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Background: The inclusion of facial and bodily cues (clinical gestalt) in machine learning

(ML) models improves the assessment of patients’ health status, as shown in genetic

syndromes and acute coronary syndrome. It is unknown if the inclusion of clinical gestalt

improves ML-based classification of acutely ill patients. As in previous research in ML

analysis of medical images, simulated or augmented data may be used to assess the

usability of clinical gestalt.

Objective: To assess whether a deep learning algorithm trained on a dataset of

simulated and augmented facial photographs reflecting acutely ill patients can distinguish

between healthy and LPS-infused, acutely ill individuals.

Methods: Photographs from twenty-six volunteers whose facial features were

manipulated to resemble a state of acute illness were used to extract features of illness

and generate a synthetic dataset of acutely ill photographs, using a neural transfer

convolutional neural network (NT-CNN) for data augmentation. Then, four distinct CNNs

were trained on different parts of the facial photographs and concatenated into one final,

stacked CNNwhich classified individuals as healthy or acutely ill. Finally, the stacked CNN

was validated in an external dataset of volunteers injected with lipopolysaccharide (LPS).

Results: In the external validation set, the four individual feature models distinguished

acutely ill patients with sensitivities ranging from 10.5% (95% CI, 1.3–33.1% for the

skin model) to 89.4% (66.9–98.7%, for the nose model). Specificity ranged from 42.1%

(20.3–66.5%) for the nose model and 94.7% (73.9–99.9%) for skin. The stacked model

combining all four facial features achieved an area under the receiver characteristic

operating curve (AUROC) of 0.67 (0.62–0.71) and distinguished acutely ill patients with

a sensitivity of 100% (82.35–100.00%) and specificity of 42.11% (20.25–66.50%).

Conclusion: A deep learning algorithm trained on a synthetic, augmented dataset of

facial photographs distinguished between healthy and simulated acutely ill individuals,
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demonstrating that synthetically generated data can be used to develop algorithms for

health conditions in which large datasets are difficult to obtain. These results support the

potential of facial feature analysis algorithms to support the diagnosis of acute illness.

Keywords: gestalt, deep learning, facial analysis, synthetic data, acute illness

INTRODUCTION

It is estimated that patients with sepsis alone account for as much
as 6% of all hospital admissions and that while case-fatality rates
are declining, the incidence of sepsis keeps increasing (1, 2).
Early recognition of acute illness is critical for timely initiation
of treatment (1). However, patients admitted to the emergency
department (ED) or intensive care unit (ICU) with critical
conditions such as sepsis often present with heterogeneous signs
and symptoms, making detection and diagnosis challenging (3).
Numerous risk scores based on laboratory variables and vital
signs have been developed in an attempt to tackle this, but
these achieved variable performance or were inferior to clinicians’
informed judgment, also known as the clinical gestalt (4–7).

The clinical gestalt theory states that healthcare practitioners
can actively organize clinical perceptions into coherent
constructs or heuristics to reduce decision complexity, for
example, by analyzing patients’ facial and bodily cues, to estimate
their functional status (8, 9). The value of the clinical gestalt as
a diagnostic tool has been studied in different health conditions
(10–13). In acute coronary syndrome, heart failure, pneumonia,
and COVID-19, the clinical gestalt registered by doctors was
comparable to clinical scores in “ruling in” or “ruling out”
patients with certain symptoms presenting to the ED (10–14).
For sepsis, the Third International Consensus Definitions for
Sepsis and Septic Shock (Sepsis-3) advocates clinicians should,
in addition to systemic inflammatory response syndrome
(SIRS) criteria, use clinical gestalt in screening, treating and
risk-stratifying patients with infection (15).

The clinical gestalt is also increasingly used as the basis
for building deep learning models, with facial pictures being
used to identify different genetic syndromes (16), as well as
to detect coronary artery disease in an emergency setting (17).
However, despite a growing number of studies reporting good
results of deep learning models trained with a variety of clinical
measurements to predict or detect early sepsis, no model has
yet included clinical gestalt or facial feature analysis (18, 19).
One major challenge to the development of a well-performing
deep learning algorithm for facial analysis is the datasets’ size
and quality of the images (20, 21). With small datasets, deep
neural networks will inevitably overfit, i.e., perfectly model the
training data but lack generalizability and therefore perform
poorly in a different validation dataset (21). However, there is
substantial difficulty in obtaining a large gestalt dataset when
privacy concerns associated with collecting facial photographic
data exist, and especially in the emergency setting (22, 23).
The use of simulated or synthetic data and augmenting existing
data may solve this problem, as previously demonstrated for
medical imaging and electronic medical record data (24–27).
Moreover, there is vast literature, including recent studies,

highlighting several key features of acute illness – including “a
tired appearance,” “pale skin and/or lips,” “swollen face,” and
“hanging eyelids” – which can accurately be simulated (28–31).

Thus, to get insight into the usability of gestalt data
in categorizing sick individuals, we used facial photographs
of volunteers simulating these features to represent persons
with and without acute illness. We trained a deep learning
algorithm on facial photographs of simulated acute illness
and a dataset of augmented facial photographs using a style
transfer algorithm. Then, a concatenated model with multiple
convolutional neural networks was validated on an external
dataset of photographs of otherwise healthy volunteers injected
with lipopolysaccharide (LPS).

METHODS

Dataset
An overview of the different steps of this study is provided in
Figure 1. Three different data sources were used. The training
dataset was created through combining two sets of photographs.
First, a set of “simulated” sick faces, where the facial features of
healthy volunteers had been manipulated using make-up, and
second, a set of synthetically generated data resulting from the
transfer of these features onto photographs from an open-source
faces database (32). The validation dataset used data from a
third set of photographs, which consisted of facial photographs
from a previous study of individuals before and after they were
administered LPS to experimentally induce acute illness (33).

Dataset With Simulated Sick Facial Features on

Healthy Volunteers
Facial features characteristic of acute illness were simulated using
make-up on 26 individuals (11 female). These characteristics
of early acute illness included changes in skin color (pallor)
due to vasoconstriction, drooping of mouth corners, and eye
closure, often due to altered mental status (28–31). In total,
seven facial features were simulated: paler skin tone, pale lips,
redness around the eyes, sunken eyes, redness around the nasal
alae, droopy mouth, and more opaque skin. The standard
protocol followed for the make-up application is shown in
Supplementary Table 1 and Supplementary Figures 1–3. Two
photographs of each participant were selected and included in
the study, one without any make-up to represent the “healthy”
control state, and another to represent the “acutely ill” state.
A standardized environment with a gray background and LED
light was used, and photographs were taken with an iPhone 8
camera (4,032× 3,024 pixels) with standardized settings (ISO 22,
RAW, AF, S1/40, MF: 0.9 and AWB in the Halide app). White
balance of the complete set of photographs was standardized by a
professional photographer using Adobe Photoshop (CC 2019).
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FIGURE 1 | Schematic overview of the three datasets, and of the different steps in the study. Starting with data collection from 26 healthy individuals and simulated

acute illness. These features were then extracted and transferred to 164 faces from the Chicago Faces database, resulting in a total of 2,300 images of healthy and

acutely ill individuals. After training the deep learning algorithm, validation was carried out on an external dataset of 19 individuals using a stacked CNN combining 4

individual networks.

Data Augmentation to Expand Training Dataset
To expand the dataset, one hundred sixty-four distinct faces
from the Chicago Face Database (CFD) were retrieved and
taken to represent “non-sick” individuals (32). In addition,
photographs mimicking acute illness were generated using the
same individual faces from the CFD and a neural algorithm
of artistic style transfer. This algorithm transferred the make-
up style representing acute illness to healthy individuals
from the CFD. A VGG19 deep convolutional network
was trained so that it got exposed to each image for 1,500
steps. Male and female participants were separated to
ensure appropriate transfer of features and lower artifact
creation. The one image per subject visually assessed by two
researchers (JCF and AV) to represent the best acute illness
was selected.

Validation Dataset of Individuals With LPS-Induced

Illness
The external validation dataset consisted of the photographs
of 22 individuals before (placebo, healthy) and 2 h after being
injected with LPS. These individuals were mostly male (9
female) and of a similar age (mean 23.4). Camera resolution
settings used were similar to those described before, and
an equally standardized procedure was followed using a
studio set-up. Additional details of these data are provided
elsewhere (33).

Ethics
The study was exempt from ethical approval from the
Medical Ethical Committee of the University Medical Centre
Groningen. For the healthy volunteers, consent was obtained
from all volunteers, including for the use of certain images for
publication. A license for the use of the CFD was obtained by
the study’s authors (JCF and AV). Lastly, consent for collection
and use of the photographs in the validation set was obtained
previously, with the original study being approved by the
regional ethical review board of Stockholm, Sweden (Registration
number 2015/1415-32) and registered in ClinicalTrials.gov
(NCT02529592) (33).

Data Pre-Processing
The simulated photographs and the validation photographs
differed in certain aspects. In the simulated data, the features
of acute illness were more accentuated than in the LPS group.
In addition, the lighting was brighter in the validation data set,
with somewhat dimmer light and more pronounced shadows
and contrasts in the simulated dataset. To correct for this, all
photographs in the simulated set were brightened (gamma =

1.3). All photographs were then resized to 128 × 128 pixels,
and the four facial features (eyes, nose, mouth, and skin)
were extracted separately using computer vision algorithms, as
shown in Figure 2. A Haar cascade facial classifier was used
to identify the entire face region in an image (34, 35). The
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FIGURE 2 | Diagram of the stacked CNN. This shows the combination of each CNN’s inputs and outputs into one final binary classification of “acutely ill” or “healthy”.

facial landmark detector identified the face features, obtained
by training a shape predictor on a labeled dataset (36, 37). The
eyes, nose, and lips were extracted by calculating the minimum
circle enclosing the 2D set of points representing each feature
(given by the facial landmark detector). Finally, the skin area was
extracted by removing the eyes and lips regions and everything
outside the jaw region. Any other background and hair were
removed by thresholding out certain color ranges (between HEX
#000000 and #646464; #a0a0a0 and #aaaaaa were selected based
on observation). The removed regions were replaced with the
dominant color calculated from each face region, ensuring no
other noise is passed down through the CNNs.

Deep Learning Algorithm
A CNN was trained for each facial feature using Keras
with a Tensorflow backend. The individual networks input
is represented by a 128 by 128 pixels RGB image, which is
convolved with a convolution kernel of size (3, 3) after adding
padding, using 128 filters. We use a rectified linear unit (ReLU)
as an activation function, the output being normalized and scaled
through a layer of batch normalization. The subsequent layers

progressively down-sample the image data through groups of
convolution layers (without padding), batch normalization, and
max pooling layers with a pool size of (2, 2). Then, the final
down-sampling layer uses an average pooling layer (with the
same pooling size) to smooth the resulting filters. Finally, the
output is flattened, resulting in a tensor of length 288. This is
passed through two other fully-connected layers, each having a
drop-out layer. The final layer is fully-connected with the output
unit that uses a sigmoidal activation function, which generates
an output value between 0 and 1 representing the probability of
being classified as “ill.”

To build the stacked ensemble combining all the previously
mentioned CNNs, the final layer of all individual networks
was removed, and each vector representation of size 16 was
concatenated, resulting in a vector of size 64 (Figure 2). The
data was then again gradually down-sampled through four
fully-connected layers using ReLU (of size 32, 16, 4, and 1,
respectively). The final activation function for the output is again
the sigmoid function to ensure a value between 0 and 1. Both the
CNNs and the stacked network use an Adam optimizer (adaptive
moment estimation) with an initial learning rate of 0.001 and
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FIGURE 3 | Receiver operating characteristic (ROC) curves and confusion matrices for the final model of all five CNNs in the validation set of 38 images. (A): ROC for

the stacked model. (B): ROC for the eyes. (C): ROC for the nose. (D): ROC for the mouth. (E): ROC for the skin.

values for beta1 = 0.9, beta2 = 0.999, and epsilon = 10−8.
All models used a binary cross-entropy loss function. In order
to minimize overfitting, early stopping and model checkpoints
were used to save the model with the best testing F1 score
during training.

Statistical Analysis
Each CNN was trained using 10-fold cross-validation. The best
model with regard to testing accuracy across all folds was used
to make predictions on the validation data. The different CNN
models’ performance is reported as the respective area under
the receiver characteristic operating curve (AUROC), sensitivity,
specificity, and negative and positive predictive values on the
external validation data (38). Box-and-whisker plots were used
to represent the median and interquartile ranges (25–75%) of all
model AUROCs. All results are presented with a 95% confidence
interval. Confusionmatrices aggregating the predictionsmade by
the final models are provided in Figure 3.

RESULTS

After data augmentation, the training dataset included
photographs from 190 distinct individuals, adding up to a
total of 1,140 healthy images and 1,160 images representing a
state of acute illness for different facial regions, as well as for the
complete face.

The sensitivity and specificity reported for each model pertain
to the best models in the binary classification task and are based

on the confusion matrices presented in Figure 3. The stacked
CNN achieved an AUROC in the validation dataset of 0.67
(95% CI 0.61–0.72), with a sensitivity of 100% (82.4–100.0%)
and specificity of 42.1% (20.3–66.5%). With regard to the four
CNNs trained on individual features, the network with the best
performance at distinguishing between healthy and ill individuals
was the mouth CNN, with an AUROC of 0.68 (0.62–0.74) and
sensitivity of 84.2% (60.4–96.6%) and specificity of 57.9% (33.5–
79.8%). All other CNNs achieved AUROCs between 0.51 and
0.57, with sensitivities between 10.5% (1.3–33.1%) and 89.4%
(66.9–98.7%), and specificities between 42.1% (20.3–66.5%) and
94.7% (73.9–99.9%). The positive predictive values (PPV) for
individual models ranged between 60 and 66.7% for the nose and
mouth models, respectively (Table 1). The negative predictive
values (NPV) ranged between 51.4% for the skin model and
80% for the nose model. For the stacked model, PPV was 63%
(54.1–71.7%) and the NPV was 100%.

The variation in performance of the individual and stacked
models in the validation set across the different folds can be seen
in Figure 4. Despite the marginally higher AUROC of the best
mouth model compared to the stacked model, the stacked model
was the most stable across all folds.

DISCUSSION

In this study, we developed a deep learning algorithm combining
multiple convolutional neural networks to distinguish between
healthy and acutely ill individuals based on facial feature analysis.
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TABLE 1 | Performance of the best models for each feature and the stacked model on the validation set.

Trained on CFD augmented with simulated acute illness photographs

Model AUROC Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Mouth 0.68 (0.62–0.74) 84.2 (60.4–96.6) 57.9 (33.5–79.8) 66.7 (53.3–77.8) 78.6 (54.8–91.7)

Nose 0.55 (0.50–0.60) 89.4 (66.9–98.7) 42.1 (20.3–66.5) 60.7 (50.6– 70.0) 80.0 (49.3–94.3)

Skin 0.51 (0.43–0.59) 10.5 (1.3–33.1) 94.7 (73.9–99.9) 66.7 (16.5–95.3) 51.4 (46.8–56.1)

Eye 0.57 (0.55–0.59) 63.2 (38.4–83.7) 57.9 (33.5–79.8) 60.0 (44.4–73.8) 61.1 (43.8–76.0)

Stacked 0.67 (0.61–0.72) 100 (82.4–100.0) 42.1 (20.3–66.5) 63.3 (54.1–71.7) 100.00

Values are presented as the area under the curve (AUROC), sensitivity, specificity, and positive and negative predictive values for 50% disease prevalence with 95% confidence intervals.

PPV, positive predictive value, NPV, negative predictive value.

FIGURE 4 | Box-and-whiskers plot of AUC scores of the final models.

We showed that an algorithm trained on augmented facial data
of simulated acute illness can successfully generalize predictions
on an external dataset of individuals injected with LPS. The
final, stacked model combining eyes, mouth, skin, and nose
distinguished healthy and ill participants with a sensitivity of
100% (95% CI 82.4–100.0), specificity of 42.1% (20.3–66.5), and
AUROC 0.67 (0.61–0.72).

The aim of this study was to investigate how a deep learning
algorithm trained on augmented, facial data of simulated acute
illness would perform in distinguishing between acutely ill and
not ill individuals from an external set of photographs of real
individuals with LPS-induced illness. While clinicians or other
algorithms’ baseline discriminatory ability for acute illness is not
established, previous studies on the identification of acute illness
based on facial features reported an AUROC of 0.62 (0.60–0.63),
with sensitivity and specificity of 52 and 70%, respectively (33).
These results were somewhat improved by the stacked model.
However, both previous studies on the detection of different acute
pathologies by trained physicians, as well as of clinical scores
in sepsis detection, have found better results (7, 12, 13). For
pneumonia and acute rhinosinusitis, the clinical gestalt achieved
AUROCs of between 0.77 and 0.84 (12). Similarly, for acute heart
failure, a specific combination of physical cues was converted

into a score and achieved AUROCs above 0.90, diagnosing up
to 88% of heart failure patients (13). Therefore, we can say
this deep learning algorithm trained on simulated “gestalt” data
distinguished between photographs of acutely ill and healthy
people above chance level, surpassing the performance of non-
experts, but fell below the performance of trained clinicians in
other studies of different health conditions. This has several
potential clinical implications. Firstly, it supports further research
on the use of clinical gestalt for detection of acute illness in the
ED and ICU, alone or possibly in combination with other clinical
parameters. Combining “gestalt” and the modified SIRS score has
already been shown to achieve good predictive performance for
24-h mortality in children (39). In adults, the Third International
Consensus Definitions for Sepsis and Septic Shock (Sepsis-3)
support the idea of combining the adult SIRS criteria and clinical
gestalt to screen, triage, and treat patients with infection (15).
And secondly, it suggests that adding “gestalt” to other machine
learning algorithms for sepsis or septic shock detection may be
of value, as these have traditionally focused on vital signs and
electronic health record information (40, 41).

In addition, our study reached some technically interesting
conclusions related to the feasibility of using synthetic data
for deep learning. It is known that the generalizability of deep
learning is lower, and the chance of over-fitting conversely
higher, in small datasets. This is especially true for imaging
data. Therefore, it was an interesting challenge to test whether
synthetic data generation and data augmentation could be valid
methodologies to address the problem of data availability for
certain health conditions in a research setting, be it due to legal-
ethical and privacy concerns or to low prevalence of disease
(21, 22). We found scarce examples in literature of studies
simulating a specific disease-state using techniques such as
facial manipulation with moulage or make-up. One other study
took photographs of volunteers before and after application of
moulage designed to simulate traumatic facial injuries, and found
that upon examination of these photographs by a facial analysis
software, between 39 and 90% of photographs of injured patients

were identified correctly (42). Clearly, synthetic and augmented
datasets have the potential to enable researchers to “tailor” data

to a specific context, but their generation and use is not without
challenges. One immediate challenge is that a definitive measure
for the quality of synthetic data is currently lacking (43). Here,

we attempted to achieve as great a similarity as possible between
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training and test data by using a widely validated methodology
for feature detection and extraction, and then manually selecting
the photographs to be included in the training set (36). Yet, we
found that both the deep learning algorithms identified “healthy”
individuals with higher accuracy. This was also the case for
the non-expert raters in Axelsson et al. ’s study, and could be
due to an inherently greater degree of similarity between the
facial features of healthy individuals than those of the acutely
ill ones (33). However, we cannot rule out the possibility that it
could also be a reflection of the features of acute illness in the
validation dataset being less prominent than in the simulated
training data. Because the risk of dissimilarity between training
and testing data increases as the size of the dataset increases, and
manual verification would not be possible for millions of images,
the development of methodologies and standards to measure
the quality of synthetic data is necessary before it can be used
more widely.

Limitations of this study include the relatively small size
of the training dataset, despite the data augmentation process,
if compared to established clinical image databases for other
diseases (44–46). This prevented us from further tuning the
models’ hyper-parameters on a holdout subset of the data and
may have led to some overfitting. Second, there is a chance
the data are inherently biased regarding the illness features
and the ethnicity of participants. Despite the standardized,
literature-based procedure for acute illness simulation in healthy
volunteers, it is possible that individuals whose sick features
are naturally more discrete were underrepresented. Equally,
both the training and validation datasets included mostly
Caucasian individuals, limiting the generalizability of the model
to other ethnicities. Further tuning of the model on more
ethnically diverse data and testing on a multi-ethnic dataset
is warranted (47). Lastly, the potential for implementation
of the algorithm can only truly be assessed in a dataset
of real ICU or emergency department patients. While LPS
produces physical symptoms similar to sepsis and is a well-
acknowledged model to study sepsis in humans (48), real patient
photographs collected in the ICU or emergency department
would bring different challenges than photographs taken in a
simulated setting. This could be due to noisy data from different
lighting, wires, respirator tubes, and lower standardization
of data.

In conclusion, a deep learning algorithm trained on
synthetic data representing the clinical gestalt of acute
illness was able to distinguish moderately well-between
healthy and acutely ill individuals in an external dataset of
individuals with LPS-induced acute illness. These results
support the value of clinical gestalt as a diagnostic tool for
acute illness. Additionally, synthetically generated data seem
to be a valid alternative methodology to develop models
for health conditions in which large datasets are difficult
to obtain.
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