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Metagenomic approaches are now commonly used in microbial ecology to study microbial communities in more detail, 
including many strains that cannot be cultivated in the laboratory. Bioinformatic analyses make it possible to mine huge 
metagenomic datasets and discover general patterns that govern microbial ecosystems. However, the findings of typical metag-
enomic and bioinformatic analyses still do not completely describe the ecology and evolution of microbes in their environ-
ments. Most analyses still depend on straightforward sequence similarity searches against reference databases. We herein 
review the current state of metagenomics and bioinformatics in microbial ecology and discuss future directions for the field. 
New techniques will allow us to go beyond routine analyses and broaden our knowledge of microbial ecosystems. We need to 
enrich reference databases, promote platforms that enable meta- or comprehensive analyses of diverse metagenomic datasets, 
devise methods that utilize long-read sequence information, and develop more powerful bioinformatic methods to analyze data 
from diverse perspectives.
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Data deluge in microbial ecology

Although microbes play fundamental roles in various 
ecosystems, most have not yet been characterized in detail. 
Bioinformatics, which aims to discover new biological con-
cepts and laws based on large-scale data, is now expected to 
accelerate discovery in unexamined areas of the microbial 
universe. The data deluge has made bioinformatics indis-
pensable in modern research; recent innovative technologies 
are producing large amounts of data at an unprecedented 
pace. Observations are key to science; for example, optical 
and electron microscopies are important methods of observa-
tion combined with various staining methods. Among recent 
observational technologies, high-throughput DNA sequencing 
technologies have rapidly produced vast amounts of genetic 
information at low cost, making available thousands of micro-
bial genomes. These genome sequences provide a compre-
hensive catalog of the microbial genetic elements underlying 
diverse microbial physiology, and also assist in weaving a 
massive tapestry of microbial evolutionary histories (72, 154).

In microbial ecology, research has been hindered because 
the majority of environmental microbes are uncultivable. A 
large number of studies across diverse natural environments 
have identified many microbial groups with no axenic culture 
(110, 113, 133, 138). In order to overcome this fundamental 
difficulty, culture-independent approaches, including DNA 
hybridization (e.g., microarray and fluorescent in situ 
hybridization), DNA cloning, and PCR have been used to 
detect specific members and/or functional genes in microbial 
communities (3, 8, 9, 32, 34, 47, 56, 61, 74, 157, 174, 185). 

High-throughput sequencing technologies have recently 
popularized shotgun metagenomic and (typically 16S ribosomal 
RNA [rRNA] gene) amplicon sequencing methods, which 
identify members and/or functional genes at a greater scale 
and in more detail. Their use in diverse environments has 
revealed the presence of extremophiles (27, 33, 92), uncov-
ered relationships between microbes and human diseases (10, 
44, 55, 57, 85, 87, 96, 134, 147), and characterized the nutri-
tion systems involved in symbiosis (68, 174, 177). Even more 
applications of these methods are used in agriculture (93), 
food science and pharmaceuticals (32), and forensics (49, 79, 
82, 182). Many large-scale metagenomic projects are now 
generating comprehensive microbial sequence collections for 
different environments (e.g., human-associated [116, 167], 
soil [54, 171], and ocean environments [17, 142]). Since 
microbial communities change as they interact with other 
organisms and as the environment changes, time-series anal-
yses have also become common (21, 24, 77, 115, 172).

Several bioinformatic tools have been developed and pop-
ularized to analyze metagenomic and amplicon sequence 
data. Web servers, such as MG-RAST (104), IMG/M (97), 
EBI Metagenomics (69), and SILVAngs (135), and pipelines, 
such as MEGAN (70), QIIME (25), and Mothur (145), now 
allow researchers to perform integrated metagenomic analy-
ses and visualize results without command-line operations or 
strong computational knowledge. Since there are already 
several introductory articles on these popular tools (36, 88, 
103, 123, 146), we herein addressed how can we examine large 
datasets in detail in order to obtain a deeper understanding of 
the ecology and evolution of microbes in the environment 
beyond existing approaches that are already popular (Fig. 1).
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Toward better taxonomic assignments

A fundamental step in microbial ecology is to describe the 
taxonomic distribution of microbial community members. 
Thus, the precise taxonomic assignment of sequencing reads 
is one of the most important issues in the analysis of 
metagenomic and amplicon sequencing data. Reference-
based methods are frequently used for this purpose, in which 
taxonomic assignments are based on straightforward sequence 
similarity searches against reference genomes (e.g., RefSeq 
[163]) or 16S rRNA sequence databases (e.g., Greengenes 
[101], SILVA [135], RDP [31], and Ez-Taxon [29]). These 
databases typically contain the sequences of previously iso-
lated and taxonomically classified strains, whereas they also 
contain environmental clone sequences. Many bioinformatic 
tools, such as TANGO (6), MetaPhlAn (148), and Kraken 
(176), have been developed to improve the computational 
efficiency, accuracy, and sensitivity of taxonomic assign-
ments. Although these tools perform well for many applica-

tions, discriminating between closely related species is 
sometimes difficult, particularly in cases of highly conserved 
genes (e.g., 16S rRNA genes). Additionally, genes that 
undergo horizontal gene transfer (HGT) between different 
taxa may cause incorrect taxonomic assignments. A more 
fundamental issue is taxonomic bias in reference databases, 
which leads to biased taxonomic assignments. A previous 
study reported that taxonomic assignments markedly change 
when different versions of reference databases are used (128). 
Therefore, even in this era of data deluge, the further taxo-
nomic enrichment of reference databases is key to the 
improvement of reference-based methods. It is important to 
note that this issue is more crucial in the analysis of fungal 
and viral sequences because fewer reference sequences are 
available and their taxonomy is under debate. In order to 
overcome this obstacle, several projects are now attempting 
to obtain a number of genomic sequences to enrich databases 
(58, 180). In cases in which amplicon sequencing data are 
analyzed, the filtering of chimeric sequences formed during 
PCR is very important for precise analyses (63). Several bio-
informatic tools, such as AmpliconNoise (136), ChimeraSlayer 
(63), and UCHIME (41), have been proposed and commonly 
used to remove chimeric sequences.

Reference-free methods may be used (e.g., CD-HIT [50], 
UCLUST [40], and UPARSE [42]) as an alternative to reference-
based methods. These methods use clustering to group 
marker genes, such as 16S rRNA, ribulose-1,5-bisphosphate 
carboxylase/oxygenase (RuBisCO), ammonia monooxygen-
ase (amoA), sulfate thioesterase/thiohydrolase (soxB), and 
methyl-coenzyme M reductase genes (mcrA), into unique 
representative sequences that serve as operational taxonomic 
units (OTUs) (27). 16S rRNA genes are used to study the 
general composition of a microbial community, while 
RuBisCO, amoA, soxB, and mcrA genes are typically used to 
investigate microbes that play critical roles in carbon, nitro-
gen, sulfur, and methane cycles, respectively. In addition to 
traditional genes, useful marker genes may be found and used 
by comprehensively profiling metagenomic datasets (159). In 
reference-free methods, OTUs often cannot be assigned to 
known taxa. In order to estimate phylogenetic information for 
these OTUs, PhylOTU (150), pplacer (98), and PhyloSift (35) 
couple reference-free methods with phylogenetic analyses.

Toward the cultivation-free reconstruction of genomic 
sequences

Most metagenomic studies currently focus at the level of 
individual genes (“gene-centric” metagenomics [132]). In 
contrast, in some pioneering research on “genome-centric” 
metagenomics, microbial genomes that include those of 
important uncultivated taxonomic groups were successfully 
reconstructed by metagenomic binning and assembly from 
various environments including oceans, groundwater, soil, 
hypersaline lakes, and acid mine drainage (4, 18, 45, 95, 112, 
168). Although amplification bias still poses a non-negligible 
difficulty, single-cell genomic sequencing is expected to 
accelerate direct genome reconstruction from environmental 
samples (43, 90, 140), in which the combination of single cell 
genomic and metagenomic approaches may be a promising 
approach (102).

Fig. 1. Schematic figure of metagenomic and bioinformatic analyses 
in microbial ecology. The illustration covers topics that are already 
popular, that need further development, and that will become important 
in the future. At the bottom of the illustration, reference databases lay 
foundations for various bioinformatic analyses.
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Metagenomic assembly is an important step for revealing 
the ecology and physiology of environmental microbes, in 
which the fundamental concepts of metagenomic assembly 
from short-read sequences have already been described in 
detail (36, 88, 103, 123, 146). Several tools have been 
developed for metagenomic assembly, and are classified into 
reference-based (e.g., AMOS [130]) and de novo methods 
(e.g., MetaVelvet-SL [2], SPAdes [119], and IDBA-UD 
[127]). In the case of de novo assembly, users need to con-
sider chimeric contigs because similar genetic regions may be 
shared by different genomes (100, 129, 170). In order to 
improve the performance of de novo metagenomic assembly, 
composition-based methods use specific sequence features in 
a metagenomic dataset to split reads into different species. 
For example, CONCOCT (5), metaBAT (81), and MaxBin 
(178) bin sequences based on their tetra-nucleotide frequency 
composition and coverages. These composition-based approaches 
are computationally intensive, particularly in their memory 
usage. Thus, a fast-clustering approach using matrix decom-
position with streaming singular value decomposition may be 
combined (30). On the other hand, sequence coverage infor-
mation across different DNA extraction methods may also be 
used to effectively split sequences into species because the 
numbers of sequence reads from the same genome need to be 
similar regardless of the extraction method (4). A related 
approach bins co-abundant sequences across a series of metag-
enomic samples from similar environments (e.g., human gut 
microbiome) to identify co-abundance gene groups (117).

Another information source that may improve the performance 
of metagenomic assembly is long-range contiguity. The recent 
development of methods to investigate long-range chromatin 
interactions (e.g., Carbon-Copy Chromosome Conformation 
Capture [5C] [38] and Hi-C [11]) may also contribute to 
metagenomic assembly because these methods ligate 
sequences from two different genomic regions that are in the 
same cell (20). The Irys system (BioNano Genomics, San Diego, 
USA), which also detects long-range contiguity with fluores-
cently labeled DNA, may be used to obtain long contigs (64).

Toward a more reliable estimation of community metabolism

Microbial genomes are affected by the environment during 
their evolution. Metabolic processes encoded in the genome, 
from biosynthesis to biodegradation, directly link microbial 
communities to the environment. Since most microbes are 
uncultivable, the direct estimation of community-scale 
metabolic pathways is also targeted by a metagenomic analy-
sis. The most straightforward approach is to conduct sequence-
similarity searches against pathway databases, such as KEGG 
(80), MetaCyc (22), and SEED (124), and use the findings 
obtained to annotate metabolic genes. Since many pathways 
with component genes that are only partially found in given 
metagenome data are typically detected with this naïve 
approach, MAPLE (160), MinPath (183), MetaNetSam (75), 
and HUMAnN (1) quantitatively or probabilistically evaluate 
whether these pathways likely function, enabling compari-
sons between samples. Significant biases in the databases of 
known pathways need to be taken into consideration when 
interpreting the findings of these methods. If shotgun metag-
enome data are unavailable, “virtual metagenomes” or func-

tional gene abundance may be estimated using 16S rRNA 
amplicon sequencing data (89, 121). This approach takes 
advantage of closely related genomes being more likely to 
have a similar gene content, and, thus, given the 16S rRNA 
sequence, the gene content of its host genome may be esti-
mated (at least, to some extent) if a closely related genome is 
already sequenced. It is important to note that such estima-
tions may become difficult when applied to microbial groups 
with genomes that are rarely available and also that genomic 
variations within closely related microbial groups cannot be 
precisely considered. Despite these difficulties, this approach 
is very cost-effective and more easily applicable to large-
scale comparative analyses.

Toward a community-level analysis of genomic structural 
variations and dynamics

Operon structures, which are unique to prokaryotic 
genomes, reflect the function of their encoded genes and need 
to be associated with microbial ecological strategies. Thus, if 
we observe systematic variations in the gene order (or gene 
cluster structures) due to gene losses, fusions, duplications, 
inversions, translocations, and HGTs from an analysis of 
metagenome data, these variations may provide important 
clues for linking microbial communities to the environment 
(Fig. 2A). Although difficulties are sometimes associated 
with distinguishing variations under selection pressure from 
those because of population changes, MaryGold (118) is a 
tool for the visual inspection of such variations. Variations in 
the gene order for genes in the tryptophan pathway were 
identified within contigs assembled from the Sargasso Sea 
metagenome (78). Since the availability of long sequences 
that encompass multiple genes greatly facilitates a gene-order 
analysis, DNA cloning may also be used if the targeted path-
ways are efficiently enriched by colony selection (51, 158). 
On a larger scale, gene order may be affected by genome 
replication mechanisms. Most prokaryotic genomes are 
circular with one replication origin; thus, genes close to the 
origin may physically exist in multiple copies, particularly 
during an active growth phase. Thus, the detection of these 
regions from metagenomic sequences may reveal the growth 
dynamics of microbes in a community (86).

Among various sources of genomic variations and dynam-
ics, HGT is of particular interest because it may help 
microbes adapt quickly to different environments (120, 139, 
156). Although many comparative genomic studies have 
analyzed HGT (26, 73, 153), its role in microbial communi-
ties has not yet been elucidated in detail. A classical approach 
to detect HGT within communities is based on DNA cloning, 
which is particularly effective if colony selection is applied to 
the targeted genes (162, 175). In metagenomics, assembled 
contigs may be used to comprehensively identify HGT events 
by analyzing phylogenetic incongruence and gene order dif-
ferences (62, 125, 161). In addition, gene gains via plasmids 
are also important driving forces that accelerate microbial 
adaptation to their environment. In accordance with this 
hypothesis, plasmids are frequently reported to contain genes 
that may contribute to fitness, such as detoxification genes 
(151, 152, 165) and antibiotic resistance genes (13). Notably, 
plasmid-specific metagenomics, or a plasmidome analysis, is 
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now being conducted to directly investigate environmental 
plasmids without culturing or cloning (37, 173). For example, 
the bovine rumen plasmidome was previously reported to 
contain genes that may confer advantages to their hosts (19). 
Rat gut (76) and wastewater (149) plasmidomes have also 
been investigated.

In addition to genes, regulatory sequences in intergenic 
regions are related to the function of nearby genes. Thus, 
variations in the comprehensive set of regulatory sequences, 
or the regulome, for example, by promoter propagation, may 
play important roles in microbial adaptation (99, 122). We 
envision direct investigations of regulomes in microbial 
communities, or a “metaregulome” analysis, becoming an 
attractive research field as technical advances occur in long-
read metagenomics. In a metaregulome analysis, variations 
and/or possible transfers of regulatory sequences, in addition 
to those of coding genes, may be identified from metage-
nomic datasets (Fig. 2B) (48, 122).

Toward a comprehensive analysis of inter-species interactions

Inter-species interactions, including mutualism and para-
sitism, are of general interest in microbial ecology (16). 
Using abundant information from large-scale metagenomic 
datasets, co-occurrences (or anti-occurrences) among microbes, 
hosts, and/or viruses have been studied, and, for example, 
species interaction networks have been identified (12, 23, 28, 
46, 53, 94, 114, 155, 164, 184). Recent large-scale projects 
include the Tara Oceans project, which revealed interactions 
among all three domains and viruses (17). Since environmen-
tal samples were revealed to contain environmental DNA 
shed from large organisms in addition to microbial DNA 
(107), a combinatorial analysis of microbial and environmen-
tal DNA is expected to accelerate the analysis of interactions 
between microbes and larger organisms.

The viral metagenome is called the metavirome or simply 
the virome. Viruses also play fundamental roles in ecosystems; 
therefore, a virome analysis is becoming an important field. 
To date, viral communities in hypersaline (143, 144) and 
human gut (105) environments have been extensively studied, 
and antibiotic viruses have also been of interest (108). A 

novel bacteriophage present in the majority of published 
human fecal metagenomes was recently reconstructed (39), 
and phage-bacteria ecological networks were suggested to 
protect gut microflora from antibiotic stress (108). Since 
viruses are classified into different types of DNA and RNA 
viruses, different approaches must be combined for compre-
hensive analyses (169). The use of targeted sequence capture 
techniques to efficiently increase the proportion of viral reads 
in metagenomic samples may also be considered (179). The 
largest limitation in bioinformatic analyses of viromes is 
insufficient reference genome data. Similarity searches using 
viral sequences often result in no significant hits, suggesting 
that there are many unknown viruses. In order to overcome 
this limitation, several bioinformatic tools have been devel-
oped and used for virome studies, such as ViromeScan (137) 
for taxonomy assignment and Metavir 2 (141) for viral 
genome reconstruction. Another difficulty is that in contrast 
to prokaryotes that have universal marker genes for a phylo-
genetic analysis (i.e., 16S rRNA), there is no such gene for 
viral studies. An analysis of clustered regularly interspaced 
short palindromic repeats (CRISPRs) is a related emerging 
field because these repeats represent previous exposures to 
(or attacks from) viruses (15, 109, 131). CRISPRs are found 
in approximately 40% of bacteria and approximately 90% of 
archaea (59), and, thus, a metagenomic analysis of CRISPRs 
will contribute to advancing the field toward a comprehensive 
analysis of viral-microbial interactions.

Toward a meta-analysis of metagenomes

Abundant metagenomic datasets containing dozens of 
terabytes of sequence data are currently found in the Short 
Read Archive database at NCBI, and its content is increasing 
daily (84). Whereas each metagenomic dataset provides a 
snapshot of the microbial community at the time of sampling, 
a comprehensive analysis (or meta-analysis) of many datasets 
is expected to reveal general patterns or laws that determine 
how microbes interact with their environments and how their 
genomes have been shaped. It is important to note that different 
datasets have been constructed with different experimental 
methods and conditions.

Fig. 2. Schematic figures of genomic variations in environmental microbes. Each box represents a protein-coding gene, in which the letters indicate 
homology. Boxes and thick lines of different brightnesses represent genes and genomic fragments, respectively, that originated from different 
genomic areas or genomes. Dashed lines represent lost genes or expression. A: Types of genomic structural variations. B: Variations in regulatory 
sequences. Mutations (black dots) and the horizontal transfer of intergenic regulatory sequences (thick lines in black) both affect the strength of gene 
expression.
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Regarding global correlations between environments and 
microbial genomes, correlations involving genomic GC 
contents (66) and genome sizes (14) have been reported. 
MetaMetaDB (181) was developed for a meta-analysis of 
different environments inhabited by a microbe and the factors 
that contribute to adaptation. This database may be used to 
predict all possible habitats of microbes by searching for the 
presence of microbes in metagenomic and 16S rRNA amplicon 
sequencing datasets derived from diverse environments. 
Given a metagenomic or 16S rRNA amplicon sequencing 
dataset, researchers may find environments with microbial 
community structures that are similar to that dataset using 
MetaMetaDB (181). A meta-analysis of metagenomic data-
sets was also performed to examine microbial adaptation to 
environments in terms of metabolic flexibility (52, 60) and to 
investigate specific functional genes that facilitate adaptation 
to extreme habitats, such as heavy metal resistance genes (65, 
106) and salt-stress responsive genes (166). In a meta-analysis, 
associations were found between membrane protein varia-
tions and oceanographic variables in a global ocean sampling 
expedition (126). Microbial interactions between humans and 
the indoor environment have also been investigated (91).

Toward metagenomics with long-read sequencers

Sequencers with the ability to produce long-read data are 
currently being developed, such as the PacBio RS II (Pacific 
Biosciences, Menlo Park, USA) and nanopore-based sequencers 
(Oxford Nanopore Technologies, Oxford, UK). Long reads 
are already contributing to many types of bioinformatic 
analyses, including the high-quality de novo assembly of 
bacterial and viral genomes (7, 67) and the detection of 
genomic structural variations, such as large-scale insertions/
deletions or HGTs in microbial communities (71). Long 
reads are expected to be helpful for reconstructing genomes 
from metagenome data, directly observing genomic structural 
variations, and analyzing metaregulomes in various microbial 
communities. High-density microbial habitats, such as biofilms 
and gut communities, may be interesting targets because their 
genomic structures may be changed by the frequent exchange 
of genetic materials.

Long-read metagenomics will be an emerging field, but 
there are still limitations to be considered. Although PacBio 
RS II with P6-C4 chemistry may generate reads with an 
average length of approximately 15 kb, less than 50,000 reads 
are generated per SMART cell (i.e., less than 1 Gb in each 
SMART cell). This throughput is markedly smaller than that 
of the so-called massively parallel sequencers (e.g., 
approximately 15 Gb in each run of MiSeq [Illumina]) and 
may be insufficient for describing taxonomically diverse 
microbial communities. In addition, the low accuracy of 
PacBio RS II reads (approximately 85%) may hinder a bioin-
formatic analysis, unless highly redundant sequencing (e.g., 
more than 50X coverage) is performed to reach high accuracy 
in the ensemble. Along with the development of new bioin-
formatic methods, protocols also need to be optimized to 
avoid DNA fragmentation during extraction (83, 111).

Concluding remarks

Metagenomic and bioinformatic approaches are already 
common in microbial ecology and have been used to investi-
gate whole communities containing many types of uncultiva-
ble microbes (Fig. 1). However, to date, most analyses have 
depended on straightforward sequence similarity searches 
against reference databases. This may not be satisfactory 
because microbial genomes need to be the fundamental basis 
for microbial ecology and evolution. The enrichment of refer-
ence sequences (for microbial taxa and functional genes) is 
one of the fundamental issues for promoting various kinds of 
analyses. Platforms that enable a meta-analysis of diverse 
metagenomic datasets will allow us to discover the hidden 
laws of the microbial ecosystem from publicly available data. 
Long-read sequence information will open up the possibility 
of studies that focus on subjects that have not yet been exam-
ined in detail by using short-read sequences. Furthermore, 
more powerful bioinformatic methods for analyzing data 
from diverse perspectives are required in order to advance 
past routine metagenomic analyses.
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