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SUMMARY
Ciliopathies are heterogeneous genetic diseases affecting primary cilium structure and function. Meckel-Gruber (MKS) and Bardet-Biedl

(BBS) syndromes are severe ciliopathies characterized by skeletal and neurodevelopment anomalies, including polydactyly, cognitive

impairment, and retinal degeneration. We describe the generation and molecular characterization of human induced pluripotent

stem cell (iPSC)-derived retinal sheets (RSs) from controls, and MKS (TMEM67) and BBS (BBS10) cases. MKS and BBS RSs displayed sig-

nificant common alterations in the expression of hundreds of developmental genes and members of the WNT and BMP pathways. In-

duction of crystallinmolecular chaperoneswas prominent inMKS and BBS RSs suggesting a stress response tomisfolded proteins. Unique

to MKS photoreceptors was the presence of supernumerary centrioles and cilia, and aggregation of ciliary proteins. Unique to BBS

photoreceptors was the accumulation of DNA damage and activation of the mitotic spindle checkpoint. This study reveals how

combining cell reprogramming, organogenesis, and next-generation sequencing enables the elucidation of mechanisms involved in hu-

man ciliopathies.
INTRODUCTION

Primary cilia are typically non-motile cytoplasmic exten-

sions of a microtubule-based structure that projects from

the cell surface and are indispensable for normal develop-

mental and physiological functions (Nonaka et al., 1998;

Satir et al., 2007). The ciliary axoneme develops from and

is anchored to a specialized centriole called the basal

body (BB) that acts as a microtubule organizing center.

The BB is a symmetric radial arrangement of nine triplet

microtubules from which the outer doublet of microtu-

bules of the axoneme extends. Syndromic and non-syn-

dromic ciliopathies represent a group of heterogeneous

genetic diseases caused by mutations affecting the struc-

ture and function of the primary cilium. Phenotypic and

genetic heterogeneity is frequently observed in these dis-

eases. The relationship between cilia genes and ciliopathies

is farmore complex than that described by classicalMende-

lian genetics and has recently been the focus of numerous

reviews (Loncarek and Bettencourt-Dias, 2018; Vertii et al.,

2015; Wheway et al., 2018).

Meckel-Gruber syndrome (MKS) and Bardet-Biedl syn-

drome (BBS) are rare developmental diseases characterized
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by multiple developmental anomalies, including retinal

degeneration, digits and genito-urinary defects, as well as

cognitive impairment (Leitch et al., 2008; Álvarez-Satta

et al., 2017). Although MKS is fatal at birth, BBS is one of

the most severe ciliopathies that is compatible with life.

MKS is a lethal autosomal recessive ciliopathy, also present-

ing polycystic kidneys and severe eye/brain malforma-

tions, with over 13 disease-associated genes (Delous et al.,

2007; Kyttälä et al., 2006; Smith et al., 2006; OMIM,

2019a). In contrast, BBS is a viable disorder associated

with obesity and retinal degeneration (Leitch et al., 2008;

Álvarez-Satta et al., 2017) and with variants identified in

over 22 genes, with BBS10 representing the most

commonly mutated gene (Nishimura et al., 2004; OMIM,

2019b). MKS and BBS were in principle considered as two

distinct clinical entities. However, the identification of

hypomorphic mutations in MKS1 and TMEM67 in some

BBS patients introduced the concept that BBS may repre-

sent a milder form of MKS (Leitch et al., 2008). The MKS3

protein (encoded byTMEM67) is apparently not an integral

part of theMKS complex, but more likely to interact with it

(Leitch et al., 2008; Smith et al., 2006). MSK3 localizes to

the transition zone at the base of the primary cilium, and
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to the plasma membrane in ciliated cells (Reiter et al.,

2012). MKS3 has been associated with centrosome migra-

tion to the apical cell surface during early ciliogenesis and

with the regulation of centrosome organization (Adams

et al., 2012; Gupta et al., 2015). The BB derives from the

mother centriole, which distinguishes it from the daughter

centriole by the presence of appendages on its distal end,

allowing the formation of the primary cilium (Chang

et al., 2003). Centriolin (also known as CEP110 or CNTRL)

is associated with the mother centriole (Ou et al., 2002).

Mutations in CNTRL can cause ciliopathies as atrioventric-

ular septal defect (Burnicka-Turek et al., 2016). Although

many BBS-associated proteins are an integral part of the

BBSome complex, BBS10 most likely interacts with the

BBSome and shows sequence similarities with chaperones

(Stoetzel et al., 2006).

The vast majority of genes causing retinal degeneration

involves a defect in a ciliary protein (RetNet). Molecular

and cellular insights found in this work are potentially rele-

vant to other ciliopathies and non-syndromic retinal disor-

ders. Degeneration of photoreceptors (PRs) is often part of

syndromic ciliopathies (Adams et al., 2007; Novarino et al.,

2011). Retinal degeneration varies depending on the type

of PRs that are primarily affected. Rods respond to dim light

and are important for night and peripheral vision. Cones

respond to intense light and are required for color,

daylight, and high-resolution central vision (Aboshiha

et al., 2016). The inner segment (IS) and outer segment

(OS) of PRs, which respectively represent the metabolic

factory and the structure where phototransduction takes

place, are connected by the connecting cilium (CC), which

is a modified intracellular version of the primary cilia

(Young, 1968). The proteins synthesized in the IS are trans-

ported to the base of the CC in post-Golgi vesicles in an

area also called the transition zone, where they are

associated with molecular transport complexes that allow

bidirectional movement along the axoneme, called intra-

flagellar transport (IFT) (Khanna, 2015; Pazour et al.,

2002). The IFT family and other BB-associated proteins, if

mutated, may cause mislocalization and accumulation of

OS proteins in the IS, causing PR degeneration (Marszalek

et al., 2000; Pazour et al., 2002). The RPGR, RP1, and RP2

proteins mostly localize at the BB of the CC, andmutations

in these are a leading cause of retinitis pigmentosa (Breuer

et al., 2002).

Although valuable, animal models have shown limita-

tions in modeling retinal ciliopathies, with patient-

derived induced pluripotent stem cells (iPSCs) represent-

ing a new opportunity for modeling human diseases

(Grandy et al., 2019). Structures like the macula, respon-

sible for high-resolution central vision, are not present

in most commonly used animal models. Moreover, the

PR’s ultrastructure between mice and humans differs at
358 Stem Cell Reports j Vol. 14 j 357–373 j March 10, 2020
the transition zone, an area adjacent to the CC. Here, we

found structures called calyceal processes which are pre-

sent in human but not in mice. Likewise, the USH1G/1C

proteins, which are mutated in Usher syndrome, localize

to the CC of human PRs but have no equivalent in rodents

(Sahly et al., 2012). We report here on the generation of

iPSCs fromMKS and BBS cases and on their differentiation

into retinal sheets (RSs) containing cone PRs (Zhou et al.,

2015). We found that RSs from MKS and BBS cases dis-

played common alterations in hundreds of develop-

mental genes, including homeobox and HOX genes, as

well as genes of the WNT, NOTCH, and BMP signaling

pathways. MKS PRs showed supernumerary cilia and cen-

trioles andmislocalization of ciliary proteins. BBS PRs pre-

sented mitotic spindle checkpoint activation, DNA dam-

age, and genomic instability. Both MKS and BBS PRs

accumulated chaperones of the crystallin gene family,

suggesting a cellular response to misfolded proteins and/

or proteasome dysfunction. This study brings new molec-

ular and cell biological information on the neurodevelop-

mental and retinal degeneration anomalies associated

with human syndromic ciliopathies.
RESULTS

Generation and Characterization of iPSC-Derived RSs

We have generated iPSCs from skin fibroblasts of three

healthy volunteers (Ctrl01, Ctrl02, and Ctrl03), two unre-

lated MKS cases (MKS01 and MKS02), and two unrelated

BBS cases (BBS01 and BBS02). The iPSCs expressed pluripo-

tency markers, were able to form teratomas and could be

differentiated into embryoid bodies containing retinal

pigment epithelium (RPE) upon exposure to nicotinamide

(Figures S1A–S1D). The presence of an external cilium was

also observed in iPSCs using scanning electron microscopy

(Figure S1B). By whole-genome sequencing (WGS) of the

iPSC lines, we found that both BBS cases carried different

mutations in BBS10, with a homozygous mutation causing

a frameshift stop in the first case (c.271dup), and a com-

pound heterozygous mutation in the second case

(c.909_912del; c.687del) (Figures S1E–S1G). The MKS01

case carried compound heterozygous permutations at the

TMEM67 locus (c.233G > A; c.1046T > C) predicted to be

pathogenic (Figures S1E–S1G). We could not, however,

confirm the disease-causing mutation in the MKS02 case.

Control, BBS01/02, and MKS01/02 iPSCs were differenti-

ated for 60 days in vitro (DIV) into RSs using the samemeth-

odology as for human embryonic stem cells (hESCs) (Zhou

et al., 2015). Control RSs were analyzed by confocal immu-

nofluorescence. 3D reconstruction imaging revealed the

generation of a polarized, multi-layered tissue expressing

OS (peanut agglutinin [PNA] and S-opsin), CC (acetylated
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a-tubulin and RPGR), and nuclear pan-PR (CRX) markers

(Figure 1A), suggesting efficient differentiation into RSs.

Using RNA sequencing (RNA-seq), we compared the tran-

scriptome of control RSs with that of the Human Retinal

Development Atlas (Hoshino et al., 2017), and found that

RSs clustered with human embryonic retinas at days 80

and 94. RNA-seq data from control RSs were also compared

with the top 50 most upregulated transcripts in adult

human retina and the top 50 iPSC-specific transcripts

(Li et al., 2014) (Figure 1B). Retinal and PR-specific tran-

scripts, including NR2E1, GRK1, CRX, PDE6H, RXRG,

ROM1, CRB1, RPE65, PRPH, RP1, RCVRN, ABCA4, and

GNAT1, were significantly enriched in RSs. In contrast,

iPSC-specific transcripts were lost in RSs, suggesting effi-

cient cellular differentiation (Figure 1C). Despite the pres-

ence of rod-specific transcripts in RSs, we failed to detect

rhodopsin protein expression using immunoblot or

immunofluorescence.

When comparing the entire gene dataset of undifferenti-

ated iPSCs with that of adult human retinas and RSs, we

found that 1,534 genes were commonly upregulated in hu-

man retinas and RSs. Gene ontology analysis of the top 100

genes revealed that these were primarily implicated in the

detection of light stimuli, PR OS organization, PR develop-

ment and visual perception (Figure 1D).We also performed

a principal-component analysis of RSs and iPSC/hESC

lines. Although iPSCs and hESCs were generally scattered,

RSs from all samples were grouped together, suggesting

cellular differentiation toward a common lineage (Fig-

ure 1E). We next used immunoblot to test if RSs expressed

PR-specific proteins. We found that Ctrl01/02/03, MKS01/02,

and BBS01/02 RSs were all expressing CRX (expressed in PR

and in a subset of bipolar neurons) and S-opsin (expressed

exclusively in cone PRs) (Figure 2A). Taken as a whole,

these results suggested robust differentiation of iPSC lines

into RSs.
Figure 1. Generation of iPSC-Derived Retinal Sheets
(A) Representation of a cone PRs (left) and 3D reconstruction of an R
(OS), connecting cilium (CC), inner segment (IS), and nucleus. For ea
peanut agglutinin (PNA) and S-opsin for the OS; acetyl-a-tubulin and
(B) Volcano plot from RNA-seq analyses between human retina (n =
(n = 4 iPSCs; n = 4 hESCs, independent cell lines). The red points show
genes). The green points show the 50 most significantly upregulated
(C) Heatmap showing differential expression for stem cell and hum
(n = 4 iPSCs; n = 4 hESCs) and Ctrl RSs (n = 8 from 3 independent iPSC
clearly distinguishes the two groups.
(D) Venn diagrams showing the intersection of significant genes diffe
Ctrl) and in human retina. Gene ontology enrichment analysis of the 1
iPSCs that are also upregulated in the human retina (p < 0.05). For eve
values, and few representative genes. For every gene are indicated lo
(E) Principal-component analysis (PCA) between stem cells (iPSCs a
(n = 4 from 2 patients) and BBS (n = 2 from 1 patient). Notice how a
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Deregulation of Neurodevelopmental Genes in MKS

and BBS RSs

We compared RNA-seq data from Ctrl01/02, MKS01/02, and

BBS01 RSs and found thousands of genes commonly dys-

regulated in ciliopathies (Figures 2B and 2C). A total of

1,597 genes were dysregulated in both BBS01 and

MKS01/02 samples when compared with controls (661 up-

regulated, 936 downregulated) (Figures 2D and 3A).

Among the 661 commonly upregulated genes, most

were related to neural/retinal development (DLX1,

VSX1, and SIX6), differentiation (NEUROD4 and ASCL1/

MASH1), and function (SLC32A1 and NTRK1), while

others were associated with ganglion and amacrine cell

fate, suggesting premature and/or increased neurogenesis

and perturbed retinal cell fate specification in ciliopathies

(Figures 2E–2G and S2A–S2D). Different homeobox

genes including members of the HOX family were also up-

regulated in both BBS01 and MKS01/02 RSs (Figure S2A).

Defective NOTCH and/or WNT signaling is frequently

associated with premature neurogenesis and/or cell-cycle

exit of neural progenitors (Ma et al., 2019; Navarro Quiroz

et al., 2018). Hence, we found altered expression of genes

of the WNT and NOTCH signaling pathways in both MKS

and BBS RSs (Figures S2B and S2C). Further analyses sug-

gested major deregulation of WNT signaling in ciliopa-

thies toward the canonical pathway at the expense of

the non-canonical one, which is known to play a role in

planar cell polarity and cilia formation (Figure S2B)

(May-Simera and Kelley, 2012).

Alterations of Genes Involved in Development,

Morphogenesis, and Cilia Formation

When analyzing genes commonly downregulated in BBS01

and MKS01/02 RSs, we found significant alteration of genes

involved in development (112 genes) and/or morphogen-

esis (138 genes) (Figures 3A–3C). We next grouped these
S (right) with reference to the main compartments, outer segment
ch compartment are indicated the main markers used in this paper:
RPGR for the CC; CRX for the nucleus. Scale bars, 40 mm.

2 independent biological samples) and undifferentiated stem cells
the 50 most significantly downregulated genes (stem cell-related
genes (human retina-related genes).
an retina-related genes between undifferentiated stem cells lines
and 1 hESC lines). Hierarchical clustering by Pearson’s correlation

rentially upregulated in control RSs (Ctrl01, Ctrl02, Ctrl03, and hESC-
00 most upregulated genes in RSs compared with undifferentiated
ry gene ontology (GO) group, we indicated their fold enrichment, p
g2FC in Ctrl_RSs (light blue) and in human retina (green).
nd ESCs) and RSs from control iPSCs and hESCs, and RS from MKS
ll RSs cluster together, while PSCs are more dispersed.
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genes among the most representative clusters and

compared them by focusing on genes common to different

organs/systems (Figures 3A–3D). We found five develop-

mental genes––Noggin (NOG), SIX1, BMP4, CDH19,

OSR1––all involved in kidney, heart, ear, skeletal, circula-

tory, and retinal development (Ahmed et al., 2012; Wu

et al., 2014). Three of them, NOG, SIX1, and OSR1, were

also present in most of the morphogenetic groups. Other

genes, such asMSX1,TWIST1, SIX2, andOSR2were present

in some of the morphogenetic and developmental groups

(Figure 3B) (Goodnough et al., 2016; Li et al., 2003; Para-

dowska-Stolarz, 2015). PITX2was one of the most downre-

gulated developmental genes in both MKS01/02 and BBS01

RSs (Figure 3D). Notably, a large number of genes involved

in cilium assembly/organization and intraciliary transport

were downregulated in MKS and BBS RSs (Figures S3A–

S3C) (HUGO, 2019). From these, 21 corresponded to the

cilia- and flagella-associated protein gene family (Fig-

ure S3B). We also found 962 genes upregulated and 684

genes downregulated only in MKS01/02 RSs (Figures S3D–

S3H). Among these, many were associated with the devel-

opment and anterior-posterior pattern specification (Fig-

ures S3E and S3H). Several genes of the HOX family were

also specifically upregulated only inMKS01/02 RSs, in agree-

ment with MKS being the most severe form of syndromic

ciliopathy (Figure S3F).

Induction of the Crystallin Molecular Chaperones in

MKS and BBS RSs

From the top 10 most upregulated genes common to BBS

and MKS RSs, we found that six encoded members of the

crystallin gene family (Figures S4A–S4C) (Kamachi et al.,

2001). In non-lens tissues, these proteinswork asmolecular

chaperones against proteinmisfolding. Using immunoblot

and immunofluorescence, we observed specific accumula-

tion of CRYBB1, CRYBB2, and CRYBB3 in both the nuclear

and cytoplasmic cell compartments of BBS01 and MKS01

PRs at DIV45 (Figures 4A–4C, S4A, and S4B). Polyubiquitin
Figure 2. Neurodevelopmental Anomalies in MKS and BBS RSs
(A) Immunoblot on extracts from a human retina (positive ctrl), undi
and MKS01/02 patients.
(B) Heatmap of gene expression profile for differentially expresse
lines), MKS01/02 (n = 4 from two independent MKS patients), and BBS
log2FC < �2). Hierarchical clustering by average linkage with Kendal
(C) Volcano plot from RNA-seq analyses between Ctrl01/02 and all pat
genes (log2FC > 5 and adjusted p < 0.001).
(D) Venn diagrams showing the intersection of significant genes diffe
RSs (red, 992 genes) (log2FC > 2; p < 0.05).
(E–G) Gene ontology enrichment analyses of common differentially up
development and morphogenesis, (F) Retinal ganglion cell developme
subgroups are shown with some indicative genes and the respective log
0.05).
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chains at lysine 48 (polyUb-K48) mark proteins for protea-

somal degradation and poly-ubiquitylated proteins

frequently accumulate in neurodegenerative diseases

(Smith et al., 2015). When compared with control RSs,

MKS01 and MKS02, but not BBS01 RSs, presented increased

polyUb-K48 levels, suggesting perturbed proteostasis (Fig-

ure 4B). Accumulation of misfolded proteins is frequently

associated with neuronal cell death (Tzekov et al., 2011).

Accordingly, we observed increased expression of apoptosis

and cell death-related genes inMKS01/02 and BBS01 RSs (Fig-

ure S4D). Induction of PR cell death in MKS and BBS RSs

was also confirmed using the TUNEL assay and transmis-

sion electron microscopy (TEM) (Figures 4D–4I and S4E–

S4H). These results suggested a cellular response to

misfolded proteins and increased cell death in MKS01/02

and BBS01 PRs.

MKS PRs Are Characterized by the Presence of

Supernumerary Centrioles

Weperformed cell biological analyses to study the structure

of the cilium in MKS and BBS PRs. The centriole forms the

basement of the primary cilium, and Centriolin marks the

mother centriole and BB (Chang et al., 2003). Using an

antibody against Centriolin, we found that, when

compared with controls, the number of centrioles per cell

was higher in DIV60 MKS01/02 PRs, but not in BBS01/02

PRs (Figures 5A and 5B). This was confirmed by TEM (Fig-

ures 5C and 5D), where cilia also appeared to be shorter

in MKS (Figures 5C and 5D). Although the total number

of cells tended to be higher in MKS and BBS cultures, the

difference was not significant (not shown). Notably, super-

numerary centrioles were not observed in undifferentiated

MKS01 iPSCs (Figures S5A–S5C), suggesting that the defect

was cell-type specific.

We did not elucidate the pathogenic mutation in the

MKS02 case. However, in the MKS01 case, the two identified

mutations in TMEM67 were predicted to generate a patho-

genic but full-length variant of MKS3 (Figures S1G and
fferentiated iPSCs (negative ctrl), and RSs from Ctrl01/02, BBS01/02,

d genes between Ctrl01/02 (n = 4 from 2 independent ctrl cell
01 (n = 2 from one BBS patient) (p < 0.0001: up, log2FC > 2; down,
l’s Tau correlation clearly distinguishes control and patient RSs.
ient RSs. The red points show the most significantly dysregulated

rentially upregulated in MKS01/02 (blue, 1,623 genes) and in BBS01

regulated genes between the two groups (E) Neural retina function,
nt, (G) Amacrine cell development. Some of the main GO groups and
2FC in MKS01/02 (orange column) and BBS01 RSs (green column) (p <
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Figure 3. Reduced Expression of Genes Involved in Development and Morphogenesis
(A) Venn diagrams showing the intersection of significant genes differentially downregulated between MKS01/02 (blue) and BBS01

RSs (red).
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morphogenesis (B) or in the development (C) of five organs/systems commonly affected in both MKS and BBS (log2FC > 2; p < 0.05).
(D) Gene expression levels in BBS01 and MKS01/02 RSs at DIV60 of genes implicated in both development and morphogenesis. In red, the
genes common to all five developmental groups with a role also in morphogenesis.
All values are means ± SEM. *p < 0.05, Student’s unpaired t test.
S1H). Hence, we could observe by immunoblot the pres-

ence of MKS3 in Ctrl01, MKS01/02, and BBS01/02 RSs, and

MKS3 levels were even slightly increased inMKS01 RSs (Fig-

ure 5H). Using antibodies against Centriolin andMKS3, we

performed confocal immunofluorescence imaging and 3D

reconstruction on dissociated control PRs. We observed

three different configurations between Centriolin and

MKS3: BBs and daughter centrioles surrounding MKS3

(F0); MKS3 linked to the centriole (F00); and unlinked

MKS3 and Centriolin (F%) (Figure 5F). Notably, while we

observed that MKS3 was often in close association with

Centriolin in control and BBS01 PRs (Pearson’s coefficient

correlation = 0.29 and 0.23), this association was near ab-

sent in MKS01 PRs (Pearson’s coefficient correlation =
0.06) (Figures 5E–5G). These results suggested defective

interaction of MKS3 with the centriole in MKS01 PRs,

possibly leading to the production of supernumerary cen-

trioles (see model in Figure S6).

MKS01 PRs Have Smaller but Supernumerary Cilia and

Present Abnormal Accumulations of Ciliary Proteins

Using an antibody against acetylated a-tubulin, we found

that supernumerary centrioles inMKS01 PRs were also asso-

ciated with an increasing number of cilia (Figures 6A–6C).

This phenotype was not observed in BBS01 PRs. We per-

formed quantitative analyses of the images using IMARIS,

which revealed that, although more numerous, cilia in

MKS01 PRs were shorter and thinner than normal (Figures
Stem Cell Reports j Vol. 14 j 357–373 j March 10, 2020 363



Gene
Symbol Log2FC p-value Log2FC p-value
CRYGC 10,2 4,7E-39 9,9 2,1E-58
BHMT 10,0 2,2E-40 10,1 4,9E-82
CRYGD 9,2 1,1E-06 5,4 1,1E-06
CRYBB1 8,9 1,8E-33 9,0 5,9E-13
CRYGA 8,8 7,2E-08 7,6 1,0E-09
CRYBA4 8,4 7,3E-12 8,6 1,1E-05

MIP 8,4 2,6E-28 8,7 2,9E-11
PAX2 8,4 2,4E-15 3,6 5,1E-08

SLITRK2 8,2 7,8E-70 7,1 1,4E-35
CRYBA1 8,1 6,2E-27 8,2 1,1E-10
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6D and 6E). Some rare giant cilia resembling a fusion of

different cilia were also observed. The number of observed

cilia was normal in undifferentiated iPSCs from MKS01 pa-

tients, suggesting cell-type specificity for this phenotype

(Figures S5F–S5H). RPGR mostly labels the BBs of the CC

(Figure 6F) (He et al., 2008). Using confocal microscopy

and 3D reconstruction, we observed that control RSs pre-

sented a relatively uniform immuno-labeling for RPGR

proximal to the PNA-positive OS (Figure 6G). In contrast,

MKS01 RSs were disorganized, as revealed by the unequal

distribution of PNA. Furthermore, the signal for RPGR

was mislocalized and tended to accumulate in aggregates.

RPGR was also mislocalized in RSs from the BBS01 patient

(Figure 6G). These results suggested supernumerary cilia,

abnormal retinal tissue morphogenesis, and aggregation

of ciliary proteins in MKS PRs.

BBS PRs Display Mitotic Spindle Checkpoint

Activation and Genomic Instability

Significantly upregulated genes in BBS01 RSs included

markers of mitotic spindle checkpoint and regulation of

microtubule cytoskeleton organization (Figures 7A, 7B,

and S7B), suggesting possible genomic instability during

mitosis. On the other hand, we observed downregulation

of genes involved in extracellular matrix organization

and tube development (Figure S7D). DIV15 PR progenitors

were analyzed using specific antibodies. We found that the

number of cells expressing the DNA damage-response

markers, gH2Ax and 53BP1, and the activated mitotic

checkpoint protein, pCHK2, were increased in BBS01/02

samples, but not in control or MKS01/02 samples (Figures

7C–7G and S7E–S7H). This phenotype was, however,

generally more severe in the BBS01 case than in the BBS02

case. We also observed the presence of very large nuclei
Figure 4. Induction and Accumulation of Crystallins in MKS and B
(A) Venn diagrams showing the intersection of significant genes diffe
(log2FC > 2; p < 0.05), and the top 10 upregulated genes common to th
Genes that are members of the crystallin family are highlighted in re
(B) Immunoblot on extracts from undifferentiated iPSCs and RSs.
(C) Immunofluorescence (IF) representative images showing CRYBB1 a
DIV45. Note the extracellular and intracellular accumulation of crysta
(D) TEM representative images of RSs at DIV60. BBs (black arrowhea
bottom some high-magnification images. In Ctrl04 we can observe IS
surface, and marked gap junction. A beginning of OS with stack-like s
Vesicles with laminar material are also observed near the surface. Big v
M, mitochondria; A, apoptotic cells; N, necrotic cells.
(E–G) Quantification of the percentage of total dead cells (E), apoptoti
for condition, an average of 24 cells for field.
(H) IF representative images in dissociated cells culture at DIV20. Sc
(I) Quantification of the percentage of TUNEL-positive cells over total
for field).
n = 3 independent biological replicates for all experiments. All values
ANOVA test.
in BBS01/02 PRs that were also gH2Ax and pCHK2-positive,

suggesting possible arrest in the G2/M phase of the cell

cycle. gH2Ax, a marker of DNA double-strand breaks, was

also detected by immunoblot on whole-cell extracts in

BBS01 RSs at DIV60 of differentiation, but not in control

or MKS01 RSs (Figure 7H). Consistently, micronuclei, nu-

clear bridges, mitotic catastrophe, and nuclei havingmulti-

polar or monopolar spindles, were more frequent in BBS01

PRs progenitors than in the MKS01 or control one. Nuclear

bridges were detected in all conditions but tended to be

more abundant in BBS01 PRs. Mitotic catastrophes were

also significantly higher in BBS01 than in control cells,

but they were also present in MKS01 cells (Figure 7I). We

concluded that, although MKS and BBS PRs shared a broad

number of molecular and cellular alterations, they also dis-

played unique anomalies that may help explain the

distinct phenotypes characterizing these disorders.
DISCUSSION

We generated iPSCs from control and ciliopathy cases and

differentiated them into polarized 3D-adherent RSs that

could recapitulate normal PR development and disease

state, respectively. By WGS, we identified mutations in

BBS10 (BBS01 and BBS02 patients) and TMEM67 (MKS01

case). Using RNA-seq analyses and high-resolution fluores-

cence microscopy, we were able to identify and study

retinal developmental anomalies and PR degeneration pro-

cesses that characterized MKS and BBS. Importantly, we

could also distinguish specific pathological features that

were either common or unique to the two syndromes.

Previous reports based on rare genetic cases suggested

that BBS and MKS may represent a ‘‘unique disease’’ with
BS RSs
rentially upregulated between MKS01/02 (blue) and BBS01 RSs (red)
e two groups with their respective log2FC and p value for each group.
d.

nd CRYBB3 accumulation in MKS01/02 and BBS01 CRX-positive cells at
llin (white arrows). Scale bars, 10 mm.
ds) and dead cells (white arrowheads). For each condition at the
structure with high density of mitochondria, BBs near the apical

tructures (black arrows) can be observed beyond the apical surface.
esicles similar to lysosomes were particularly abundant in MKS RSs.

c (F), and necrotic (G) cells observed by TEM at DIV60 (n = 3–4 fields

ale bar, 50 mm.
nuclei at DIV20 (n = 4–5 fields for condition, an average of 85 cells

are means ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001 by one-way
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two different degrees of severity (Brunham, 2009; Leitch

et al., 2008). Using our in vitro model, we found that 60%

of deregulated genes in BBS01 PRs and 49% of those in

MKS01/02 PRs were common between both diseases,

although BBS and MKS cases studied here carried muta-

tions in unrelated genes. Brain, eye, and bone malforma-

tions as well as polydactyly are common to MKS and BBS.

Hence, we found deregulation of hundreds of neurodeve-

lopmental genes, most of them common to both ciliopa-

thies. WNT, NOTCH, and HOX signaling pathways were

highly affected, consistent with the essential function of

WNT and NOTCH in neural development, and with the

role of theHOX gene cluster in axial skeleton development

and digit formation (Sheth et al., 2012; Tan et al., 2013;

Wheway et al., 2013). Unexpectedly, we observed signifi-

cant downregulation of NOG, BMP, SIX1, MSX1, TWIST,

OSR1, and PITX2.NOG and BMP are important for nervous

system, muscle, and bone development, while the others

are required for the differentiation of intermediate meso-

derm-derivative (gonads and kidneys) and limb buds

(OSR1), in epithelial-mesenchymal transition (TWIST), in

the development of the neck, ears, and kidneys (SIX1),

and of oral structures (MSX1). PITX2 is involved in the

establishment of the left-right axis and morphogenesis of

many organs (Campione et al., 1999; Zacharias et al.,

2011). Mutations in PITX2 are associated with Axenfeld-

Rieger syndrome, iridogoniodysgenesis syndrome, and

sporadic cases of Peters anomaly, revealing its important

role in eye development (Kozlowski and Walter, 2000).

Notably, polydactyly, craniofacial, neural, retinal, ocular,

skeletal, and kidney anomalies are commonly observed in

syndromic ciliopathies (Brunham, 2009; Novarino et al.,

2011). Thus, developmental defects observed in peripheral

organs and musculoskeletal structures of MKS and BBS pa-

tients were revealed in our gene expression profile analyses

of RSs.

We found upregulation of several apoptotic genes and

genes of the beta- and gamma-crystallin families in both

MKS and BBS RSs. Alpha-crystallins are known to operate
Figure 5. Supernumerary Centrioles in MKS PRs
(A) IF images of PRs at DIV60. Composed image from two focal plane
(B) Quantification of the number of centrioles (Centriolin) per cells at
(C) TEM representative images of cilia and BBs and its section (botto
(D) Quantification of the ratio of BBs/cell per field by TEM. N = 3–4 i
(E) IF images of dissociated PRs at DIV60. The white channel repr
respective Pearson correlation value quantified in (G). On the right, h
condition.
(F) Representative surface rendering from 3D z stack reconstruction of
and daughter centrioles surrounding MKS3 (F0), MKS3 linked to Centrio
(G) Pearson correlation of colocalized volume between Centriolin and
(H) Immunoblot on extracts from iPSCs and RSs.
n = 3 independent biological replicates for all experiments. All v
****p < 0.0001 by one-way ANOVA test.
as molecular chaperones for misfolded proteins and can

be found in ubiquitin-associated inclusions in neurodegen-

erative diseases (Lowe et al., 2001; Thornell and Aquilina,

2015). In contrast, the function of beta- and gamma-crys-

tallins in non-lens tissue is not well understood. Some

studies have linked the expression of beta- and gamma-

crystallins to retinal diseases. It has also been observed

that gamma- and beta-crystallin production increases

before PR cell death in animal models of retinitis pigmen-

tosa and light-induced retinal degeneration (Fort et al.,

2009; Organisciak et al., 2006; Piri et al., 2007; Sakaguchi

et al., 2003). bB2-Crystallin (CRYBB2) was shown to be

strongly expressed in regenerating ganglion cells where it

may promote axonal regrowth (Liedtke et al., 2007).

Thus, although the exact role of crystallins in neurodegen-

erative contexts remains to be clarified, our findings reveal

robust activation of this pathway in PRs from ciliopathy

patients.

In MKS01 PRs, we observed near absent co-localization of

MKS3 with Centriolin, which may explain the presence of

supernumerary centrioles. Cilia were also shorter and

thinner than normal, suggesting cilia degeneration and/or

abnormal formation and maintenance. Notably, it was

shown that, in mouse renal-tubule epithelial cells,

reducing the level of MKS3 using small interfering RNA

impaired the number of cilia, whereas its complete loss

caused elongated cilia (Cook et al., 2009). Multi-ciliated

cells were also observed in MKS patients and in a rat model

of MKS3 (Gattone et al., 2004). We also found that MKS01

RSs were highly disorganized and that the signal for

RPGR was mislocalized and tended to accumulate in aggre-

gates. BBS01 cells also showed abnormal RPGR localization.

Unlike MKS01 PRs, however, RPGR was generally mislocal-

ized at the basement of BBS01 PRs, suggesting abnormal

transport or docking to the BB. This reveals both similar-

ities and differences between the two syndromes. More-

over, genes implicated in canonical WNT signaling were

upregulated, and this was apparently at the expense of

the non-canonical one. In polarized cells, the cilium grows
s (DAPI and Centriolin). Scale bars, 50 mm (left), 10 mm (right).
DIV60 (n = 4 fields for condition, an average of 113 cells for a field).
m).
mages for condition an average of 24 cells for a field.
esents colocalized volume between Centriolin and MKS3 with the
igh-magnification images of the respective dashed square in each

the three conformations observed between Centriolin and MKS3: BBs
lin (F00), and MKS3 and Centriolin unbound (F%). Scale bar, 0.5 mm.
MKS3 related to (E).

alues are means ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001,
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Figure 6. Supernumerary Cilia and Aggregation of Ciliary Proteins in MKS01 PRs
(A) IF of PRs at DIV60. Composed image from two focal planes (DAPI and acetyl-a-tubulin). Scale bar, 10 mm.
(B and C) Quantification of the number of cilia (acetyl-a-tubulin) per cells (B) and the number of CRX-positive cells per field (C) in cells at
DIV60 (n = 4 fields for condition, an average of 53 cells for a field).
(D) Surface rendering 3D reconstruction from confocal z stack images of Ctrl01 (green) and MKS01 (red) based on acetyl-a-tubulin staining
(left). Scale bar, 2 mm. A 3D plot of cilia (cilia from three images put together for each condition) based on area and volume (right).
Notice how control cilia clustered together while MKS01 cilia are more heterogeneous, smaller, and more abundant (n = 2 independent
experiments).
(E) Quantification of area and volume of Ctrl01 and MKS01 cilia (ctrl n = 20; MKS n = 47).
(F) Representation of cone PRs with reference to OS, CC, IS, and nucleus, and the localization of the markers used in (G).

(legend continued on next page)
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at the apical side. During ciliogenesis, planar cell polarity

and apical-basal polarity are necessary for docking of the

centrioles at the plasma membrane, and for correct forma-

tion and maintenance of PR BBs (Kim et al., 2010; Oishi

et al., 2006). Taken as a whole, these observations suggest

that hallmarks of the MKS phenotype previously reported

in MKS patients and animal models were recapitulated at

the cellular and molecular levels in MKS01/02 RSs. Further-

more, we described for the first time the presence of super-

numerary cilia and centrioles in MKS01/02 PRs, which was

associated with reduced co-localization of MKS3 with Cen-

triolin in the MKS01 case, suggesting deficient interaction

of the mutant MKS3 protein with centrioles. In the

MKS02 case, which does not carry mutations in TMEM67,

the number of centrioles/cell was about 2-fold higher

than in controls and BBS01/02 cases but was less severe

than in MKS01. It is not surprising thus that despite car-

rying mutations in different genes, MKS cases show highly

related phenotypes at the cellular and molecular levels.

Previous reports have described cilia proteins with cilia-

independent functions, including mitotic spindle genera-

tion and mitotic process regulation (Hua and Ferland,

2018; Vertii et al., 2015; Yuan and Sun, 2013). Unexpect-

edly, we found genomic instability in BBS01/02 retinal pro-

genitors and PRs, with the most prominent feature being

the activation of the mitotic spindle checkpoint. This sug-

gests a new and essential role of BBS10 inmicrotubule cyto-

skeleton organization during mitosis.

In summary, we have produced iPSCs from control, and

MKS and BBS cases, and differentiated them into RSs, al-

lowing recapitulation of normal and pathological human

retinal and PRs development in vitro. Molecular and cell

biological analyses further revealed known and novel dis-

ease mechanisms associated with retinal ciliopathies,

opening potentially new avenues for disease treatment.
EXPERIMENTAL PROCEDURES

iPSC Generation and Characterization
Human PSCs were used in accordance with the Canadian Institute

Health Research (CIHR) guidelines and approved by the ‘‘Comité

de Surveillance de la Recherche sur les Cellules Souches’’ of the

CIHR and the Maisonneuve-Rosemont Hospital Ethic Committee.

MKS and BBS fibroblasts were obtained from clinically diagnosed

individuals (Coriell Biorepository). These were reprogrammed

with the Yamanaka factors, OCT4, SOX2, KLF4, and c-MYC, using

the pMIG vector set. Stem cells were grown on MEF feeder layers
(G) 3D z stack reconstruction of RSs from IF images at DIV70. Dotte
polarized to the apical zone. Scale bars, 20 mm.
n = 3 independent biological replicates for all experiments. All values
test.
(Global Stem Cell GSC-6001G) in iPSC medium. To generate tera-

tomas, �3 3 106 undifferentiated iPSCs were implanted beneath

the neck scruff of non-obese diabetic-severe combined immunode-

ficiency immunodeficient mice. Tumors were harvested 12 weeks

later and processed for histology analysis. See Supplemental Infor-

mation for details.

Differentiation of Human ESCs and iPSCs into RSs
iPSCs and ESCs were dissociated using ReLeSR (STRMCELL Tech-

nologies, cat. no. 05,872) and platted on growth factor reduced

Matrigel (Corning, no. 356231) in StemFlex cell medium (Gibco,

no. A3349401) supplemented with ROCK-inh (Y-27632; 10 mM,

Cayman Chemical, no. 10005583). When PSCs reach full conflu-

ence, themediumwas switched to differentiationmedium supple-

mented with 60 ng/mL of recombinant COCO as described in

Zhou et al. (2015). See Supplemental Information for details.

RNA-Seq and WGS Analyses
RNA-seq librarieswere prepared using Ion Total RNA-SeqKit v.2. Li-

braries were sequenced onto P1 chips from Ion Torrent as unpaired

to reach 40 million reads for each sample. Raw sequencing files

(FASTQ) were validated using FASTQC v.0.11.7.

Base calling for WGS was performed using Illumina HiSeq Anal-

ysis Software (v.2––2.5.55.1311). Reads were mapped to the b37

reference sequence. See Supplemental Information for details.

Statistical Analysis
Statistical analysis was performed using GraphPad software

(Prism 6). Statistical differences were analyzed using the Student’s

t test for unpaired samples. Values are representative of at least

three experiments. When comparisons were made using indepen-

dent samples of equal size and variance following a normal

distribution, significancewas assessed using an unpaired two-sided

Student’s t test. Where several groups were compared, significance

was assessed by ANOVA and adjusted for multiple comparisons us-

ing the Bonferroni correction. Differential expression was assayed

using a log2 fold change statistical algorithm or one-way ANOVA

with a p value cutoff at 0.05. For gene ontology, a false discovery

rate cutoff of 0.01 was applied.
ACCESSION NUMBERS

RNAseq Data was deposited in the GEO: GSE133247.

WGS data were deposited in BioSample database:

SAMN13656497; SAMN13656498

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/

10.1016/j.stemcr.2020.02.005.
d lines, intracellular aggregates of RPGR. White arrows, RPGR not

are means ± SEM. **p < 0.01, ****p < 0.0001, Student’s unpaired t
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