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Introduction

Loss of muscle mass is commonly observed in chronic dis-
eases like cancer, chronic heart failure (HF), chronic obstruc-
tive pulmonary disease, chronic kidney disease (CKD), cystic
fibrosis, liver cirrhosis, Crohn’s disease, rheumatoid arthritis
(RA), stroke, and many neurodegenerative diseases as well
as in human immunodeficiency virus/acquired immune defi-
ciency syndrome, malaria, and tuberculosis.1–3 A serious com-
plication of these chronic illnesses is cachexia. Cachexia is
defined as weight loss greater than 5% of body weight in
12months or less in the presence of chronic illness or as a
body mass index (BMI) lower than 20 kg/m2. In addition, usu-
ally three of the following five criteria are required: de-
creased muscle strength, fatigue, anorexia, low fat-free
mass index, increase of inflammation markers such as C-
reactive protein or interleukin (IL)-6 as well as anaemia or
low serum albumin.4,5 Loss of muscle mass and function, es-
pecially muscle strength and gait speed, associated with

aging occurs in sarcopenia.6,7 Indeed, sarcopenia, cachexia,
and malnutrition are considered as the main causes of muscle
wasting8 and affect millions of elderly people and patients.9

Moreover, muscle atrophy can develop independently from
diseases and age through disuse of the muscles.10 For a bet-
ter classification and common language in medical science for
‘muscle wasting disease’ there is a proposal to combine the
concepts of muscle wasting, sarcopenia, frailty, and cachexia
by disease aetiology and disease progression.8 Patients with
muscle atrophy show decreased muscle strength and there-
fore reduced quality of life, which is caused by a lower activ-
ity and increased exercise intolerance.11 In sarcopenic
patients, muscle wasting is frequently associated with loss
of bone, which leads to a higher risk of hip and other frac-
tures.12 Hip fracture also results in loss of musculature because
of disuse atrophy.13 All these conditions lead to increased mor-
bidity and mortality in patients,14 and therefore developments
in biomarkers and treatment finding to improve patients’ lives
is necessary (for schematic representation of the process see
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Figure 1). The reason for muscle atrophy is an imbalance of
protein synthesis and protein degradation. Three major
protein degradation pathways play a role in development of
muscle wasting: (1) activation of the ubiquitin–proteasome–system
(UPS), (2) apoptosis through caspase signalling, and (3)
autophagy.15

Current developments on muscle mass
loss

The UPS pathway, which is conserved from yeast to mam-
mals, plays a major role in degradation of most short-lived
proteins. Most targets are cell cycle regulatory proteins as
well as misfolded proteins. The target proteins undergo an
ATP-dependent ubiquitination marking the protein for degra-
dation. Polyubiquinated proteins are subsequently degraded
by the proteasome16 while monoubiquitinated substrates
are eliminated in lysosomes.17 At the beginning of the reac-
tion, ubiquitin binds to an ubiquitin activating enzyme (E1)
and forms a thio-ester bond. This reaction allows ubiquitin
to transfer to an ubiquitin conjugating enzyme (E2) followed
by the formation of an isopeptide bond which finally leads to
the binding of E2 to an ubiquitin ligase (E3). The ligase specif-
ically recognizes the substrate protein and transfers ubiquitin
to the target protein.18 Subsequently, the target proteins are
unfolded and degraded by an ATP-dependent process.19 Two

muscle-specific E3 ubiquitin ligases named muscle atrophy F-
box (MAFbx, atrogin-1) and muscle RING finger-1 (MuRF-1)
were first described in 2001 and are significantly up-regulated
during muscle atrophy.20,21 However, the loss of these E3-
ligases only leads to partial protection against muscle
wasting.20 MAFbx was shown to target regulatory factors
for protein synthesis like MyoD22 and the eukaryotic initia-
tion factor of protein synthesis elF3-f.23 MuRF-1 binds to
titin24,25 and is targeting to myofibrillar proteins like myosin
heavy chain, myosin light chain, and myosin-binding C.26 An-
other muscle-specific ubiquitin ligase named tripartite motif
32 (TRIM32) was discovered in 2005.27 TRIM32 is thought
to ubiquitinate the thick myofibrillar filament as well as actin
and dysbindin.27 A muscle-specific F-box protein was foun in
2007,28 which induces the ubiquitination of insulin receptor
substrate 1 thereby providing a negative feedback on the
IGF1R/IRS1/PI3K/Akt pathway by early signal termination.29

In addition 2010, tumour necrosis factor (TNF) receptor-
associated factor has been found to play a critic
al role in atrophy as an E3 ubiquitin ligase.30

Cancer cachexia animal models are showing significant
wasting of the myocardium.31–33 In one study it was shown
that the heart muscle weight is decreased by 20% on aver-
age.34 In another cancer cachexia study, cardiac wasting was
associated with left-ventricular (LV)-dysfunction.35 Treatment
with selected agents (bisoprolol, spirolactone, and imidapril)
used in HF resulted in placebo-treated group of AH-130 rats
in a loss of 21 ± 2% LVmass while the LVmass was stabilized

Figure 1 Muscle mass loss is caused by many reasons resulting in morbidity and mortality which makes it necessary to find appropriate biomarkers
and treatment strategies to improve patient’s quality of life.

304 C. Drescher et al.

Journal of Cachexia, Sarcopenia and Muscle 2015; 6: 303–311
DOI: 10.1002/jcsm.12082



by bisoprolol (+2 ± 8%, P< 0.0001) and increased by
spirolactone (+9 ± 3%, P< 0.0001) whereas imidapril had no
effect.35 Moreover, a decrease in the trypsin-like activity of
the UPS was seen in bisoprolol and spirolactone-treated ani-
mals in contrast to imidapril which enhanced proteasome
activity.35 However, under oxidative stress conditions an up-
regulated expression level of the ubiquitin ligases MAFbx
and MuRF-1 in cachectic hearts leads to the induction of
the UPS.34 MAFbx and MuRF-1 are elevated as well at the
mRNA level linked to the degradation of cardiac troponin I,
α-actin-2, and MyoD which is leading to impaired contractil-
ity.36 Furthermore, another study showed a reduced heart
rate and fractional shortening using echocardiography in
the myocardium of cancer cachectic mice.37 Elevated levels
of reactive oxygen species in cachectic skeletal muscle have
been linked to an activation of the UPS.38 In general, cyto-
kines including IL-1, IL-6, TNF-α, and interferon-γ have been
shown to contribute a catabolism net in skeletal muscle and
to form a state of oxidative stress.39 These cytokines lead to
an activation of nuclear factor kappa-light-chain-enhancer of
activated B-cells (NFκB) and forkhead transcription factors
(FoxO) in muscle40 resulting in increased proteolysis by induc-
ing the expression of MAFbx and MuRF-1.15 The involvement
of the NFκB pathway was originally observed in a model of
disuse atrophy41 where it binds directly to the MuRF-1.42 Fur-
thermore, increased oxidative stress activates the NFκB path-
way.43 Surprisingly, an inhibition of NFκB via the IkappaB
kinase complex only partially rescues the phenotype of the
cachectic gastrocnemius in a murine model of cancer ca-
chexia.44 The FoxO family members consist of three isoforms
as FoxO1, FoxO3, and FoxO4. It was shown that FoxO1 and
FoxO3a are significantly up-regulated in cachectic muscles
from Lewis Lung Carcinoma45 and Colon 26 tumour-bearing
mice46; FoxO1 is also up-regulated in skeletal muscle in hu-
man cancer cachexia patients.47 Thus, these findings strongly
support the involvement of NFκB and FoxO in the process of
muscle atrophy. However, mitochondrial dysfunction and loss
of mitochondria in skeletal muscle contribute to disrupted
muscle function.48 Indeed, investigations with markers of mi-
tochondrial function and activity like the mitochondrial en-
zymes pyruvate dehydrogenase (PDH) and the cytochrome c
oxidase (COX) showed that the protein concentrations of
PDH and COX in the skeletal muscle of colon cancer patients
were decreased and a lower activity of PDH was observed as
well.49

Despite a large number of studies, our understanding of
the development of muscle wasting and the involved path-
ways remains very limited. For instance, in some diseases like
RA muscle wasting is not well investigated yet,50–52 but bet-
ter understanding is imperative for designing further studies
and to develop new therapies. A recent study was aimed at
an evaluation of muscle atrophy in skeletal muscle in a mouse
model of RA and to establish a relation between disease
score and muscle wasting.53 Findings implicated the existence

of a progressive development of muscle wasting with an early
onset, which was especially associated with increased serum
levels of cytokines, e.g. IL-6.53 Another not well-studied mus-
cle wasting disease is stroke, although it is known that stroke
rapidly leads to an increase in muscle loss.54 Hence, it is diffi-
cult to treat muscle atrophy in stroke patients. However, a
large prospective stroke study with the main objectives to
study changes in body composition, and metabolic and func-
tional changes of muscle tissue in patients with acute ische-
mic stroke is underway.55 This study unites the knowledge
of neurologists, cardiologists, and endocrinologists, and their
findings might improve rehabilitation after stroke. Generally,
impaired feeding, reduced caloric intake, and loss of appetite
lead to a negative nutritional and nitrogen balance,56,57 and
immobilization causes physical inactivity and muscle atrophy
after stroke.58,59 It has been shown that elevated volumes of
TNF-α are responsible for muscle loss and that plasma con-
centrations of the enzyme visfatin were significantly elevated
in patients after ischemic stroke.60,61 For that, investigations
to changes of inflammation parameters and its relation to
body composition, insulin sensitivity, and patient’s survival
will be made as well.55

Current news on biomarker research

Exact quantification of skeletal muscle mass is challenging. To
better determine skeletal muscle mass, many measurement
methods were developed in the last two centuries (for a his-
torical overview see 62). Since the early 1970s computed to-
mography, magnet resonance imaging, and dual-energy X-
ray absorptiometry came into application.62 A problem of
these methods is that they are all expensive and thus only
available at larger institutions. Moreover, these methods
are only able to detect tissue wasting, but they are incapable
to show the risk of developing muscle atrophy.63,64 But there
is described a practical screening tool in a validated model to
improve screening for low skeletal muscle mass in older
adults.65 It has been suggested that the BMI is strongly asso-
ciated with a low skeletal muscle mass index which could be
helpful for primary care settings and treating elderly popula-
tions at risk of sarcopenia.65 However, it is imperative to find
new robust biomarkers, which are cheap and easily available
for diagnosis and therapy monitoring in clinics.64 Potential
candidates are summarized in Table 1 and are described in
more detail below. Serum creatinine may be such a reliable,
cheap, and easily accessible biomarker of skeletal muscle
mass in human subjects, for example in CKD patients.66 The
adaption of the liquid chromatography–tandem mass spec-
trometry based on D3-creatine dilution method from an oral
dose and detection of urinary creatinine enrichment by iso-
tope ratio mass spectrometry79 could be an accurate tool to
measure total body creatine skeletal muscle mass change.80
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The drawback of this method is the high cost and limited
availability of the necessary machinery. Furthermore, serolog-
ical neoepitopes have been suggested as muscle wasting
biomarkers to solve some of these problems mentioned be-
fore. Neoepitopes do not reflect a condition or state like
creatinine reflecting muscle mass, but a process which allows
an early detection of a muscle loss in disease. In fact,
neoepitope biomarkers are parent proteins that are produced
through post-translational modifications, i.e. glycosylation,
phosphorylation, acetylation, nitrosylation, methylation, and
ubiquitination of an existing molecule and are formed by
protease cleavage or addition of chemical groups in tissues
of interest.67 The most common parent proteins for muscle
loss biomarkers are sarcomeric proteins (e.g. myosin, actin,
troponin, and tropomyosin) and components of the extracel-
lular matrix (e.g. laminins).67 That makes neoepitopes inter-
esting to be biomarkers of muscle pathology.67 Other
serological biomarker candidates for muscle wasting are type
VI collagen turnover-related peptides.68 In a study, blood was
analysed for levels and their correlation of following bio-
markers: a matrix metalloproteinase-generated degradation
fragment of collagen 6 (C6M) and a type VI collagen N-
terminal globular domain epitope (IC6).68 These fragments
can only be considered biomarker candidates of muscle mass
and change in young men but not in elderly men.68 However,
circulating biomarkers like the N-terminal propeptide of type
III procollagen (P3NP) and C-terminal agrin fragment (CAF)
respond to resistance exercise training in older adults.69

Short-time resistance exercise training (6weeks) improves
leg extension muscle strength, measured on a knee lift, by
29% from 39.7 ± 16.5 to 51.1 ± 18.3 kg in the exercise group
(P< 0.001) and muscle quality by 28% from 3.64 ± 0.85 to
4.67 ± 0.81 relative strength (leg extension strength in
kg/lean quadriceps muscle mass in kg) in the exercise group
(P< 0.001) in older adults and may result in changes P3NP
and CAF.69 Indeed, CAF appears to increase in response to
short-time resistance exercise training in older adults in

contrast to P3NP where the results were less clear.69 P3NP
showed a positive correlation to changes in lean body mass
(r = 0.422, P = 0.045), and there was observed a positive cor-
relation between change in circulating CAF and change in
cross-sectional area of the vastus lateralis (r = 0.542,
P = 0.008).69 However, P3NP is associated with subsequent
changes in lean body mass and appendicular skeletal muscle
mass and seems to be a useful early predictive biomarker of
anabolic response to growth hormone and testosterone.81 3-
Methylhistidine (3MH) has been proposed as a marker of
myofibrillar proteolysis through post-translational methyla-
tion of specific histidine residues in actin and myosin.82–85

In a clinical scenario, 3MH has to be determined quantita-
tively in urine or plasma collections. A major disadvantage
is that meat intake for 3 days prior to sample collection of pa-
tients can disturb the analysis of 3MH. A study from 2013
used 3MH, which was labelled with an isotope by using a
non-radioactive isotope-based strategy.70 The labelled
methyl-d3-3MH (D-3MH) was taken orally by healthy men,
and urine and plasma samples were collected next day over
5–6 h, and were analysed for D-3MH enrichment by gas
chromatography–mass spectrometry.70 The results suggest
that it is possible to obtain an index of myofibrillar protein
breakdown in urinary or plasma samples and that it is not nec-
essary to quantify urine and plasma collections or to have an ab-
stinence from meat for several days.70 Growth differentiating
factor-15 (GDF-15) plays an important role in muscle wasting
and cachexia.86 Results from studies suggest that GDF-15 in-
duces weight and muscle loss, which makes GDF-15 a promising
marker of cachexia and muscle atrophy.71 Myostatin is a known
negative regulator of muscle growth and mass, which is associ-
ated with muscle wasting86 suggesting it as putative marker for
muscle atrophy. However, this could not be confirmed in
humans.87 Interestingly, follistatin (FST), an endogenous, strong
inhibitor of myostatin-mediated muscle wasting, has been sug-
gested as a potential biomarker in sarcopenia.72 FST binds to
myostatin in the serum, thus, making myostatin often undetect-
able88 and moreover, FST-overexpressing transgenic mice have
been shown a significant increase in muscle mass.89 Therefore,
FST seems to be a positive regulator of muscle growth which
makes it interesting to be a biomarker. Irisin, the extracellular
cleaved product of fibronectin type III domain containing pro-
tein 5, seems to be a potential sarcopenia biomarker, because
of its involvement in muscle physiology.72 Plasma levels and
mRNA expression of irisin were found to be elevated in mice
in response to exercise.90 Moreover, a positive correlation be-
tween circulating irisin and FST levels has been described in
healthy men and obese persons.91 Other than inflammatory cy-
tokines, like IL-1, IL-6, and TNF-α, which are associated with an-
orexia and weight loss,92,93 hormonal factors have been
postulated to play a role in development in muscle loss, espe-
cially in cachexia.94,95 Such factors include for instance leptin,96

ghrelin,97 and obestatin98 which are all thought to play a major
role in cancer cachexia. These emerging biomarkers were

Table 1 Emerging candidates for biomarkers for cachexia and sarcopenia

Emerging biomarkers for cachexia and sarcopenia

Creatinine66

Neoepitope67

MMP-generated degradation fragment of collagen 6 (C6M)68

Type VI collagen N-terminal globular domain epitope (IC6)68

N-terminal propeptide of type III procollagen (P3NP)69

C-terminal agrin fragment (CAF)69

Methyl-d3-Methylhistidine (D-3MH)70

Growth differentiating factor-15 (GDF-15)71

Follistatin (FST)72

Irisin72

Ghrelin73

Leptin73

β-Dystroglycan74

Dystrophin74

Tartrate-resistant acid phosphatase 5a (TRACP5a)75–78

MMP, matrix metalloproteinase.
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investigated in oncologic patients as diagnostic and/or pre-
dictive markers, as well as their impact on patient
survival.73 The study showed that ghrelin and leptin may be
promising biomarkers for the identification of cachexia re-
lated to cancer and mark survival in cancer patients.73 Ghrelin
serum levels were significantly higher in cancer patients in
comparison to healthy subjects (573.31 ± 130 vs. 320.20
± 66.48 ng/ml, P< 0.0001) and levels of leptin were signifi-
cantly lower in cancer patients than in healthy controls
(38.4 ± 21.2 vs. 76.28 ± 17.48 ng/ml, P< 0.0001).73 Ghrelin
correlated negatively with leptin (r =�0.75; P< 0.0001) and
inverse as well.73 By Kaplan Meier analysis, the survival pre-
diction was tested, and it was shown that patients with the
best profile were those with low levels of ghrelin associated
with high levels of leptin and on the contrary patients with
high ghrelin levels and low levels of leptin had a minor
survival probability (log-rank (χ2) 8.02; P = 0.004).73 Further-
more, in a recently published study, in which a large number
of putative biomarker candidates were tested, with a cohort
of upper gastrointestinal cancer patients, β-dystroglycan
was identified as a potential biomarker for weight-loss and
myosin heavy chain or dystrophin as survival biomarkers.74

As mentioned before, inflammatory cytokines are used for
prognosis of cancer cachexia. A new promising chronic in-
flammatory marker was found recently and is suggested to
play a prognostic role in cancer cachexia: the tartrate-
resistant acid phosphatase 5a (TRACP5a).75 Moreover, it is
already known that serum TRACP5a is elevated in patients
with RA76 and that the protein level of TRACP5a is reflected
in cardiovascular diseases and sarcoidosis.77,78

Current news on treatment

In 2013 and 2014, many new biomarkers, as described
before, were investigated in different diseases and models.
But although many researchers and pharmaceutical compa-
nies tried to find therapies for muscle atrophy, including
cachexia and sarcopenia, no solution has been established
until now.71,99,100 Interestingly, Morley et al. discussed if we
are closer to having drugs for treatment muscle wasting
disease and therefore drugs were highlighted, which showed
current advances in therapy for sarcopenia and cachexia
(e.g. ghrelin agonists, selective androgen receptor molecules,
megestrol acetate, activin receptor antagonists, espindolol,
and fast skeletal muscle troponin inhibitors).101 Indeed, Mor-
ley et al. postulated that there is a remarkable increase in the
knowledge of muscle wasting diseases because of new stud-
ies. However, a general strategy to avoid muscle mass loss
and function is exercise.102,103 Evidence of positive effects
on fraility and sarcopenia through exercising are emerg-
ing.102,104–108 Recently, an exercise investigation focused on
muscle quality in men and women aged 50 years and older

suggested that long-term exercise, especially resistance exer-
cise, is beneficial for muscle quality.109 Interestingly, people
over 60 years, who perform aerobic exercise once a week, also
show positive association to muscle quality.109 In rat skeletal
muscle, an example for a successful result of exercising was
postulated for glycogen synthase kinase-3β (GSK-3), which
has a big therapeutical potential when it is inhibited.110 An in-
hibition of the constitutively active kinase GSK-3β is consid-
ered to be beneficial, as it is involved in the regulatory
inactivation of many anabolic pathways often leading to mus-
cle wasting.111–116 In detail, it has been demonstrated that
physical exercise significantly decreases GSK-3β activity in
rat skeletal muscle within 10min of exercise and remained de-
pressed with 30 and 60min of exercise.110 In the following
part current treatment substances discoveries will be listed
(see for detailed therapies117,118).

Ghrelin, which was delineated as a good biomarker be-
fore,73 and its analogues BIM-28125 and BIM-28131 seem
to have a beneficial effect after administration in a rat HF
study.119 In that animal model it was shown that the expres-
sion of myostatin and the TNF-α concentration are signifi-
cantly reduced in the gastrocnemius after treatment.119

Moreover in a pre-clinical study, treatment with a ghrelin re-
ceptor agonist, named anamorelin, showed a significant and
dose-dependent increased food intake as well as body weight
compared with the vehicle control in healthy rats.120 Thereby,
with a treatment of anamorelin, a significant increase of
growth hormone and insulin-like growth factor-1 plasma
levels was observed in healthy female pigs in comparison to
the placebos,120 which makes anamorelin a potential drug
for treatment of cancer anorexia–cachexia syndrome.
Espindolol, an anabolic catabolic transforming agent, was
used in a sarcopenia rat study.121 Espindolol itself is a non-
specific β-1 and β-2 adrenergic receptor blocker with intrinsic
sympathomimetic activity on the β-2 adrenergic receptor
which results in reduced catabolism and increased anabolism,
and espindolol is a highly potent antagonist of 5-HT1A recep-
tors which has an effect on food-intake as well as reduced fa-
tigue and thermogenesis.122 A recent study, the ACT-ONE
trial, which was a multicentre, randomized, double-blind,
and placebo-controlled study for dose-finding of espindolol
in cachectic patients with non-small cell lung cancer and colo-
rectal cancer in stages III and IV was started.122 At the 7th Ca-
chexia Conference, the first results of the ACT-ONE trial with
87 patients from 17 centers were presented.86 Patients were
treated with two doses of espindolol twice daily for 16weeks.
The results showed that the higher dose improves lean and
fat mass, and the that handgrip strength is significantly in-
creased at both doses.86 Interestingly, in a rat sarcopenia
model, espindolol treatment only had a small effect on over-
all body weight, but did significantly increase lean body mass,
while at the same time reducing fat mass. This makes
espindolol an attractive candidate for treating sarcopenic
patients, as these patients are often obese.121 A highly potent
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β-2 adrenoceptor-selective agonist, formoterol, was used as a
drug in a cancer cachexia rat model, and it significantly
reduced muscle wasting but had no influence on heart weight
and function as often described in literature.123 Epigallocatechin-
3-gallate (EGCg), which is a component of green tea, was pub-
lished to be an effective inhibitor of increased protein degrada-
tion and depressed protein synthesis in an in vitro study by
usingmurine C2C12myotubes.124 EGCg is not an approved drug
but acts as a nutritional support and has been shown to attenu-
ate skeletal muscle wasting in the Lewis lung carcinoma model
of cancer cachexia.125

Conclusions

Muscle loss arises from a dysbalance of catabolism and anab-
olism, i.e. protein degradation and protein synthesis. Despite
a large number of studies, knowledge of disease related mus-
cle wasting remains unclear. But investigations in the last two
years like studies focused on RA53 and stroke55 bring us one
step ahead in understanding processes of muscle wasting be-
cause of those diseases. Cachectic and sarcopenic patients of-
ten suffer from quality of life including appetite loss and
lower muscle strength, which makes finding appropriate bio-
markers for diagnosis of muscle wasting associated diseases a
timely matter. Although an ‘ideal’ marker has not yet been
identified, the development of some emerging candidates
(Table 1) promise much potential. Neoepitopes67 as bio-
markers could be the solution for early diagnosis of a poten-
tial muscle mass loss allowing earlier detection and
treatment to prevent morbidity and mortality in patients. In

addition, finding new treatment strategies and drugs has to
be developed to treat patient’s symptoms. There are some
very promising investigational drugs in studies related to ca-
chexia and sarcopenia, but further research is necessary for
a transition into the clinic. Maybe there is the need to com-
bine existing treatment strategies with further novel ap-
proaches to treat muscle mass loss.
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