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Abstract: We present a waist-worn personal navigation system based on inertial measurement 
units. The device makes use of the human bipedal pattern to reduce position errors. We 
describe improved algorithms, based on detailed description of the heel strike biomechanics 
and its translation to accelerations of the body waist to estimate the periods of zero 
velocity, the step length, and the heading estimation. The experimental results show that 
we are able to support pedestrian navigation with the high-resolution positioning required 
for most applications. 

Keywords: pedestrian dead-reckoning; inertial navigation; localization; location based 
services; ambulatory monitoring; human motion 

 

1. Introduction 

We present a personal navigation system (PNS) based on inertial measurement units (IMUs). A 
PNS is a device that computes its own position in indoor or outdoor terrains without depending on 
external signals. Our system consists of a commercial off-the-shelf IMU placed on the back of the 
user, near the body center of gravity (COG), and wirelessly connected to a handheld processing unit. 
The IMU has two functions: it measures gait-corrected inertial displacements and it detects periods of 
zero velocity, needed to increase the positioning resolution by correcting the IMU measures. 

This device belongs to the class of the Pedestrian Dead Reckoning navigation systems (PDRs), 
which make use of the human bipedal pattern to reduce position error. Human bipedal gait consists of 
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two phases: swing and stance [1]. The swing phase extends from the instant the toe leaves the ground 
until the heel strikes. These events are called Final Contact (FC) and Initial Contact (IC) respectively, 
and between them the foot is off the ground. The stance phase begins when the heel first contacts the 
ground, and extends while the foot rolls and it reaches the midstance, producing the forward motion of 
the body by pivoting of the leg on the ankle. During the midstance the vertical component of the 
velocity of the waist is zero, and this fact can be used to initialize the integration of accelerations, so 
diminishing drifts and reducing the position error (the zero velocity update strategy, ZUPT). 

In order to better detect the step impact shock, most PDRs tend to place the IMU near the ground, 
usually on the heel and at the sole of the boot of the user. This detection technique typically results in a 
1%–2% positioning error [2], enough for most indoor applications. Our objective was to design, build 
and test a waist-worn PDR system that could achieve similar resolution. Although foot mounted  
IMU locations have some advantages to implement the ZUPT strategy, the waist or trunk locations  
are probably the least intrusive IMU placement, are easier to wear and more convenient in  
some applications.  

In this paper we describe improved algorithms to accurately estimate the periods of zero velocity, 
the step length and the heading estimation, based on detailed description of the heel strike biomechanics 
and its translation to accelerations of the body COG. The results show that we are able to detect  
zero-velocity points accurately enough to implement a PDR system worn on the user’s waist, and to 
support pedestrian navigation with the high-resolution positioning required for most applications,  
close to a relative error about 2% of the distance traveled [3], and 8% of the turn angle [4], in  
indoor environments.  

The remainder of the paper is set out as follows: Section 2 provides a literature review identifying 
related PDR systems and their characteristics. Section 3 outlines the ZUPT, the step length estimation 
and the heading estimation methods. Section 4 describes the PDR overall system and the experimental 
results to validate it. Finally, Section 5 discusses these results, identifies implications for future 
research and summarizes the paper. 

2. Sensor Location Alternatives 

Personal dead-reckoning systems have two components: a step detection subsystem with a 
pedometer-like function, and a direction subsystem to estimate the orientation. In this work we are not 
concerned with a possible third component to measure altitude changes such as elevators or stairs 
between different floors. Implementation can be made by attaching inertial sensors to the body to 
measure the patterns that are typical of the cyclical characteristics of human walking motion. 

For example, the number of steps can be counted from accelerometers, such as in a common 
pedometer. A rate gyroscope accounts for orientation, by integration the rate of change with time, and 
initializing it with a GNSS or a magnetic compass if required. It is also possible to estimate step 
lengths in real time from the accelerometer signals. A calibration process is usually needed to 
compensate the individual variability of acceleration profiles.  

Accumulative drifting errors are inherent to all these estimations, as they are based on adding  
noisy signals. In PDRs this problem is corrected by taking advantage of the cyclical nature of human 
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walking: when the foot is on the ground, the velocities and accelerations of the shoe are zero, and it 
can be taken as the starting point of a new estimation, or zero-velocity updating (ZUPTing). 

The efficacy of all these subsystems depends on which sensor is utilized and where it is located. 
The sensor may be mounted or attached at any convenient point on the user’s body, as long as it can 
sense the harmonic motion accelerations associated to walking or running. Several IMU locations have 
already been tested, e.g., the waist, trunk, leg, foot or even the head.  

A shoe-mounted IMU is the most frequent location in MEMS-based PDR systems [5]. Results may 
vary depending on the specific sensor set or the experimental conditions. Errors up to 20% of distance 
traveled are common in abrupt terrains [6,7]. In [8] they reported a maximum distance estimation error 
of 5.3% over a 30 meter course, with a tri-axial accelerometer and a single axis angular rate sensor  
on the shoe. 

Similar results are reported in [9] with a two-axis magnetometer located on a shoe and a Kalman 
filter to reduce magnetic disturbances in indoor environments, or in [10] with a single axis angular rate 
sensor leading to errors of 4% in 120 m. Ojeda, Borenstein et al. [3,11] use a small six-degree-of-freedom 
IMU attached to a user’s boot, with a ZUPT technique that produces a relative error about 2% of the 
distance traveled, independent of the gait or the speed of the user. More recent shoe-mounted PDRs 
reach similar levels of indoor precision, from 1.2% in 370 m walks [4] to 10% for longer paths [12]. 
These results are usually best-case scenarios. It is not easy to make systematic comparative studies of 
PDRs performance, as usually conditions and methods are difficult to reproduce fairly [13]. 

Shoe-based PDRs’ limitations could be overcome by adding more sensors to the system, at the 
expense of complexity and cost. For that reason, in [14] they use radio frequency phase changes between a 
reference signal located in a waist pack, and from a transmitter located on each boot. In [15], ultrasonic 
sensors attached to boots help to measure the length of every stride in real time, leading to a maximum 
error of 5.4% in straight-line walking. In [16] two IMUs, one on each boot, are used with the idea of 
limiting the drift error growth with the stride length estimation at each foot. In [2] a high-resolution 
thin flexible ground reaction sensor cluster (GRSC) is added to the shoe-worn IMU, for more  
accurate determination of the zero-velocity point in the ZUPTing subsystem, reporting that errors 
decrease from 0.4% to 0.35% in half-hour experiments (1,200 m walks, 4 m errors) compared to 
gyroscope-based ZUPTing.  

In this work we choose to locate the IMU at the body COG, as a waist-worn device. The reasons for 
this are: (1) shoe sensors may be impractical if they require shoe modifications or wires up to the leg of 
the user; (2) waist-worn sensors are less intrusive and more convenient in some applications because 
we are more accustomed to carrying some other devices on the belt; and (3) waist-worn IMUs have 
better results for heading estimation using gyroscopes or magnetometers [8].  

Previous work on PDRs with waist-worn sensors have their roots in the work of Levi and  
Marshall [17] who developed the first commercial system. Step detection is made by processing the 
fundamental component of the vertical acceleration combined with peak detection of the signal. Step 
length is experimentally related to step frequency for each individual, and orientation is estimated from 
a magnetometer signal and individual calibration. Later the system is expanded to deal with lateral and 
backward displacements. Ladetto et al. [18] deal with step count by peak detection in the vertical and 
antero-posterior accelerations, and the step length is estimated from the step frequency. The system  
in [19] is similar but step length is estimated by a heuristic formula, individually calibrated, which 
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leads to reported errors of 3% inter-individual and about 8% intra-individuals. Orientation is estimated 
by the combined use of accelerometers and gyroscope. Other works in the literature are based on  
post-processing of the sensor signals, and are not suitable for localization in real-time [20].  

In this paper, we describe a PDR with an IMU located at the COG, and able to deliver state-of-the-art 
precision. For displacement estimation, it will be necessary to improve both the zero velocity detection 
and the step length estimation, by means of biomechanical models of walking. The results show that 
good precision can be achieved, and therefore it is not mandatory to renounce such an advantageous 
sensor position, so convenient for a lot of applications. Below, the sensors, each method used in the 
system and their integration approach is explained in detail. 

3. Signal Processing Methods 

3.1. Zero Velocity Detection Algorithm 

Our goal is to detect the mid-stance event (MS), located between the events of Final Contact (FC) 
and Initial Contact (IC) that delimit the stance phase of walking (while one leg pivots in the air). In 
biomechanics, this event corresponds to when the swinging foot passes the reference or pivoting foot, 
and happens to coincide with the instant when the COG is in its highest vertical position. Also, this 
event is posterior but very close to the instant of flat foot.  

In order to define an improved algorithm to accurately detect zero-velocity stance from the waist, 
we need a detailed description of the heel strike biomechanics and its translation to accelerations of the 
body COG. For shoe-worn PDRs, most stance-based schemes in the literature equate zero-velocity 
detection to the impact of the heel when it hits the ground, or Initial Contact (IC) event, which can be 
easily identified from the foot IMU acceleration sensor signals. Biomechanics studies show that this 
event coincides in time with when the body center of gravity (COG) is in its lowest vertical position, a 
more convenient description for waist-worn PDRs. Below, we describe an improved algorithm to 
accurately detect zero-velocity stance from the waist. The objective is to define the data needed to 
capture the nature of the contact with the ground, to accurately detect the periods of zero velocity. 

Our algorithm has its roots in the description of gait events given by [21,22] from the vertical 
acceleration of the lumbar area. Such a description, see Figure 1(a), shows a multimodal signal for 
each step composed of three main peaks, where the initial contact corresponds to the first valley (V2) 
and the second valley (V4) is associated with the contralateral final contact. Regarding the  
antero-posterior acceleration, the higher peak (IC) corresponds with the Initial Contact, and the lower 
peak with the Final Contact (FC).  

From this description, the first step for event detection is to compute the principal harmonic of the 
vertical acceleration using a 30 order, zero-lag, low-pass FIR filter with a cutoff frequency of 2.5 Hz. 
This filtered signal is used to locate the maximum of the vertical acceleration. ICs are marked at the 
maximum of the AP signal, immediately before a vertical acceleration maximum. Final contacts FCs 
are located as local minimum in a small neighborhood after each maximum in the vertical acceleration. 
Experiments show a number of false detections of six ICs and eleven FCs out of 4,675 steps [23]. 
Acceleration data was captured using an IMU placed close to the L3 vertebra with its measurement 
axes aligned to the anatomical ones, and secured through the use of a corset. 
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For IMUs worn at the waist, the length of step can be estimated by measuring the vertical 
displacement of the COG after double integration of vertical acceleration. This idea, originated in the 
scope of gait analysis, can also be applied for PDR systems [26]. This estimation is based on the 
assumption that the vertical movement of center of mass during a step, delimited by two consecutive 
IC events, is equal to that described by a point mass suspended at the end of an inverted pendulum. 
The step cycle is divided into two phases: double stance (from IC to contralateral Final Contact FC) 
and single stance (from contralateral FC to next IC), see Figure 1(b). The inverted pendulum model is 
the step length estimator during single stance, but during double stance displacement is considered 
constant and related to the foot size. The algorithm needs the subject’s leg length measured from the 
external malleolus to trochanter major (L2), the subject’s foot length (F) and the vertical acceleration 
signal of the step, from the previous IC event of the contralateral foot to the following IC event of the 
reference foot. Then, the antero-posterior displacement d can be related to vertical displacement 
according to equation: 

d = 2 2Lh − h2
 (1) 

being L the leg length, and h the vertical displacement of the COG during the single stance, computed 
by a double integration of the waist vertical acceleration. The zero velocity update (ZUPT) is made in 
the IC event, which defines the step start. 

This method has been tested experimentally under laboratory conditions, walking in a straight line 
of about 20 m (19.92 ± 0.28 m), walking at constant speed. The reported precision is 8.8% with 
accuracy of 100.96% [27]. The record shows that it is a comparable alternative to other previous 
methods, suitable to be a component in the construction of a waist-worn PDR system. 

3.3. Heading Estimation Using Gyroscopes 

Walking direction can be computed by integrating the signal of a vertical gyroscope, or by direct 
measurement of magnetometers. Magnetometers produce absolute values that have a deviation due to 
the magnetic declination, and they are unreliable because of environmental magnetic disturbances. By 
numerical integration of a vertical gyroscope signal we can estimate orientation, but with drift errors 
that accumulate and grow unbounded in time. In this case, we have no biomechanical model to help us 
to implement a ZUPT strategy to avoid that.  

The approach we take to overcome this limitation has two parts. First, we implement a basic 
algorithm to distinguish whether the individual is moving in a straight line or is turning, in order to 
disable the gyro integration to avoid unnecessary error accumulation. We assume that rotation speed 
around the vertical axis (Z axis) has two components, an AC component with the same frequency as 
the stride, which accounts for trunk rotation during normal gait, and a lower frequency component 
associated to the orientation change rate. Under this assumption, the absolute value of the mean of the 
Z component of rotation speed over a stride (MRZ) should be close to zero for straight walking and 
greater than zero for curved walking. Taking the absolute value allows to get rid of rotation direction. 
Figure 2 shows the distribution of MRZ for walk experiments in location of Figure 3(a).  
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Figure 2. Distribution of the absolute value of the mean of Rz over a stride. The peak near 
to zero corresponds to straight walking, while the peak to the left corresponds to turning 
steps. The red line shows the fitted Gaussian mixture model. 

 

Figure 3. Location C for large-range indoor experiments, 179 m length with 540 degrees 
turns. (a) Partial shorter experiments within the same environment, see Table 1;  
(b) Real-time path reconstruction. 

 
(a) (b) 

To solve the classification problem, we fit a Gaussian mixture model. We have used three 
independent experiments consisting in the completion of two rounds around the track shown in Figure 3(a). 
The first trial was used to fit the model, the second to validate it and the third to test the results. Fitted 
model is shown as a red line in Figure 2. The precision of the classifier is 1, so every step labeled as 
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curved walking corresponds to actual curved walking. On the other hand, the value for the recall 
parameter is 93.65%, meaning that almost 7% of curved walking steps where labeled as straight 
walking. Those false negatives are related to very small curves (which take less than a stride). Every 
straight walking step was correctly classified. To solve the false negative problem we have decided to 
integrate two straight steps occurring before and after a curved walking step. This classification 
algorithm works in real-time and only requires storing the data of four steps. 

Once a stride has been selected, we integrate the gyro signal to calculate the change in orientation, 
but experiments show that it is not enough by itself to produce angle estimations in the range needed. 
We increase accuracy by estimating bias through a double calibration, both for the user (user and 
sensor placement) and for the sensor itself. This calibration is quite simple and consists in completing a 
small path with two simple requirements: should we small (30 to 50 steps at user preferred speed) and 
should complete a 360 turn, i.e., the user must finish facing the same initial direction. Using this 
information, we may estimate bias using the formula: ܾ ൌ ׬ ݐሻ݀ݐෝሺݓ െ ଴்ߨ2 ܶ  (2) 

where ݓෝሺݐሻ is the calibrated signal from the sensor (rad/s), 2π accounts for the total gyro and T is the 
duration of the test. This bias is used later for real-time compensation. The results show that the 
combination of both ideas is sufficient to produce orientation estimations useful within some range of 
conditions, but not good enough for long distance walks. 

4. Experiments 

Our PDR system is based on a sensor unit consisting of a tri-axial accelerometer and an uniaxial 
gyroscope placed in the lumbar area of the individual, in a position close to the COG. Starting from a 
known initial position, the device estimates the new position and orientation at each step. It is therefore 
necessary to detect the occurrence of the step with the minimum time delay possible. This is made  
with the detection algorithm described in the previous section, as well as the step length and 
orientation estimations.  

Acceleration data was captured using an IMU placed close to the L3 vertebra with its measurement 
axes aligned to the anatomical ones, and secured through the use of a corset. Raw acceleration and 
gyro data were gathered by means of an Xsens MTx device. This sensor includes a triaxial accelerometer,  
a triaxial gyro and a triaxial magnetometer, being the total MTx size 40 × 55 × 22 mm. Acceleration 
measurement range is ±10 g, with a linearity error of 0.2% of FS, bias stability (1ߪ) 0.02 m/s2 and 
bandwidth 30 Hz. Angular velocity range is ±1,200 deg/s, with a linearity error of 0.1% of FS, bias 
stability (1ߪ) 1 deg/s and bandwidth 40 Hz. Magnetic field measurement range is ±750 mGauss, with a 
linearity error of 0.2% of FS, bias stability (1ߪ) 0.1/mGauss and bandwidth 10 Hz. Alignment error 
between the different sensor axes is less than 0.1 deg. A signal acquisition system, Xsens XbusMaster, 
transmits the measured signals via Bluetooth or USB to a PC laptop. Measurements were made with  
a group of eight adult volunteers, with ages 24 to 45, along none of them appearing to have any 
impairment in the locomotion system that could affect the experiments.  

The sensor placed in the lumbar area of the pedestrian has to be aligned with its motion axis. 
Because the sensor is placed arbitrarily on the surface of the lumbar zone, the initial misalignment is 
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corrected by an initial calibration procedure. From the initial signals acquired at rest, we calculated a 
correction matrix that will be used while in real-time operation. The sensor undergoes small misalignments 
during a step sequence because of the movement of the support lumbar surface. We have considered 
this factor negligible because of the low amplitude expected for the misalignment. 

Indoor experiments were carried out at the Electrical and Computer Engineering Department 
building, in the Polytechnic School of Gijon. It is an office environment, with a Geographic 
Information System (gis.uniovi.es) that maps all university buildings geographically, and can also 
show the floor plans of each of them, providing accurate mapping information. This information  
was contrasted on the ground with a laser range finder, in the specific areas where the experiments 
were made.  

We performed short and long range experiments in three different locations. Initial walking 
direction is introduced by hand. The short distance runs were made in two office environments, 
represented in Figure 4(a). A 39 m long square was used for the first test and adjustment purposes. It 
has a total rotation of 360 degrees, 270 degrees to the left and 90 degrees to the right. The path ends at 
the same initial point, but with a 180 degree orientation with respect to the start. An extended version 
of these trials, but 91 m long, was made in Location B in Figure 4(b). Finally, Figure 3 depicts 
experiments in Location C, a 179 m long path with a total 360 degrees left turn and 180 degree right 
turn, that is, 540 degree overall. Trajectories in both Figures 3 and 4 are those produced in real-time by 
the developed PDR system. 

Figure 4. Short-range indoor experiments. (a) Location A, a closed path 39 meters long 
and 360 degrees turns, real-time results of one experiment; (b) Location B, a closed path 
91 meters long with 360 degrees turns. 

 
(a) (b) 

7 m
8 m

4.5 m

33.2 m

9.3 m

3 m
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Table 1. Indoor experiment results in Locations A, B, C in Figures 2 and 3. Real distance  
and turn degrees were measured at each location, and compared to estimated ones at the 
end of the trial.  

Location Estimated Distance Estimated Turn 
Id. Real distance (m)/turn (deg) m % Err. (deg) % 
A 39/360 37.4 4.1 13.4 7.5 
B 91/360 89.5 1.6 4.2 2.3 

C 

179/540 173.3 3.2 2.3 1.3 
54/0 54.3 0.6 8.9 5.0 

49.3/120 51.5 4.5 9.4 5.2 
100.6/420 97.7 2.9 16.2 9.0 

TOT 1,925.6/6,660 1,884.7 2.1 80.5 6.2 

Subjects were recruited from the pool of volunteers, in order to record four to six trials at each location, 
on different days. Trials were discarded when they produced unacceptable errors. That happened in 
approximately one out of six trials. By visual inspection of the discarded data, we have identified that 
there is a potential problem when the patterns of antero-posterior and vertical acceleration (Figure 1), 
are so irregular that the ZUPT method produced several erroneous detections. This is due to a variety 
of reasons that could range from the individual walking conditions (e.g., the specific shoes used, lateral 
steps, walking velocity, and so on), to unwanted sensor artifacts coming from skin and muscle 
movements on the waist during walking. More analysis is required to better understand these 
experimental limitations of the system. Even though, we already reported similar limitations in 
previous systematic experiments, 31 out of 192 trials, when walking in straight line under restricted lab 
conditions [27], and therefore the results reported here, under more realistic conditions, do not 
represent a significant worsening. The total walking distance is calculated by adding all the step length 
for each excursion. Similarly, turn angle is calculated by adding the estimated turn angle per stride.  

Orientation estimation being the most difficult part, we carried out long distance outdoor walks to 
provide more insight into the performance of this component of the PDR. We tested the combination 
of individual calibration for users and tracks, and the motion detection idea to avoid unnecessary gyro 
integration. Figure 5 shows the better results obtained when adding calibration to motion detection. 
Experiments were made outside the department building, using a commercial GPS positioning system, 
over two predefined paths, of 460 m and 240 m respectively.  

5. Results  

A total of almost 2 km with 6,660 degrees of turns were recorded indoors. Results of the 
experiments are summarized in Table 1 for the three selected indoor locations. Four to six typical runs 
are selected for each location. The table includes the percent error between measured and estimated 
distance, at each location. The added median distance error was 2.1% in distance, with no apparent 
dependence with distance within the range of the experiments (40 to 180 m). Percent error in turn 
angle estimation is computed using ݎݎܧఏ ൌ ሺߠ௥௘௔௟ െ  ௘௦௧ሻ/180, what leads to a 100% error when theߠ
estimation is opposite to the real orientation.  



S
 

 

F
e
T
lo

u
s
lo
in
lo

F

Sensors 201

Figure
240 m
real-tim
(blue p

Turn erro
Figure 5 an
errors under
Trials where
ocalization 

Errors ob
under 9% in
some hints 
ocalization,
nertial devi
ocalization 

The effe
Figure 5. T

2, 12 

e 5. Orient
m long; (b) 

me reconst
path), and b

ors are grea
nd Table 2 w
r 2.3%, wh
e turn error
and track re

Table 2

Id. dis

C 

btained in in
n final orien

about how
, and what 
ice [19,28]
error of 5 m
ct of orien

The propos

tation estim
Path 460 m

truction (rig
by motion de

(a) 

ater and mo
we can see

hich makes 
rs grew hig
econstructio

. Detailed r

Location 
stance (m)/T

179/54

ndoor scena
ntation, whi
w to comb
is the opti
. Then, a 

m in distanc
ntation erro
ed algorith

mation outd
m long (axi
ght) in two
etection + c

ore difficult 
e the results

the path st
gher than 20
on over a m

results of fou

Turn (deg) 

40 

arios (up to 
ich can be c
bine this P
imal distanc
distance of

ce.  
ors is more
hm combin

door tests, w
s in meters
o scenarios
calibration (

to reduce b
s of four di
till recogniz
0% were di

map. 

ur trials in L

Dist
m 

173.48 
171.04 
172.06 
176.42 

180 m) for 
considered 
PDR devic
ce between
f 200 m b

e prominent
ing calibra

with uncali
s). Tracks (l
, by using 

(red path). 

because of 
ifferent tria
zable when
iscarded be

Location C,

ance 
% 
3.1 
4.4 
3.9 
1.4 

individual t
a worst-cas

ce with so
n beacons th
between bea

t in the lo
ation and c

ibrated step
left) and th
only motio

(b) 

the reasons
als of Locat
n plotted ov
cause they 

, plotted in F

Tu
Err. (deg)

3.13 
3.43 
4.09 
0.81 

trials are un
se scenario. 
ome kind o
hat could h
acons could

ong range o
conditional 

p length. (a
heir corresp
on state de

s previously
tion C, with
ver the buil
begin to b

Figure 5. 

urn 
) % 

1.7 
1.9 
2.3 
0.4 

nder 5% in d
These num

of sensor 
help to com
d guarantee

outdoor exp
gyro integ

1054

a) Path  
ponding 
etection 

y exposed. I
h orientatio
lding plane
e useless fo

distance, an
mbers give u

network fo
mplement th
e a bounde

periments o
gration give

46 

In 
on 
es. 
or 

nd 
us 
or  
he 
ed 

of  
es 



Sensors 2012, 12 10547 
 

 

acceptable results, but the variability of the results is greater, and the worst-case error grows to exceed 
the 15% in the tested scenarios. Outdoor walks were carried out on a flat pavement, so the effect of the 
irregular walking surface in city-like environments is not included in this study. 

6. Conclusions 

The proposed waist-worn PDR system delivers location information that can be precise enough for 
some applications. This information is provided in real-time and independently of any infrastructure, 
and not as the result of computer-based post-processing, making it useful for location-based 
applications and services. Walking orientation is by no means robust, and relays on pre-calibrated 
computations. Step count and step length estimation are much more reliable, and do not deteriorate a 
lot when increasing the walking distance. Experiments in city-like asphalt tracks show similar results. 
The experiments discarded because of failure of the ZUPT detection method represent another 
limitation. Further research is needed to identify the reasons for the occasional distortion of the 
acceleration signal at the waist, and to compensate them to avoid their negative effect, especially in the 
estimation of the turn angle orientation. 

The measured error levels allow us to define the distance needed for a beacon-based infrastructure 
which could complement this PDR, in order to provide real-time pedestrian localization and tracking in 
GPS-denied environments, within the error margins demanded by the specific application. 

Because the sensors are waist-worn, this work could be applied also to electronic devices we 
already carry with us, such as smart phones or music players. In this case calibration procedures are 
not valid anymore, as these devices are usually not fixed to the body but in the user pocket, and they 
move freely as we walk [29]. The three modules comprising the PDR should be revised taken this 
problem into account.  

As conclusion, the development of more detailed algorithms for the inertial estimation of 
orientation shows the biggest potential to increase the PDR autonomy and its dependence on external 
aids. Ideas ranging from detecting variations in the magnetic field [30] to the use of biomechanical 
constraints [31] open the path to improvements, which could lead to provide authentic autonomous 
indoor positioning for a growing range of situations. 
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