahr
et al., 2012) allow for insightful visualizations and analysis of
these complex cellular networks analysis that allow scien-
tists to directly interact with their data and help to turn
information into knowledge of key cellular functions affected
by disease. For example, nodes and edges within these
networks may be weighted based on common functionality,
and/or directionality or magnitude of expression to identify
key connections among experimentally identified proteins.

Conclusion

Proteins are currently the major drug targets of choice and
play a critical role in the process of modern drug design.
Host proteins are particularly attractive targets as pathogens
are less likely to develop an obstructive mutation to the
therapeutic and develop resistance. Therapeutic develop-
ment typically involves numerous steps: the construction of
drug compounds based on the structure of a specific drug
target, validation for therapeutic efficacy of the drug com-
pound, evaluation of drug toxicity, and finally clinical trial.
RPMA and MS along with other functional proteomic
approaches can be employed at all steps in the investigative
process. The use of MS in combination with the use of high
throughput antibody platforms will allow a much more global,
comprehensive, and directed approach in the study of viral
infection or any pathogenic state for that matter, revealing
the complexity of the events within an infected cell while
compensating for the limitations of a technique in isolation.
Post-translational modifications —including phosphoryla-

tion, acetylation, and ubiquitination—are specific modifica-
tions that can alter the activity of an individual protein target.
The cumulative effect of these small modifications is the
regulation of large signaling pathways and networks within
cells. A comprehensive understanding of the molecular
mechanisms underlying viral infection remains a major
challenge in the discovery of new antiviral drugs and host
susceptibility factors. New advances in the field are
expected to arise from systems-level modeling and the
integration of proteomic and genomic disciplines, with
current wet lab techniques. Here, we attempted to briefly
explore the importance and benefits of using two powerful
proteomic techniques in a combinatorial capacity, to better
understand the molecular relationships between viruses and
their host, chiefly looking at cellular signaling pathways from
a global perspective. Past studies have already demon-
strated that viral proteomes target a wide range of functional
and inter-connected modules of proteins within the human
interactome and that using a global and systems-level
approach can provide relevant, accurate and valuable

information (Go et al., 2006; Brewis & Gadella, 2010;
Munday et al., 2010; Lietz�en et al., 2011; Zhou et al.,
2011; De Chassey et al., 2012).
To summarize, protein interaction studies have come a

long way in the past decade in terms of technology/platform
development and protein chemistry. Together with the use
of microarrays and bioinformatics tool sets, along with other
“Omics”; the identification of the molecular signatures of
diseases based on protein pathways and signaling cas-
cades, holds great promise and utility for disease diagnosis
and therapeutic development.
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