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Abstract: Carbonic anhydrases (CAs) are ubiquitous enzymes that catalyze the reversible carbon
dioxide hydration reaction. Among the eight different CA classes existing in nature, the α-class is
the largest one being present in animals, bacteria, protozoa, fungi, and photosynthetic organisms.
Although many studies have been reported on these enzymes, few functional, biochemical, and
structural data are currently available on α-CAs isolated from photosynthetic organisms. Here,
we give an overview of the most recent literature on the topic. In higher plants, these enzymes
are engaged in both supplying CO2 at the Rubisco and determining proton concentration in PSII
membranes, while in algae and cyanobacteria they are involved in carbon-concentrating mechanism
(CCM), photosynthetic reactions and in detecting or signaling changes in the CO2 level in the
environment. Crystal structures are only available for three algal α-CAs, thus not allowing to
associate specific structural features to cellular localizations or physiological roles. Therefore, further
studies on α-CAs from photosynthetic organisms are strongly needed to provide insights into their
structure–function relationship.

Keywords: carbonic anhydrases; metalloenzymes; photosynthetic organisms; carbon-concentrating
mechanism

1. Introduction

Carbonic anhydrases (CAs) are ubiquitous enzymes that catalyze both the hydra-
tion of carbon dioxide and bicarbonate dehydration, as schematically reported in the
following reaction:

CO2 + H2O � HCO−
3 + H+

Their catalytic action allows the CO2 hydration reaction to speed up to 1,000,000
times per second (Kcat is within the range 104–106 s−1) compared to the uncatalyzed
reaction [1–4]. Since the CA active site contains a metal ion, these enzymes are referred to
as metalloenzymes. Most of the time the metal ion is a Zn2+ ion, but some CA classes also
utilize Fe2+, Mn2+, Cd2+ and Co2+ ions [5].

The known CAs are grouped into eight distinct families, namely α, β, γ, δ, ζ, η, θ,
and ι, which are phylogenetically unrelated and possess little to no sequence or structural
similarity [6,7]. In particular, α-class is mainly present in animals and higher plants,
algae, protozoa, fungi and bacteria [8–10]; members of β-class are found in plants, algae,
cyanobacteria and also in non-photosynthetic organisms [6,9,11–14], but are absent in
animals; γ-CAs have been found in archaea, some bacteria, and plants [15], whereas δ-
and ζ-CAs only in diatoms and coccoliths [7,16–21]. Finally, η-, θ- and ι-CAs are the
most recently discovered classes, η-CAs being found in Plasmodium species [22], θ-CAs in
chlorophytes and diatoms [23] and ι-CAs in diatoms, algae, bacteria, and archaea [24,25].

The α-class is the most populous among the different CA families. These enzymes
play a key physiologic role in all living organisms where they have been found. For
example, in humans, these enzymes are involved in pH and CO2 homeostasis, respi-
ration and transport of CO2/bicarbonate, electrolyte secretion in many tissues/organs,
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biosynthetic reactions, bone resorption, calcification, and tumorigenicity [26–30]. In pro-
tozoa, fungi, and bacteria they ensure the bicarbonate necessary for the metabolism or
are involved in pH regulation [26], whereas in photosynthetic organisms such as higher
plants, algae and cyanobacteria, these enzymes are mainly involved in photosynthesis
by participating in photosynthetic reactions [6,8,31] and/or in the carbon-concentrating
mechanism (CCM) [32–35], which is an adaptive strategy for carbon acquisition, to survive
when the CO2 concentration limits photosynthesis [32]. Indeed, the reaction catalyzed by
CAs allows to achieve a high concentration of CO2 near Rubisco (Ribulose Bisphosphate
Carboxylase/Oxygenase), the main carboxylation enzyme in photosynthetic carbon fix-
ation, even under limiting external inorganic carbon (Ci) [36]. Consequently, the activity
of Rubisco increases, enhancing the rate of carboxylation and suppressing photorespira-
tion events [37–39]. The role of cyanobacterial α-CAs as sensors to detect changes in the
environment’s CO2 level has also been proposed [40–42].

α-CAs have been widely studied and a huge number of original papers and review
articles have been published on these enzymes; however, most of these studies have been
dedicated to human and bacterial enzymes and focused on drug design approaches [43,44].
In this review, we fill the gap existing in the α-CAs present in photosynthetic organ-
isms, summarizing their physiological roles, cellular locations, and biochemical and
structural features.

2. Higher Plants

Higher plants generally contain multiple gene copies of α-, β- and γ-CAs within all
tissues [45]. Among these, the α-CA gene family is widely present, being detected in both
cytosol and chloroplast, even though so far only a few corresponding proteins have been
comprehensively characterized [46–48]. The largest number of studies have been carried
out on Arabidopsis thaliana, as this plant is widely used as a model organism. Within its
genome eight genes encoding α-CAs have been revealed; among these, four have been
functionally investigated and one underwent a partial biochemical characterization [49].
Clear information on the intracellular location of these α-CA isoforms is available only
for α-CA1, which is located in chloroplast stroma [46], and α-CA4 and α-CA5 found in
thylakoid membranes [50–52], whereas recent studies provided evidence of the presence of
α-CA2 in thylakoid membranes too [53–55].

Regarding their physiological function, it has been suggested that α-CA1 is involved
in the transformation in chloroplast stroma of HCO3

− to CO2 to supply it at the active site
of Rubisco [56,57]. Interestingly, this protein is one of the few plant proteins known to be
targeted to the chloroplast through the secretory pathway. It contains several glycosylation
sites that must be occupied by N-glycans for correct folding, trafficking, and functionality
of the protein. In addition, the protein must be stabilized by a disulfide bridge between
the conserved Cys27 and Cys191 residues for folding and endoplasmic reticulum (ER)-
export [46,49].

As for α-CA2 and α-CA4, all the literature data obtained so far indicate that they
are strongly associated with photosynthetic reactions. In particular, the comparison of
different properties of A. thaliana wild type plants with the knockout mutants lacking
α-CA2 and α-CA4 suggested that both these proteins participate, competitively, in proton
exchange close to photosystem II (PSII), controlling the protonation level of the PsbS pro-
tein [53]. This protein is a key player in dissipating excess light energy via the regulation
of non-photochemical quenching (NPQ), one of the main mechanisms ensuring that the
photosynthetic apparatus is protected from photoinhibition [58]. In particular, α-CA4, cat-
alyzing the CO2 hydration, under high light supplies protons to PsbS protein, determining
a conformational change in the light-harvesting antenna and consequently an increase in
NPQ. α-CA2 has an opposite role; indeed, this protein, catalyzing the HCO3

− dehydration,
ensures fast deprotonation of PsbS under low light to avoid energy dissipation when the
amount of light energy is low [53]. The presence of α-CA4 in PSII membranes and its
involvement in determining proton concentration in this district have also been confirmed
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by more recent studies [54,59]. Moreover, it has been shown that the expression levels
of the gene encoding α-CA4 increased significantly in response to the increase in light
intensity [57], in agreement with the hypothesis of its role in the regulation of NPQ and in
the protection of photosynthetic apparatus from photoinhibition [58].

Finally, it has been recently demonstrated that α-CA5 takes part in the photophospho-
rylation stimulation in the presence of bicarbonate excess in thylakoids [51,52]. Moreover,
its participation in the conversion of bicarbonate to CO2 with the aim of supplying the
latter to the membrane-bound Rubisco has been also hypothesized, thanks to its position
on the stromal surface of stromal thylakoid membranes [55].

α-CAs have been found also in other plants, such as the α-CA Sb5G039000 expressed
in Sorghum bicolor anthers [8,60], and the α-CAs Mt1g059900 and Mt1g059940 expressed
in Medicago trunculata root nodules [8,61], but to date, an indication of their physiological
function is not available.

3. Algae

Many α-CAs have been so far identified in photosynthetic algae and some of them have
been widely characterized both from a functional and structural point of view [6,62,63].
Most of the available data concern enzymes found in green and red algae and will be
described in detail in the following paragraphs. Putative α-CA encoding genes have also
been identified in the genome sequences of the marine diatoms Phaeodactylum tricornutum
and Thalassiosira pseudonana. However, the sequence alignment of the corresponding
proteins with α-CAs from other organisms shows that none of the predicted active sites
possess the three zinc-coordinating histidine residues [64,65], leaving doubts about their
actual classification as α-CAs. For this reason, these enzymes will not be discussed in
this review.

Clamidomonas reinhardtii is a unicellular green alga that has been extensively studied
in recent years, enhancing the understanding of CCM in green algae (Figure 1) [63]. This
alga encodes for several CAs, belonging to α-, β- and γ-classes, which are involved in the
CCM and photosynthesis. In particular, three α-CAs, namely CAH1, CAH2 and CAH3,
have been identified [66–72]. CAH1 and CAH2 are localized in the periplasm [66,73,74],
while CAH3 was found in the thylakoid lumen [75,76]. CAH1 expression is induced under
low CO2 conditions in the presence of light, while CAH2 is poorly expressed under low
CO2 and slightly up-regulated under high CO2 [31,69]. Finally, CAH3 is constitutively
expressed, not showing a strong response to modifications in the CO2 level [62].

Studies on the inhibition of periplasmic CAs of Chlamydomonas, using acetazolamide
(AZA) and the membrane impermeant CA inhibitor dextran bound sulphonamide (DBS),
showed a decrease in cell affinity for Ci and the inhibition of the Ci-dependent O2 evo-
lution [77,78]. Therefore, it was suggested that CAH1 and CAH2 are involved in CCM,
facilitating the diffusion of the Ci to the plasma membrane [62,79].

CAH3 is proposed to play a critical role in CCM of Chlamydomonas, being respon-
sible for the rapid conversion of HCO3

− to CO2 in the acidic lumen of intra-pyrenoid
thylakoids, thus increasing the concentration of CO2 around Rubisco and consequently
enhancing photosynthetic efficiency [79,80]. However, some evidence has been provided
for the involvement of CAH3 in PSII activity as well [71], suggesting that under the light
this enzyme, associated with the donor side of PSII, promotes the removal of protons
transferred from the active site of the PSII water-oxidizing complex (WOC) to the lumen,
catalyzing the bicarbonate dehydration reaction [71]. This avoids local acidification close
to the WOC active site, thus improving its functioning. The recent study by Terentyev
and colleagues carried out using specific CA inhibitors, namely trifluoromethanesulfon-
amide (TFMSA), ethoxyzolamide (EZA), and AZA, and measuring the pH-dependent
change in PSII activity, provided further support to this hypothesis [81]. On the other side,
Blanco-Rivero and co-workers reported that CAH3 is post-transcriptionally regulated via
phosphorylation/dephosphorylation [47]. They also hypothesized that CAH3 remains
associated with PSII in stromal thylakoids in high CO2 conditions, but under low CO2
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it becomes phosphorylated and is concentrated in the intra-pyrenoid thylakoid. Thus, it
seems that the function of CAH3 is related to its location within thylakoids, which in turn
is regulated by post-translational modifications [32].
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Figure 1. Representation of CCM in C. reinhardtii showing the subcellular localization of the different
CAs involved. CAH1, CAH2, and CAH3 belong to the α-class and are shown in red, while CAH7,
CAH8, and CAH9 are β-CAs and are colored in black. CAH7 localization is not fully demonstrated.
Pink rectangles represent bicarbonate transporters whereas blue circles symbolize low CO2-inducible
proteins (β-CAs).

CAH1 and CAH3 were investigated also from a structural point of view by means of
X-ray crystallography [82,83]. CAH1 is a glycosylated protein composed of a small and a
large subunit which are linked by a disulfide bond [82]. The protein crystallizes as a dimer,
with the two monomers linked together through an intermolecular disulfide bridge and
several interactions between the loop regions (Figure 2) [82]. The formation of the dimer
has also been confirmed in solution, although several data suggested that the protein can
be a tetramer in some physiological conditions [82]. Each monomer displays the classical
α-CA fold, with the active site region and all the key residues for the catalytic activity being
very conserved (Figure 3). Some differences with respect to human CA II (hCA II) structure
reside in the central β-sheet core which consists of 9 strands in CAH1 instead of 10 in hCA
II. Moreover, the CAH1 structure shows some additional secondary structure elements with
respect to hCA II in the surroundings of the β-sheet core. The crystallographic structure also
reveals the existence of a network of hydrogen bonds between residues located in the small
subunit and active site residues of the large subunit, in agreement with the experimental
finding that the association of the small and big subunit is required for enzyme activity [70].
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Figure 3. Structure-based sequence alignment of hCA II with the green algal α-CAs with known
structure: CAH1 and CAH3 from C. reinhardtii and dCAII from D. salina. Histidine proton shuttles are
represented in bold, while zinc coordinating histidines and gatekeeper residues Thr199 and Glu106
(hCA II numbering) are indicated with (*) and (:), respectively. For CAH1, residues of the small
subunit (345–377) are underlined and � indicates the break between small and big subunit (residues
21–297). The α-helix regions are colored in red and β-strand regions in green. Secondary structural
elements are calculated with the DSSP program [84,85].
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CAH3 crystallizes as a dimer as well; however, in this case, the dimer is stabilized by
the swap of N-terminal arms of the two monomers (Figure 4) [83]. In contrast, biochemical
experiments indicated that the enzyme is a monomer in solution, even though it was
suggested that in the crowded lumen under certain conditions it can occur as a dimer.
CAH3 monomer retains the typical α-CA fold, and the geometry of the active site is well
preserved; however, the protein surface is more hydrophobic with respect to that of human
isoforms, allowing the interaction of the enzyme with the thylakoid membrane [83]. From
the structural comparison with hCA II, it emerges that some sequence deletions are present
in CAH3 (Figure 3). Among these, the deletion corresponding to the hCA II region 130–139
involves the rim of the catalytic cavity and is responsible for the narrowing of the active
site cavity of CAH3 compared to that of the human enzyme.
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Dunaliella salina is another unicellular green alga, capable to survive in very variable
salinity conditions, from freshwater to hyper-saline lakes, such as the Dead Sea. This alga
possesses two extracellular α-CAs, i.e. dCAI and dCAII, which have been proposed to be
involved under limiting CO2 conditions in the supply of CO2 to the cells, obtaining it from
bicarbonate [86,87]. dCAI is an unusual internally duplicated 60 kDa protein, consisting
of two 52% identical α-CA domains, whereas dCAII is a single domain protein exhibiting
55% sequence identity to each dCAI domain [88]. The two proteins exhibit comparable
catalytic activity and retain an active conformation over a large range of salinities [88,89].
The crystal structure of dCAII has been solved, highlighting that the protein crystallized
as a dimer, with the two monomers related by a non-crystallographic two-fold axis of
symmetry (Figure 5). The global fold of each monomer, characterized by a central ten-
stranded β-sheet, is highly conserved although presenting some peculiar features [89].
Indeed, a comparison with other α-CAs revealed that in the dCAII structure there is a
higher content of helical structure and a reduced amount of β-strand one. Moreover, the
dCAII sequence shows several insertions and deletions with respect to α-CAs and the
proton-shuttle His64 is missing (Figure 3) [89]. Interestingly, the solvent-accessible surface
of dCAII was characterized by a reduced number of basic residues, mainly lysines, with
respect to the other α-CAs, thus leading to a predominantly negative electrostatic potential
surface and to a decrease in the surface hydrophobic character. It was hypothesized that
the preferentially negative electrostatic potential surface could enhance protein stability
and solubility in high salt concentrations. These properties are in common with the other
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halophilic proteins previously reported [90], although dCAII differs in its ability to maintain
solubility, enzymatic activity, and correct folding even at low salt concentrations [89].
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Nannochloropsis oceanica is a unicellular picoplanktonic alga that represents an emerg-
ing model for research on photosynthesis and algae biology [91–93]. Differently from C.
reinhardtii, which possesses the transpyrenoidal thylakoids where CAH3, one of the main
players of CCM, is located (Figure 1) [64,75], N. oceanica lacks a pyrenoid, thus suggesting
that the CCM components of this alga have a different spatial configuration. In agreement
with this hypothesis, recent experimental evidence indicated NoCAH1, an α-CA localized
in the lumen of the epiplastid ER, as an essential component of the CCM in N. oceanica [6,36].
In particular, the proposed model assumes that bicarbonate transporters pump HCO3

−

into the cytoplasm and then into the ER lumen, where NoCAH1 accumulates. Thus, the
protein catalyzes the formation of CO2 that either diffuses into the chloroplast stroma to
be fixed by Rubisco or escapes from the cell (Figure 6) [36]. Accordingly, with this model,
NoCAH1 expression was regulated by the concentration of external Ci at both the protein
and transcript levels [36].

Moreover, Gracilariopsis chorda, an agar-producing multicellular marine red algal
species, contains four α-CAs, namely GcCAHα1, GcCAHα2, GcCAHα3 and GcCAHα4 [94].
In silico analysis of these proteins using different prediction tools revealed in all of them
an N-terminal sequence with a high degree of hydrophobicity that could function as a
leader sequence for their targeting to the ER. In agreement with this hypothesis, when
heterologously expressed in protoplasts of A. thaliana leaf cells, the four GcCAHαs were
localized in the ER and two of them (i.e. GcCAHα2 and GcCAHα4) were further targeted to
the vacuole [94]. However, it cannot be excluded that in G. chorda GcCAHα1 and GcCAHα3
are initially targeted to the ER to be subsequently transported to other organelles, such as
the chloroplast, and that this does not happen in Arabidopsis due to the difference in the
mechanisms of trafficking from the endomembrane compartments to chloroplasts between
red algae and Arabidopsis [94]. As it concerns the physiological roles of the G. chorda α-CAs,
even if their involvement in the red alga CCM could be hypothesized, further studies are
absolutely needed to clarify this point.
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Figure 6. Proposed model for the N. oceanica CCM. The chloropast is separated from the cytoplasm
by four membranes, the outermost of which, called the chloroplast ER (cER) membrane, is connected
to the nuclear envelope and the ER membrane. Bicarbonate transporters push bicarbonate into the
cytoplasm and then into the ER lumen, where NoCAH1 is localized. Here, this enzyme catalyzes the
formation of CO2, which can either diffuse into the chloroplast stroma to be fixed by Rubisco in the
Calvin–Benson–Bassham (CCB) cycle, or escape from the cell (dark blue and light blue rectangles
represent bicarbonate transporters).

4. Cyanobacteria

Cyanobacteria are a very large group of photosynthetic bacteria, diffused in various
habitats [95]. They appeared on the earth at least 3.5 billion years ago [96] and during their
evolution they have been subjected to profound mutations due to deep changes in the
gaseous composition of the earth’s environment, initially containing a high CO2 content
and low O2 levels [33,35]. The conversion of the early oxygen-poor reducing atmosphere
into an oxidizing one, with a drastic reduction in CO2 concentration, pushed cyanobacteria
to develop alternative mechanisms for efficiently acquiring Ci for photosynthesis. In
particular, they developed a very efficient photosynthetic CCM, which allowed them to
survive at low CO2 concentrations [35,42]. The carboxysome is an essential part of the
cyanobacterial CCM, unlike algae in which the pyrenoid is instead present (Figure 7) [78,97].
Cyanobacteria CAs play a central role in this mechanism [42] and up to now, α-, β- and
γ-CAs [42,98] have been identified in these organisms. β- and γ-CAs are predominant,
while α-CAs are less widespread [99].
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Figure 7. Schematic picture of cyanobacterium cell, highlighting the presence of the carboxysome and
thylakoid membranes within the cytosol. Subcellular localization of CAs is also shown: EcaA (α-CA)
is extracellular, EcaB (β-CA) is primarily located in the thylakoid membrane with a smaller component
associated with the plasma membrane, and β- and γ-CAs are localized in the carboxysome.

A gene encoding an α-CA (EcaA, external carbonic anhydrase alpha class) was initially
isolated from the cyanobacteria Anabaena sp. strain PCC7120 and Synechococcus elongatus
PCC7942 [41]. Anabaena EcaA is a protein of approximately 29 kDa which shows a signifi-
cant amino acid sequence homology with several human α-CAs, such as hCA I and hCA II,
including conservation of most active site residues required for Zn2+ binding and catalytic
activity (Figure 8) [41,98]. A twin-arginine translocation (Tat) signal peptide is present in
the N-terminal region of this protein and is responsible for protein transport to the outside
of the cell [98,100]. Indeed, immunogold localization studies with polyclonal antisera
directed against Anabaena EcaA showed that this CA has an extracellular location and is
associated with the cell wall, periplasmic space or cytoplasmic membrane [41]. Expression
of Anabaena EcaA is regulated by CO2 concentration in the growth medium, being highest
in cells grown at elevated CO2 levels (1% CO2 in air), whereas cells transferred in medium
with low levels of CO2 (0.01%) undergo a gradual decline in protein expression [41].

Synechococcus EcaA is a 26 KDa protein with high sequence homology with both
human α-CAs and Anabaena EcaA (Figure 8), and as for the latter, it contains at the N-
terminus many positively charged residues indicative of the presence of the signal peptide
for membrane targeting [41]. Moreover, protein expression in this case is also influenced
by CO2 concentration, with high levels of the enzyme occurring when cells are grown at
elevated concentrations of CO2 [41].

Despite EcaA proteins being discovered more than twenty years ago, their CA ac-
tivity was not confirmed for a long time. In 2009, Wang and coworkers [101] reported a
relatively high activity of the Anabaena EcaA protein heterologously expressed in E. coli,
whereas only recently clear evidence of the in vitro CA activity of Synechococcus enzyme
was obtained [102]. Interestingly, differently from Anabaena EcaA, the Synechococcus EcaA
contains a disulphide bond that is important for the enzyme activity, as already reported
for other CAs belonging to the α-class. Indeed, the enzyme shows high specific CA activity
only when it is expressed in heterologous bacterial systems which support the formation
of disulfide bonds, independently from the presence or absence of the leader peptide at
the N-terminus. Accordingly, the enzyme activity of recombinant Synechococcus EcaA
expressed in bacterial systems that do not support optimal disulfide bond formation can be
restored by the addition of a thiol-oxidizing agent [102].
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conservative and semi-conservative substitutions, respectively. Histidine residues involved in zinc
coordination, Thr199 and Glu106 (hCA II numbering) are highlighted in yellow. Tat-signal peptides
are underlined.

The functional role of the EcaA proteins in cyanobacterial photosynthesis was also
investigated by generating a deletion mutant of the Synechococcus protein. Surprisingly,
both the CA activity, measured at the cell surface, and the growth rate of the mutant
were comparable to those of the WT cells [41,103], suggesting that EcaA does not have
a significant role in the CCM. Thus, due to its capability to bind CO2 and HCO3

− and
to its cell-surface location, it was hypothesized that this protein could play a role as a
sensor, detecting or signaling changes in the level of CO2 in the environment [40–42,98].
Additional studies are necessary to clarify this point.

Further, EcaA enzymes have been found in other cyanobacteria, such as the alka-
lophilic cyanobacteria Rhabdoderma lineare and Microcoleus chthonoplates, and the marine
cyanobacterium Cyanothece sp. ATCC51142 [104–106]. Cyanothece EcaA is a highly active
CA, whose enzymatic activity was confirmed both in vivo and in vitro, using intact cells
and a recombinant protein expressed in a heterologous host, respectively [106]. Interest-
ingly, even if Cyanothece EcaA contains two cysteine residues (Cys55 and Cys209), unlike
Synechococcus EcaA, its enzymatic activity does not show a redox regulation, indicating
the absence of the disulfide bond [102]. Inhibition studies using specific α-CA inhibitors
with different membrane permeability suggested that Cyanothece EcaA is not associated
with the outer membrane, since the rate of CO2 hydration was highly reduced by EZA,
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which is characterized by high permeability through cell membranes but not by AZA,
which cannot penetrate cells [106]. Further studies, carried out in E. coli cells with several
recombinant forms of the Cyanothece EcaA protein (with and without the leader peptide),
confirmed the transport of recombinant proteins containing the leader peptide across the in-
ner cytoplasmic membrane in E. coli cells, as also directly confirmed by immunofluorescent
microscopy [107].

Finally, EcaAs isolated from R. lineare and M. chthonoplates are two extracellular α-
CAs, localized in the glycocalyx membrane [105,108], probably involved in cell survival
under extreme conditions of soda lakes. Indeed, it has been suggested that these enzymes
may preserve the intracellular Ci pool for photoautotrophic assimilation, preventing CO2
leakage from the cell through its conversion into bicarbonate [99,109].

5. Conclusions and Future Perspectives

In this review, we have provided a comprehensive overview of experimental data
existing on α-CAs present in photosynthetic organisms, highlighting that these enzymes
can have different cellular localization and adopt many physiological roles. In higher plants,
these enzymes have been little studied; however, available data indicate their involvement
in both supplying CO2 at the active site of Rubisco and determining proton concentration
in PSII membranes. On the contrary, a greater number of studies are available on the
algal and cyanobacterial α-CAs, which have been demonstrated to be actively involved in
CCM, photosynthetic reactions and detecting or signaling changes in the environment’s
CO2 level. Even the biochemical and structural studies are limited in number and do
not allow us to rationalize the presence of structural features associated with particular
cellular localizations or physiological functions. From this scenario, it emerges that many
studies are still needed on α-CAs from photosynthetic organisms in order to provide a clear
structure–function relationship and to understand their correlation with the physiological
functions exercised by the other classes of CAs present in the same organisms.
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