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Herpes simplex viruses type 1 and type 2 (HSV-1 and HSV-2) are amongst the most common human infectious viral pathogens
capable of causing serious clinical diseases at every stage of life, from fatal disseminated disease in newborns to cold sores genital
ulcerations and blinding eye disease. Primary mucocutaneous infection with HSV-1 & HSV-2 is followed by a lifelong viral latency
in the sensory ganglia. In the majority of cases, herpes infections are clinically asymptomatic. However, in symptomatic individuals,
the latent HSV can spontaneously and frequently reactivate, reinfecting the muco-cutaneous surfaces and causing painful recurrent
diseases. The innate and adaptive mucosal immunities to herpes infections and disease remain to be fully characterized. The
understanding of innate and adaptive immune mechanisms operating at muco-cutaneous surfaces is fundamental to the design of
next-generation herpes vaccines. In this paper, the phenotypic and functional properties of innate and adaptive mucosal immune
cells, their role in antiherpes immunity, and immunopathology are reviewed. The progress and limitations in developing a safe
and efficient mucosal herpes vaccine are discussed.

1. Introduction

Herpes simplex viruses types 1 and 2 (HSV-1 and HSV-2) are
among the most common human infectious viral pathogens
[1–3]. So many people have HSV-1 and/or HSV-2 but do not
know that they have it [4, 5]. These two viruses can cause
lifelong diseases with clinical manifestations including cold
sores, genital ulcerations, corneal blindness, and encephalitis
[6–8]. In cases of vertical transmission to the newborn,
HSV-1 and HSV-2 can cause fatal neonatal encephalitis [9–
11]. In the past two decades, there have been increasing
reports of a worldwide pandemic of herpes infections despite
the widespread use of antiviral drug therapies (reviewed
in [12]). At the site of primary infection, HSV undergoes
a productive replication within the epithelial cells lining

the mucosa. Thereafter, the virus enters nearby sensory
neurons, and the viral genome is transported to the neuronal
nuclei in the sensory ganglia (trigeminal (TG) or dorsal
root (DRG)) that innervate the infected site. During the
first week after infection, HSV replication takes place in
ganglionic sensory neurons, but within a few days no
virus can be detected. While epithelial cells are destroyed
during lytic HSV replication, most neuronal cells appear
largely intact and serve as a reservoir for the latent virus.
During reactivation, the virus travels from the TG and DRG
back to the site of primary infection and causes eruptions
on epithelial surfaces (viral shedding) with or without
symptoms. This reactivation event may be spontaneous,
but it is generally triggered by physical and chemical stress
stimuli and/or with immunosuppression [7, 8].



2 Clinical and Developmental Immunology

1.1. Ocular Herpes. Herpes simplex virus type 1 (HSV-1)
continues to spread around the globe. Ocular infection with
HSV-1 is the leading cause of corneal blindness worldwide
[7]. Following primary ocular infection, HSV-1 remains
latent in the sensory neurons of trigeminal ganglia (TG) for
the life of the host, with periodic stress-induced reactivation
that produces progeny viruses in the eye causing potentially
blinding recurrent corneal herpetic disease. Over 450 000
individuals in the USA have a history of ocular herpes.
Ocular manifestations range from blepharitis and conjunc-
tivitis to dendritic keratitis, causing disciform stromal edema
and necrotizing stromal keratitis [7]. Antiviral drugs (e.g.,
acyclovir) reduce recurrent ocular disease by approximately
45% [13]. Because of the incomplete protection with these
drugs [14–16], along with the emergence of acyclovir-
resistant HSV strains [17–20], an efficient vaccine against
HSV-1 and HSV-2, prophylactic or therapeutic, would be the
most useful and cost-effective way to reduce morbidity and
mortality [21–23].

1.2. Genital Herpes. Over 530 million worldwide are infected
with HSV-2, a lifelong infection that continues to spread
and can cause recurrent and painful genital lesions [1–
3]. Recurrent genital herpes is the most prevalent sexually
transmitted disease [24–26]. The Center of Disease Control
and Prevention (CDC) reported in 2010 that (i) HSV-2
prevalence in the US remains high (16.2%) with women
of all races at greater risk for HSV-2 infection and disease
than men; (ii) the disease continues to disproportionately
burden African Americans (39.2% prevalence), particularly
black women (48.0% prevalence); and (iii) although less
common as the cause of genitalherpes, there has been also
a dramatic rise in the incidence of genital HSV-1 infections,
mainly in young adults, largely due to the changes in sexual
behavior. The percentage of primary genital herpes caused by
HSV-1 has doubled during the last 2 decades, contributing
to some 50% of all cases [7, 8]. While genital HSV-1
infections can result from genital-genital and oral-genital
contact with an infected person who is actively shedding
virus, oral-genital contact appears to account for most
genital HSV-1 infections [7, 8]. Genital herpes has played
a more important role than any other sexually transmitted
infection in driving HIV prevalence [27]. Conversely, in HIV-
infected individuals, HSV infection increases in frequency
and severity as CD4 T-cell counts wane [27–30]. Patients
with immunodeficiencies or immunosuppression-related
treatments have an increased risk of developing severe HSV
infection [31]. In the absence of strong local immunity,
recurrent ulcerative lesions produced by reactivated HSV
from sensory ganglia predispose and increase the risk of
acquiring human immunodeficiency virus (HIV) [15, 32]
and papillomavirus (PPV), which is associated with cervical
carcinoma [33, 34]. Additionally, HSV infections can be fatal
to newborns, of mothers that acquire the infection first time
during pregnancy, and cause encephalitis or meningitis in
adults [35]. A substantial number of HSV-2 seropositive
individuals lack a history of clinically significant genital
herpes [24, 25]. These asymptomatic individuals are the
main source of virus transmission, which occurs mostly

during periods of asymptomatic viral shedding [36, 37].
Despite the availability of many intervention strategies,
such as behavioral education, condom use, and standard
antiviral drug therapies, the transmission rate of herpes has
continued to rise during the last three decades [38–40].
Although antiviral drug resistance has not been a major
problem in immunocompetent patients, the problem of
acyclovir resistance in immunocompromised patients is well
documented [18, 41–47]. While genital herpes infection is
wide-reaching, some populations are more affected despite
the availability of condoms and chemoprophylaxis [48, 49].
Evidence suggests that only an effective vaccine against HSV
might control this epidemic [49, 50]. However, the question
that remains to be addressed is as follows: at which level the
shedding has to be reduced by a vaccine in order to reduce
transmission and disease?

1.3. Neonatal Herpes. Herpes affects some 30–60% of
women receiving obstetric care, with newborns particularly
susceptible to neonatal infection and severe herpetic disease
[9, 51–53]. HSV-2 is responsible for up to 70% of neonatal
herpetic infections [9–11, 51–53], which is defined as infec-
tion within 28 days of birth. However, HSV-1 appears also to
cause more than 51% of neonatal herpes [9]. Seronegative
women that contract the virus for the first time during
pregnancy are at highest risk of transmitting the virus to the
newborns [9, 11, 54]. HSV acquisition rates in pregnancy
are high in discordant couples, especially for HSV-2 [55].
For neonatal transmission to occur, a pregnant woman must
be shedding the virus at the time of delivery [9, 11, 54].
Approximately 85% of neonatal herpes results from the virus
that is perinatally transmitted in the birth canal during the
time of delivery [9, 51–53]. Studies of seropositive women
have shown that HSV-2 is shed asymptomatically in the
genital tract on approximately 1 of every 3 days [54, 56–61],
a high proportion of which has significant implication on
neonatal spread of HSV infections. Genital HSV-2 shedding
at the time of delivery is associated with a relative risk of >300
for virus transmission. Neonatal herpes infection rates can be
reduced by preventing maternal acquisition of genital HSV-1
and HSV-2 infection near term [62]. Perinatal and postnatal
transmission may be prevented by the use of elective
Caesarean delivery and avoidance of breastfeeding. The risk
of neonatal herpes and death is highest in infants born to
mothers who have seroconverted by the time of delivery.
This implies a crucial role of the mother’s immune system
in minimizing vertical transmission. The prevalence and
severity of neonatal HSV disease, as manifest by devastating
CNS and disseminated infections, have increased over the
past 10 years [51, 53, 63]. Prompt diagnostic testing of
any mother/neonate at risk would be critical to protect the
newborn. Once the newborn is infected, the most effective
treatment for subsequent herpetic disease and alleviating
potential neurodevelopment sequelae is oral acyclovir [9].
Once newborns develop neonatal herpes infection with
central nervous system involvement, they are usually treated
with parenteral or oral acyclovir (300–1500 mg per square
meter) for 6 to 12 months [9]. Discontinuing this prophylaxis
treatment in infants and young children with significant
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neurological sequelae sometimes leads to relapses even after
3 years of viral suppression.

Neonatal vaccine is highly desirable, and the start
point would be preventing the vertical transmission of the
infection. The susceptibility of newborns to viral infections
appears to be the consequence of the immaturity of their
immune system [64]. Immunization of pregnant women
with many other viral vaccines has been proposed and used
successfully throughout the world for many years [65, 66].
Maternal vaccines for poliovirus, influenza viruses, and
rubella have been found to be safe for both the mother
and the newborn [66]. Since newborns are most susceptible
to herpes infections but least responsive to vaccines [66],
maternal immunization has been suggested as a way to
protect newborns [67]. The benefit from maternal immu-
nization may come from transferred immune antibodies
across the placenta [68–71]. However, many questions still
remain to be answered. (i) what would be the optimal level
of maternal antibodies that are needed in order to prevent the
transmission of the virus to newborn? (ii) How long will the
transferred antibodies remain in the newborn at a magnitude
that is high enough to prevent infection and disease? (iii)
What is the relative role of innate immunity versus adaptive
immunity in such protection? (iv) What is the relative role of
HSV-specific antibodies in such protection?

2. The Mucosal Immune System and
Herpes Immunity

HSV-1 and HSV-2 infections occur at and emanate from
mucosal surfaces. To combat herpes infection, the mucosal
immune system maintains innate and adaptive immune
barriers against these invading pathogens while avoid-
ing overactive inflammatory responses that would impair
mucosal tissue function. In human adults, the mucosal
surface is enormous (up to 400 m2 of surface), with the
mucosal immune system largely separate and distinct from
the systemic immunity. In general, parenteral immunization
induces systemic but not ocular mucosal immune responses,
while ocular mucosal immunization induces both systemic
and mucosal immune responses [72–74]. Within the com-
mon mucosal immune system, certain sites may facilitate
a more far-reaching distal mucosal immune response than
others, a sort of mucosal immune hierarchy. For example,
antigens (Ags) administered intranasally promote immunity
in the vaginal mucosa more effectively than Ags given
orally, suggesting that there is compartmentalization or
regionalization of the mucosal immune system. Intranasal
immunization induces the production of IgA not only
within the nasal cavity and salivary glands, but also in the
small intestine lamina propria, the remote urinary tract,
and the vagina. The vascular and lymphatic structures
within the nasal mucosa as well as the nasolacrimal duct
system provide unique anatomical conduits and intercom-
munication between the nasal-associated lymphoid tissue
(NALT) and the ocular mucosal tissue, which are thought
to be immunologically connected and interdependent. The
integrated nature of OMIS and NALT systems is important

for the development of ocular immunoprophylactic and
immunotherapeutic vaccines, and it is hoped that intranasal
immunizations will provide—or at least contribute to—
ocular immune protection (and vice versa). Specifically in
rats, topical ocular delivery of particulate antigen results
in an Ag uptake that is greatest at the conjunctiva and an
Ag uptake also in the NALT. In some cases, the induction
site for Ag-specific IgA stimulation was traced to NALT
rather than to the ocular surface. Therefore, it was suggested
that NALT functions as a primary inductive site for ocular
immune responses, at least in rodent models. However, this
remains controversial and unresolved for humans where the
complex interaction between OMIS and NALT is not yet fully
elucidated.

In order to better understand the immunity of her-
pes infections and ultimately design efficient therapeutic
vaccines, it is fundamental to define the cellular and
molecular immune mechanisms that control (or exacerbate)
the infection/disease [7, 8]. It is important to note that,
fortunately, only around 5% of immuno-competent HSV-
infected individuals develop symptomatic herpetic recurrent
disease (symptomatic individuals), while the majority of the
infected human population remains asymptomatic despite
continuously shedding from reactivated viral particles at
a rate similar to symptomatic persons [7, 75–79]. Thus,
while many have frequent recurrences of herpes disease (i.e.,
“symptomatic” or high-recurrent-disease patients with 1–
5 episodes of recurrent disease/year), others have very few
recurrences (i.e., “asymptomatic” or low-recurrent-disease
patients with no history of recurrent disease). The difference
between the symptomatic and asymptomatic groups is not
a result of how often the latent herpes virus reactivates,
as both groups shed the virus at similar rates [7, 77–79].
Instead, the difference is more likely related to variations
in the magnitude and nature of cellular immune responses.
As observed in animal models, herpes virus-specific T-cell
responses have been reported to both protect against disease
as well as cause disease [8]. It is not known why HSV-1 and
HSV-2 reactivations/sheddings do not lead to symptoms in
some individuals whilst it is symptomatic in others, or why
the frequency and severity of recurrent disease vary among
symptomatic individuals [8]. The immune mechanism(s) by
which asymptomatic patients control herpetic infection and
symptomatic patients do not remain to be fully elucidated
[7, 75–79]. Identifying these mechanisms, or at least the viral
antigens and epitopes involved, is critical to understanding
how to protect against recurrent herpetic disease and for
rational advances in therapeutic and/or prophylactic vaccine
development. Until our recent studies [7, 75–79], little
was known about the difference in T-cell responses in
asymptomatic compared to symptomatic herpes patients.

In this paper, T-cell determinants from herpes proteins
that are recognized mostly by T cells from asymptomatic
individuals are designated as “asymptomatic T cell epitopes”,
while determinants that are recognized mostly by T-cells
from symptomatic individuals are designated as “symp-
tomatic epitopes.” A multitude of complex cellular and
molecular mechanisms underlying the protective efficacy
of T cells specific to “asymptomatic” epitopes versus the
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immunopathology of T cells specific to “symptomatic”
epitopes may be in play [7, 77–79]. (1) The pathogenic
“symptomatic” epitopes may direct the T-cell responses
away from those that are best suited to clear the viral
infection. (2) T-cell crossreactivity with epitopes from other
viruses, within or outside the herpes family, can also play
roles in protective heterologous immunity versus damaging
heterologous immunopathology [79]. (3) The precursor
frequency, proliferative capacity, and functional properties
of epitope-specific “symptomatic” and “asymptomatic” T
cells in a given individual may also be a factor [79]. Indeed,
the T cell repertoire of individuals with the same MHC
restriction elements can vary significantly based on “het-
erologous immunity” and “private specificity.” (4) “Asymp-
tomatic epitopes” may trigger proliferation of “protective”
T cells. Conversely, “symptomatic epitopes” may trigger
proliferation of “pathogenic” T-cells [7]. Our recent findings
support different levels of HSV-specific T-cell repertoires
in symptomatic and asymptomatic individuals [7, 77–79].
We found that T cells from symptomatic and asymptomatic
individuals, with similar HLA, have dramatically different
profiles of responses to HSV epitopes. A set of human T-cell
epitopes from HSV-1 glycoproteins B and D (gB and gD)
is strongly recognized by T cells from HSV-1 seropositive
asymptomatic individuals, but only weakly by T cells from
symptomatic individuals [7, 77–79]. We recently made the
unique observations that following. (1) A set of “promiscu-
ous” human HSV-1 and HSV-2 glycoprotein B (gB) epitopes
was strongly recognized by T effector cells (Teff cells) from
asymptomatic patients but not by T cells from symptomatic
patients [1]. In contrast, a different nonoverlapping set
of gB epitopes was strongly recognized by T-cells from
symptomatic patients, but not by T cells from asymptomatic
patients [7, 79]. (2) More importantly, immunization of
susceptible double transgenic mice, expressing both type 1
and type 2 human leukocyte antigens (i.e., HLA-DR and
HLA-A2.1) with “asymptomatic” T-cell epitopes reduced the
severity of herpetic lesions when inoculated with HSV-1 and
HSV-2 (submitted). We, therefore, hypothesize that different
sets of HSV-1 and HSV-2 T-cell epitopes are recognized
by symptomatic versus asymptomatic individuals and that
protective immunity against herpes disease can be induced
following immunization with “asymptomatic epitopes,” but
not “symptomatic epitopes.”

2.1. Ocular Mucosal Immune System (OMIS) and Ocular
Herpes Immunity. The ocular mucosal surface is the first-
line defense system that is frequently exposed to infections
[80]. The conjunctiva and the lacrimal glands are the key
components of ocular mucosal immune system (OMIS)
(reviewed in [81]). Topical ocular immunization—rather
than parenteral immunization—is most likely to induce
critical local mucosal immune responses [23, 82, 83]. We
recently observed that topical ocular immunization (eye
drops) with lipopeptides (peptides linked to fatty acid
moiety) was more effective at inducing ocular mucosal
immune responses than parenteral immunization (unpub-
lished). Interestingly, intranasal immunization (nose drops)

was even more effective than topical ocular immunization
(possibly because of better retention of the inoculum).
Since lipopeptide vaccines bearing murine herpes CD4+ and
CD8+ T-cell epitopes (unpublished and [84–86]) are able to
cross ocular and nasal surfaces, we hypothesize that herpes
lipopeptides bearing human T-cell epitopes will also be able
to cross the mucosal membrane and deliver the specific
epitopes to both the local ocular and systemic immune
systems.

Although many investigators have studied mucosal lym-
phoid sites of the common mucosal system, the focus has
been mostly on gut-associated lymphoid tissue (GALT),
nasal associated lymphoid tissue (NALT), and vaginal-
associated lymphoid tissue (VALT). Only a small number
of researchers are actively involved in studying OMIS, also
known as eye-associated lymphoid tissue (EALT) [23]. As
mentioned before, among the unanswered questions in
OMIS biology is the role of the NALT in generating OMIS
immunological protection and vice versa. The conjunctiva
and the lacrimal glands are key elements in the OMIS [23].
The conjunctiva forms a continuous mucosal surface that
extends from the eyelid margin to the cornea and makes
contact with airborne pathogens and periocular tear film
[23]. The conjunctiva and the lacrimal gland are postulated
to play an active role in both inductive and effector functions
with the presence of IgA+ plasma cells, secretory IgA (sIgA),
and immune cells that produce cytokines and chemokines
[81, 87–91]. Conjunctival immuno-competent cells include
those from the lymphoid system (lymphocytes) and those
from the myeloid system such as macrophages, poly-
mononuclear leukocytes, eosinophils, mast cells, basophils,
fibroblasts, epithelial cells, vascular endothelial cells, and
classical antigen presenting cells (macrophage, dendritic
cells, Langerhans cells, and B cells). Human conjunctiva
contains an abundance of lymphoid-derived cells [23]. Most
(92%) of the conjunctiva’s lymphocytes are T cells (76%
are CD8+ T cells, and 16% are CD4+ T cells; [23] memory
CD45(+)RO(+) T cells constitute 45% of total CD45(+)
leukocytes, while naive CD45+RA+ T cells represent 29%)
[23]. We have recently demonstrated that OMIS CD4+ T cells
and serum IgA can be induced in rabbits following topical
ocular delivery of HSV peptides together with cytosine-
phosphate-guanine (CpG2007) mucosal adjuvant [83], a TLR-
9 ligand. Like other components of the mucosal system,
ocular mucosal immune system (OMIS) maintains a bar-
rier against exogenous antigens and invading infectious
pathogens that attack the surface of the eye and GT
while avoiding inflammatory responses that would impair
parenchymal function. T lymphocytes, both CD4+ and CD8+

phenotypes, and plasma B cells together account for more
than 60% of the entire mucosal effector immune system cell
population.

Recently, we have described an abundance of “natural”
Foxp3+CD4+CD25+ nTreg cells in rabbit conjunctiva, the
main inductive site of the ocular mucosal immune system
[76]. We demonstrated that conjunctiva-resident nTreg cells
suppress HSV-1-specific CD4+ and CD8+ effector T cells
(Teff ). Converging evidence from our laboratory and other
laboratories demonstrates that nTreg cells have the potential
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to dampen the vaccine-induced, HSV-specific, Teff -mediated
immunity [76]. Despite recent extensive studies on nTreg

cells, the molecular mechanism by which nTreg cells mediate
the suppression of pathogen-specific T-cell immunity or
dampen vaccine-induced Teff cells remains poorly under-
stood.

To prevent excessive immune-mediated ocular tissue
damage by Teff cells, a proper balance between the Teff

cell, and Treg cells is needed. This balance was thought
to be maintained by communication through cytokines
or by stimulation through costimulatory molecules on
APCs [76]. However, it was recently shown that TLRs
in mouse and human Treg cells sense pathogens directly
and modify Treg action [81, 87–91]. TLRs ligands, such as
CpG, can also modulate immune responses by blocking
the suppressive effects of Treg cells. The TLR profile and
function of conjunctiva Treg cells have not been reported. In
order to study the role of Treg in ocular herpes immunity,
we recently examined the expression profile of TLRs on
conjunctiva-resident nTreg cells and assessed whether TLRs
are functionally active by stimulating these nTreg cells with
TLR agonists in the absence of APCs. We have shown
that rabbit conjunctiva-resident CD4(+)CD25(+) nTreg cells
express high levels of functional TLR2 and TLR9. Topical
ocular immunization of rabbits with HSV-gD peptide T-
cell epitopes, together with a TLR2 ligand (LTA), reverses
CD4(+)CD25(+) nTreg cell suppressive function. In contrast,
topical ocular immunization of rabbits with the same
epitopes delivered with a TLR9 ligand (CpG2007) resulted in
only a slight effect on CD4(+)CD25(+)nTreg cell suppressive
function. Our findings demonstrate that regulating conjunc-
tiva CD4(+)CD25(+) nTreg cell function trough TLR2 and
TLR9 leads in turn to the modulation of ocular mucosal
HSV-specific CD4(+)CD25(−) Teff cell responses.

Within the common mucosal immune system, certain
sites may facilitate a more far-reaching distal mucosal
immune response than others [92, 93]. For example, antigens
administered intranasally promote vaginal immunity more
effectively than antigens given orally, suggesting that there
is compartmentalization or regionalization of the mucosal
immune system [34, 92]. Intranasal immunization induces
IgA not only within the nose and salivary glands, but also in
the small intestine lamina propria [94], the remote urinary
tract [95], and the vagina [96]. The vascular and lymphatic
structure of OMIS and nasolacrimal duct system provide
unique anatomical conduits through which the NALT (nasal-
associated lymphoid tissue) and OMIS are thought to
be immunologically connected and interdependent. The
integrated nature of OMIS and NALT systems is important
for ocular immunoprophylactic and immunotherapeutic
vaccines considerations, and it is hoped that intranasal
immunizations will provide—or at least contribute to—
the ocular immune protection (and vice versa). In rats,
following a topical ocular delivery of particulate antigen,
the antigen uptake is greatest at the ocular sites, particularly
the conjunctiva, and also in NALT [81–83, 91, 97]. In some
cases, the induction site for antigen-specific IgA stimulation
was traced to NALT rather than the ocular surface [98].
Therefore, it was suggested that NALT functions as a primary

inductive site for ocular immune responses, at least in rodent
models [98].

Recently, by using a simple surgical procedure in rabbits,
we disconnected the OMIS from NALT and assessed the
immunogenicity of a vaccine formulation administered
either ocularly or intranasally [99]. We showed that NALT
do interact immunologically with the OMIS through the
nasolacrimal ducts. Topical ocular immunization-induced
T-cell responses in the conjunctiva did not appear to be
modulated by NALT [99]. However, NALT appeared to
downmodulate systemic immune responses [99]. Conversely,
nasal immunization efficiently induced conjunctival T-cell
responses. The mechanisms by which NALT downmodulated
ocular mucosal immune responses induced following topical
ocular immunization remain to be identified. It is possible
that the nature of the immune response induced by NALT
during topical ocular immunization could generate suppres-
sive cells or factors that downmodulate the systemic Th1
immune response [99].

Conjunctival lymphoid follicles (CLFs) undergo hyper-
plasia in the presence of a pathogenic infection (e.g., HSV-
1), and CLFs appear to participate in the afferent limb of
the acquired immune responses for the ocular surface [23].
The presence of plasma cells in human conjunctiva suggests
efferent function as well with the expression of secretory
component by human conjunctival epithelium. The function
of human conjunctival lymphoid follicles is still debated [23].
Human conjunctival B cells may be induced to differentiate
into plasmocytes secreting sIgA following pathogen or Ag
stimulation. Similar to humans, rabbit conjunctiva contains
an abundance of CLFs [23]. Conjunctival lymphoid folli-
cles (CLFs) exist in normal individuals as organized sub-
epithelial collections of lymphoid cells, often with germinal
centers [23]. The human conjunctiva and CLF are part of
OMIS and participate in afferent adaptive ocular immunity.
CLFs are also found in rabbit conjunctiva but are absent
in mice and rats [23]. Figure 1 describes the mechanisms
of a vaccine-mediated control of an anti-HSV-1 immune
response in the conjunctiva following ocular infection with
HSV-1.

2.2. Genital Tract Mucosal Immune System and Herpes Immu-
nity. Mucosal genital surfaces represent the entry point of
both HSV-1 and HSV-2, neither of which has an effective
vaccine. Genital herpes is an incurable, widespread sexually
transmitted disease that continues to contribute significantly
to morbidity and mortality worldwide [2], particularly
in neonates and immunocompromised individuals [2]. In
women, herpes simplex virus type 2 (HSV-2) infects the
mucosa in the genital tract and spreads to the nervous
system. After the initial infection is resolved, latent virus
can persist in infected ganglia for long periods, and the
activation of the latent virus causes recurrent disease [2].
Maintenance of the integrity of the epithelium of the genital
tract is critical for sexual and reproductive health. It serves
as a physical barrier to protect the host against infection
without compromising critical reproductive functions [2].
The vagina, which is populated by commensal microflora,
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Figure 1: Model of immune mechanisms of TLR2-mediated control of an anti-HSV-1 immune response in the conjunctiva. During topical
ocular immunization with TLR2 agonist (1), high concentration of exogenous TLR2 agonist is sensed by conjunctiva APC and Treg cells
residing in the epithelium and then triggers the migration of conjunctiva resident APC (DC) and Treg to the proximal draining lymph node
(2, 4) or (dashed arrow) to the conjunctiva lymphoid follicles (CLF). TLR2/TLR2L interaction promotes maturation of DC and proliferation
of Tregs paralleled by temporarily abrogated suppression (empty arrow). As a result, Tregs do not suppress the ongoing immune response in
the draining lymph node or in CLF. (3) DC stimulate naı̈ve CD4+ and CD8+ effector T cells which undergo cell division and proliferation
in the draining LN (5) or CLF where they form with B cells a germinal center (characteristic of lymphoid follicles). Activated effector T cells
migrate to the epithelium and kill HSV-1-infected epithelial cells through CTL activity. Some activated effector cells in the LN preferentially
migrate to the periphery through lymphoid afferent canal to induce systemic immune response. Once HSV-1 is cleared by the immune
system and the source of TLR2 ligands is no longer present, Tregs will regain their suppressive capabilities, thus contributing to the balance
between tolerance and immunity.

is lined with stratified squamous epithelial cells, while the
uterus and Fallopian tubes are lined with columnar epithe-
lium. The female sex hormones, estradiol and progesterone,
influence and regulate epithelial cell function and barrier
integrity throughout the reproductive tract [2]. In addition
to acting as a physical barrier, the epithelium functions as an
integral part of the innate and adaptive immune systems.

Protection against potential pathogens in the female gen-
ital tract (GT) is provided by a variety of measures that can
be grouped into two broad categories: innate and adaptive
immunities. The GT mucosa is unique in the regulation of
immune protection as it is exposed to sexually transmitted
bacterial and viral pathogens, allogeneic spermatozoa, and
the immunologically distinct fetus [2]. In response, GT has
evolved immune mechanisms to protect against pathogens
without compromising fetal survival. While much attention
has been paid to innate immune function in the lungs
and GI tract [2], very few studies have investigated the

presence and function of the innate immune system in the
GT. It has become clearer that the innate immune system
is present throughout the reproductive tract and functions
in synchrony with the adaptive immune system to provide
optimal protection.

Similar to CLF (Figure 1), an induced vaginal-associated
lymphoid tissue aggregate has been documented in the
genital mucosa of immunized mice, which has been cor-
related with protection against HSV-2 infection following
the challenge [2]. These aggregates contain CD4+ T cells,
B cells, and CD11c+ antigen-presenting cells. Furthermore,
it has been suggested that the local microenvironment in
genital tract plays a role in generating effective antiviral
immune responses after immunization. Zhang et al. [2]
have examined whether protective effector memory T-
cell responses could be induced in the genital mucosa
in the absence of secondary lymphoid organs, utilizing a
lymphotoxin knockout mouse model. Intravaginal (IVAG)
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immunization of both lymphotoxin(−/−) and parental wild-
type (WT) mice lead to complete protection against genital
HSV-2 challenge. The immune responses generated were
effective in protecting against mucosal HSV-2 challenge in
the genital mucosa, suggesting that even in the absence
of secondary lymphoid organs, IVAG immunization could
induce an effective anti-HSV-2 memory T cell response. This
suggests the importance of tissue-resident effector memory
T cells in the protection against genital herpes as recently
reported [100–102].

Several lines of evidence, in both animal model [8]
and humans [7], support a critical role for CD8+ T cells
in the control of HSV-2 infections and in surveillance
function that limits reactivation from sensory ganglia and
muco-cutaneous tissues. The precursor frequency of HSV-
2-specific CD8+ CTL is correlated with HSV-2 severity in
HIV-1/HSV-2 coinfected men [2] and cross-sectional studies
show HLA class I associations with HSV severity [7, 8].
Local infiltration of HSV-2-specific CD8+ CTL correlates
with clearance of virus particles in human recurrent herpes
[7, 8]. HSV-2-specific CD8+ T cells persistently infiltrate
healed genital herpes lesions and localize near sensory nerve
endings [7, 8]. How local HSV-2-specific CD8+ T cells in
dorsal root ganglia interact with infected neurons remains
to be determined. In mice, HSV-2-specific CD8+ T cells
infiltrate infected ganglia during the acute and latent phase,
and mediate control over viral reactivation in an IFN-γ-
dependent manner [7, 8]. In genital biopsy specimens from
humans with recurrent HSV-2 infection, viral clearance is
associated with a high concentration of local CD8+ T cells
with cytolytic activity against infected cells [7, 8]. In animal
models, depletion of CD8+ T cells impairs clearance of virus
from sensory neurons, whereas TCR transgenic CD8+ T cells
specific for the immune-dominant H-2Kb-restricted peptide
in HSV-2 glycoprotein B (gB498–505) transferred into mice
lacking other components of adaptive immunity result in
viral clearance [8]. These studies demonstrate that HSV-
2-specific CD8+ T cells play a protective role in HSV-2
infection.

3. CD8+ T-cell Functions during HSV-1 and
HSV-2 Latency/Reactivation Cycle

Following primary ocular infection in immune-competent
humans, HSV-1 and HSV-2 establish a lifelong latent
infection in neurons of the sensory ganglia (SG) with inter-
mittent reactivation cycles (Figure 2). While spontaneous
reactivation of the virus from sensory ganglia and shedding
of the virus in tears or in genital tract do not seem to occur
in mice (as opposed to rabbits, guinea pigs, and humans),
reactivation of HSV from latent infection is readily observed
in vitro when sensory ganglia are explanted in culture [103].
HSV reactivation in mice can be induced to a limited
extent by ultraviolet irradiation [104] or elevated body
temperature or hormone [105, 106]. A recent study used a
restraint “stress” mouse model of virus reactivation [107].
In this model, mice are subjected to stress by restraining
them in aerated plastic tubes for 12 hrs and depriving

them of food and water for the same period of time.
Obviously, this protocol of extreme and acute stress does
not represent the daily “physiological” stress situations in
humans (be that a physical or chemical stress). Exposure of
HSV latently infected host to stress may upregulate certain
molecules, compromising the efficacy of protective CD8+ T-
cell response, and may also diminish the TG-resident CD8+

T-cell population [108–111], thus inducing HSV reactivation
from latency [112].

Herpes latency in human SG is accompanied by a chronic
CD8+ T-cell infiltrates that suppress virus reactivation from
latency [113, 114]. However, even in the face of local CD8+ T-
cell responses, HSV-1 and HSV-2-still periodically reactivates
from the SG, travel back to the mucocutaneous surfaces via
sensory neurons, and can cause potentially blinding recur-
rent herpetic disease [115–117]. This suggests that HSV-1
and HSV-2 have evolved mechanisms to evade CD8+ T-cell
immunosurveillance [115–117]. However, the exact cellular
and molecular mechanisms by which HSV-1 and HSV-2
intermittently escape CD8+ T-cells immunosurveillance are
unknown. Latency-associated transcript of (LAT) HSV-1 and
HSV-2 is the only viral gene that is abundantly transcribed in
latently infected SG. LAT is essential for efficient spontaneous
reactivation and promotes neuronal survival by reducing
apoptosis [118–120]. LAT can be considered as an immune
evasion gene, since we have recently found that, (1) LAT
inhibits Granzyme-B-(GrB-) mediated CD8+ T cell killing
by blocking GrB-induced apoptosis [121]; (2) LAT increases
PD-1, TIM-3, and LAG-3 on TG resident CD8+ T cells and
promotes inhibition of HSV-specific CD8+ T-cell function
in latently infected TG, which is consistent with the known
higher reactivation of LAT(+) versus LAT(−) virus [6, 87,
114, 121, 122] (Figure 3); (3) LAT increases MHC and
PD-L1 on neuroblastoma cells in vitro and in total TG
extracts in vivo ([87, 113, 114] and Appendix); and finally,
(4) LAT increases GAL-9, the ligand of TIM-3, in total
TG extracts in vivo (not shown). Based on these results,
together with related reports by others in the field [115–
117, 123, 124], we hypothesize the following. (1) Interactions
between PD-1+CD8+ T cells, TIM-3+CD8+ T cells and/or
LAG-3+CD8+ T cells in the TG with PD-L1, GAL-9, and/or
MHC-II expressing LAT(+) neurons result in inhibition of
HSV-specific CD8+ T-cell function and impaired anti-HSV
immunity. As illustrated in Figure 4, blocking the T-cell
inhibitory pathways, combined with therapeutic vaccination,
may restore the function of HSV-specific CD8+ T cells
in TG and reduce virus reactivation. The investigation of
these combined therapies may open new doors to novel T-
cell-based interventions to reduce/stop HSV-1 and HSV-2
reactivation and prevent recurrent disease.

Dysfunctional CD8+ T cells display impaired effector
function that is characterized by decreased production of
proinflammatory cytokines and hyporesponsiveness to anti-
genic restimulation. Total or partial loss of T-cell function
(dysfunction) occurs during many latent and chronic infec-
tions [125], including latent HSV-1 infection [113, 123, 126].
However, not all T-cell dysfunction is due to exhaustion.
Exhaustion is usually linked with expression of PD-1 and
TIM-3, while dysfunction is linked with one or more of
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Figure 2: A model of CD8+ T-cell monitoring of HSV-1 latency in sensory ganglia. (a) During a primary infection (affecting the cornea of
the eye), HSV-1 invades the termini of sensory neurons, the nucleocapsid travels by retrograde axonal transport to the neuron cell bodies
within the trigeminal ganglion (TG), viral DNA is inserted into the nucleus, and a brief period of virus replication ensues (b). An initial
infiltration of macrophages and T cells gives rise to an infiltrate dominated by CD4+ and CD8+ T cells and macrophages that persists for the
life of the animal (c). The CD8+ T cells associate closely with the neuron cell bodies and directly monitor viral gene expression in neurons
by detecting epitopes of viral epitopes that are produced early in a reactivation event and presented on the surface of the neuron within
MHC class I. The CD8+ T cells force the viral genome into a quiescent state through IFN-γ production (early in reactivation) or through
the release of lytic granules (at later stages of reactivation). A similar model can be extrapolated to genital herpes infection with HSV-2.

the eight T-cell inhibitory receptors described previously,
which include PD-1 and TIM-3. T-cell dysfunction requires
two signals: a first signal through the T-cell receptor (TCR)
following epitope presentation to TCR via the MHC complex
[127]; and a second signal through costimulation from T-
cell inhibitory receptors. In humans: latent HSV-1 in human
TG is accompanied by a chronic CD8+ T-cell infiltration
[128]. At least a portion of viral latency/reactivation in
human TG appears to be controlled by CD8+ T cell-mediated
mechanisms [87, 113, 114]. Significant numbers of CD8+

T cells producing IFN-γ were found in latently infected
TG of human cadavers, suggesting an antigen-driven T-cell

response [129–132]. However, many TG-resident CD8+ cells
express PD-1 and appear to be dysfunctional [133]. In mice,
similar to what is seen in humans, latently infected TGs have
a chronic CD8+T-cell infiltration. CD8+ T cells accumulate
in TG from 7 to 10 days following ocular herpes infection
and become the predominant T-cell type during latency
[134]. HSV-specific CD8+ T cells producing IFN-γ and GrB
appear to suppress (or abort) induced viral reactivation
in explanted mouse sensory ganglia [134, 135] and may
similarly reduce detectable HSV-1 reactivation in vivo [136–
139]. We have found dysfunctional CD8+ T cells specific to
human epitopes in the LAT(+) TG in the “humanized” HLA
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Figure 3: A model of CD8+ T-cell exhaustion and HSV-1 reactivation from sensory ganglia. During reactivation, the virus travels from
the TG back to the cornea and causes eruptions of epithelial surfaces (viral shedding). Viral reactivation may be asymptomatic or may be
associated with symptoms or lesions [7, 76–79]. This reactivation event may be spontaneous, but it is generally believed to be triggered
by stress stimuli and immunosuppressive conditions. CD8+ T-cell function is compromised (e.g., by stress-related hormones), viral
glycoproteins and nucleocapsids are formed and transported by anterograde axonal transport, virions are assembled at nerve termini, and
infectious virus is released, potentially leading to recurrent disease. Evidence from our laboratory and others suggested that latently infected
neurons appear to be resistant to CD8+ T-cell-mediated killing and that LAT is involved in this resistance to CD8+ T-cell killing. Recently,
we found that neuroblastoma cells expressing LAT in the absence of other HSV-1 genes resisted to GrB-induced apoptosis and are protected
from CD8+ T-cells attack. Also, latently infected TG have high expression of PDL-1 and Gal9 on infected neuronal cells also the majority of
CD8+ T-cells surrounding neuronal cells express high PD-1 and Tim3.

Tg mice. A human therapeutic vaccine that increases the size
and functionality of the HSV-specific IFN-γ+GrB+CD8+ T-
cell population in latently infected TG should significantly
decrease the rate of spontaneous reactivation (as measured
by shedding in tears) and reduce recurrent eye disease.
During neuronal latency, high levels of HSV-1 LAT RNA can
be readily and consistently detected in the TG [140, 141].
HSV-1 LAT null mutants (LAT(−)) generally have a reduced
reactivation phenotype [142–144], indicating that LAT plays

an important role in the HSV-1 latency-reactivation cycle.
LAT can block apoptosis [120], which supports wild-type
reactivation [120].

4. Topical Mucosal Vaccines to Stimulate
Herpes-Specific Mucosal Immunity

Since the 1920s, there have been countless research efforts
for the development of a herpes vaccine [145–148]. Eight
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Figure 4: Blockade of T-cell inhibitory pathways to boost immunity to herpes simplex virus infections. Multiple inhibitory pathways may
be activated in the exhausted CD8+ T cells in the HSV-1 latently infected TG, including PD-1, TIM-3, and LAG-3. Blockade of one T-cell
inhibitory pathway may partially restore HSV-specific CD8+ T-cell effector functions. Blocking antibodies may be directed against the PD-1,
TIM-3 and LAG-3 T-cell inhibitory receptors on CD8+ T cells or possibly their ligands (PD-L1 galectin-9 and MHC-II, resp.) on infected
neurons or on DC. Full restoration of CD8+ T-cell function may require blockade of two or more inhibitory pathways or a combination
of pathway blockade and vaccination. Sustained restoration of DC maturation may be also crucial for functional CD8+ T-cell function
and clinical cure. HSV-1 LAT gene appears-interfering with both CD8+ T-cell function and with DC maturation. How CD8+ T cells are
dysfunctional and DC are silenced, and the pathways to rescue this silencing, is still unknown.

decades later, while important research gains have been
made, no clinically approved vaccine is yet available [145–
149]. In the past, numerous vaccine approaches using live
attenuated virus, killed virus, or recombinant protein-based
vaccines products showed efficacy in animal models but
failed in clinical trials [122, 150–152]. The majority of the
vaccines are injected parenterally. While they induced strong
systemic immune responses, they failed to generate sufficient
local immune responses either in the eye, TG, or draining
lymph nodes, which are likely needed to prevent virus
transmission and to reduce replication [23, 84, 85, 150, 153–
160]. The challenge in herpes vaccine development is to
induce higher magnitude and wider breadth of the immune
response [122, 150, 161–163]. However, the progress towards
a herpes vaccine still faces many challenges, among which are
(1) the identification and inclusion in the vaccine of critical
“protective” epitopes recognized by asymptomatic patients;
(2) the exclusion of potentially “pathogenic” epitopes rec-
ognized by symptomatic patients; and (3) the optimization
of an efficient and safe mucosal vaccine delivery system
[21, 23, 82–86, 146].

4.1. Ocular Mucosal Herpes Vaccines. The viral epitopes
involved in protective versus pathogenic immune responses

are critical for a rational design of an epitope-based ocular
herpes vaccine [37, 164–166]. Considering the wealth of
data addressing the role of T cells in animal models, it
is surprising how little is known about the nature and
magnitude of HSV-specific T-cell responses in asymptomatic
versus symptomatic patients. Therefore, we have started to
examine the asymptomatic and symptomatic patients’ T-cell
responses against a library of potential epitopes identified
from gD and gB [1].

Unmodified synthetic peptides usually fail to prime T-
cell responses in vivo, unless they are delivered with a
potent immunological adjuvant [167–169]. Peptide-based
T-cell epitopes have been emulsified with a variety of
adjuvants, including Freund’s [167–170], Montanide’s ISA-
51 and ISA-720 [73, 74, 151, 171–173], MF59 [174–176],
and QS-21 [177]. Most of these adjuvants tested in small
laboratory animals have limitations due to toxicity. Others
fail to reproduce in humans the results obtained in mice
(reviewed in [178]). Recently, lipopeptide-based vaccines
(i.e., peptides covalently linked to a fatty acid moiety)
have gained considerable interest and represent a promising
approach for vaccine delivery [73, 74, 151, 171–173, 179–
192]. We and others have shown that parenteral or mucosal
administration of lipopeptide immunogens from HIV, HBV,
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HCV, HPV, CMV, HSV, group A streptococcus, and Plas-
modium falciparum malaria, without external adjuvant, is
efficient in inducing both local and systemic protective CD4+

T helper and CD8+ T-cell responses [73, 74, 151, 171–
173, 179–182, 185–193]. Lipopeptide Ags are taken up by
mucosal dendritic cells/Langerhans cells (DC/LC), inducing
phenotypic maturation of DCs, which are then capable of
priming T cells at the systemic and mucosal levels [73, 74,
151, 171–173, 179–192]. In nonhuman primates, we showed
that lipopeptide vaccine provided strong protection against
malaria [172, 173, 194]. At the time this is being written,
several clinical trials using malaria and HIV lipopeptides are
being conducted in Europe. In a recent phase I clinical trial,
both intradermal and intramuscular immunizations with
an HIV lipopeptide vaccine induced strong T-cell immune
responses [195]. This first wave of preclinical and clinical
trials showed that lipopeptide-based vaccines are efficient,
safe, and can be manufactured in large scale at GMP levels
by modern techniques of chemoselective ligation [183, 184].
Recently, we found that immunization with a cocktail of
three immunodominant CD4+ T-cell lipopeptides from gD
induced more efficacious protection against ocular herpes
infection and disease than any single lipopeptide alone
[84]. This finding strongly suggests that multiple epitopes
can induce a robust T-cell-mediated protective immunity
against ocular herpes [84, 85]. This is probably due to
the generation of more CD4+ and CD8+ T-cell responses
against multiple epitopes resulting in polyclonal T-cell lines
(one T-cell clone for each epitope). Efforts in designing
peptide immunogens for the induction of multiple HTL and
CTL responses included various strategies such as multiple
Ag peptide (MAP) conjugates [196, 197] and sequential
arrangement of epitopes into a single polypeptide [198, 199].
Multiple antigenic peptide constructs have been shown to
be potent, but have been challenging to be produced in
large quantities. Linear polypeptides are more efficient than
MAP [196, 197] and can be produced by standard techniques
of peptide synthesis. In addition, to avoid any potential
junctional epitopes that may be created by adjacent epitopes,
each epitope is separated with a GPGPG spacer [196].

4.2. Genital Herpes Mucosal Vaccines. In most of the clinical
trials, the vaccines failed to protect from infection in
spite of inducing strong HSV-specific neutralizing antibody
responses, emphasizing a crucial role for cell-mediated
immunity, especially on type 1 immunity [145–148]. While
important research gains have been made, there is still no
clinically approved vaccine for the prevention or treatment
of herpes infection and diseases. The challenge in herpes
vaccine development is to induce a higher degree and breadth
of T-cell responses [122, 150, 161–163]. In addition, the
majority of genital herpes vaccines are delivered parenterally
and do not generate significant mucosal T-cell immunity
neither (i) at the site of infection nor (ii) in the local lymph
nodes that drain the genital tract (GT). T-cell immunity at
both sites is likely necessary to prevent transmission and limit
severity of genital herpes [154–160]. Furthermore, subunit
formulations delivered into the GT are poorly immunogenic
compared to other mucosal routes (e.g., intranasal route)

[154, 200–202]. The progress towards an intravaginal (IVAG)
T-cell-mediated vaccine still faces significant challenges,
among which are (1) the identification of critical human
“protective” CD4+and CD8+ Teff cell epitopes (i.e., epitopes
mostly recognized by T cells from asymptomatic patients);
(2) the improvement of protective “naturally processed”
Teff cell epitopes; and (3) an efficient and safe IVAG
immunization strategy [21, 23, 82–86, 146, 147, 203, 204].

5. Mucosal Herpes Immunopathology

A study recently compared HSV-1 infection to HSV-2
infection in two different mucosal sites (ocular and genital
sites) in the mouse model demonstrated that despite the
elevated chemokines and cellular responses to HSV-2 in the
cornea, vagina, BS, spinal cord, and lymph nodes, HSV-2
still replicates at a greater rate than HSV-1 in the genital
mucosa and presents higher viral titers in the TG as well
[205]. However, this study must be extended to different
strains of HSV-1 and HSV-2 and maybe also to some
clinical HSV-1 and HSV-2 isolates. Whether the finding
accounts for the extent of the disease caused by these closely
related alphaherpesviruses and in each mucosal site remains
to be determined. Unknown also is the relative extent of
virus replication and immunopathology caused by these
closely related alphaherpesviruses in ocular, oral and genital
mucosae.

5.1. Ocular Herpes Immunopathology. Recurrent HSV-1 in-
fections can induce herpetic stromal keratitis (HSK), a blind-
ing immunopathologic disease characterized by progressive
scarring in corneal stroma [206]. In mice, HSV-1 ocular
infection induces infiltration of inflammatory cells in two
major waves. The first and transient wave of polymor-
phonuclear cells (PMNs) infiltration dissipates within 4 days
after infection [207]. This PMN infiltration controls HSV-1
replication, which coincides with the appearance of corneal
epithelial lesions. These epithelial lesions heal by day 4 after
infection and the corneas appear normal by both clinical and
histopathological exams. This PMN infiltration appears to
be T-cell independent as it occurs in both normal and T-
cell-deficient mice [207, 208]. After viral clearance from the
cornea, a second wave of a chronic leukocytic infiltration is
initiated between day 7 and 10 after infection. This secondary
infiltrate consists of neutrophils, CD4+ T cells, few CD8+

T cells, dendritic cells (DCs), and macrophages [208–212].
Unlike the first wave, the second wave of cell infiltration
seems to be T-cell-dependent and is orchestrated by CD4+
T cells [209, 210, 213, 214]. Indeed, ocular HSV-1 infection
of athymic nude mice failed to cause HSK. However, T cell-
deficient mice develop HSK following adoptive transfer of
exogenous HSV-specific T cells [213, 214].

The involvement of CD4+ T cells that produce Th1

cytokines (IL-2 and IFN-γ) in HSK has been established in
the mouse model, and HSK can be abrogated by depletion
of CD4+ T cells or neutralization of Th1 cytokines [215–
220]. The susceptibility to HSK in vulnerable A/J mice is
not associated with the magnitude of the systemic HSV-
specific CD4+ T-cell response generated in the draining
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lymph nodes (DLN) [221]. HSK is rather associated with
the nature of CD4+ T cells (i.e., Th1 versus Th2), which
can regulate inflammatory responses. Th1 type cytokines,
such as IL-2 and IFN-γ, play an essential role in regulating
neutrophil infiltration in the cornea, and both have been
implicated in HSK. The role of CD4+ T cells producing
Th2 cytokines in HSK is still controversial. Jayaraman et al.
showed that adoptive transfer of gD5−23-specific Th2 cells
into susceptible mice increased both the onset and severity
of HSK after corneal HSV-1-infection [222]. Others suggest
that HSK severity is ameliorated by CD4+ T cells expressing
the Th2 cytokine IL-4 [223, 224]. The effect of CD4+ Th2

T cells on HSK might also be affected by the plasticity of
these cells. The susceptibility to HSK is also determined by
the capacity of HSV-specific CD4+ T cells to induce DCs
and neutrophils infiltration into the cornea. A recent study
by Divito and Hendricks demonstrated that HSV-1-infected
corneas without HSK contained similar numbers of activated
CD4+ T cells as detected in HSV-1 infected corneas with
maximal HSK severity [225]. In humans, activated HSV-
specific T cells, infiltrate patient’s cornea with HSK [226–
228]. CD4+ Th17 T cells have also been implicated in human
HSK [229]. Our preliminary data revealed that following
ocular HSV-1 infection, the corneas of susceptible HLA Tg
mice appear to be infiltrated with CD4+ T cells. However,
the relative contribution of cornea-resident effector memory
T cells (TEM) and DLN-resident central memory T cells
(TCM) in protective memory against genital herpes versus
immunopathology remains to be determined.

5.2. Genitomucosal Herpes Immunopathology. Shedding of
reactivated HSV is estimated to occur at rates of 3–28% in
seropositive adults who harbor latent HSV-2 in their sensory
ganglia [36, 230–232]. However, the vast majority of these
immunocompetent individuals do not experience recurrent
herpetic disease. These are “asymptomatic patients” [13,
36, 112, 233]. In contrast, in some immunocompetent
individuals, reactivation of latent virus leads to recurrent
disease [13, 36, 112]. Recurrent disease ranges from rare
episodes occurring once every 5–10 years to outbreaks
occurring monthly or even more frequently among a small
proportion of subjects [13, 234, 235]. Individuals with a well-
documented clinical history of at least 5 recurrent genital
disease episodes during the past 12 months are “symp-
tomatic patients.” The difference between “symptomatic”
and “asymptomatic” genital herpes patients is not due to
differences in virus reactivation rates, since both groups
have similar virus-shedding rates [36]. Patients with T-cell
immune deficiencies, whether genetic or acquired, appear to
suffer more frequent reactivation and greater disease severity
than immunocompetent persons [37]. This emphasizes the
crucial role of cell-mediated immunity [145, 146]. The
most important T-cell epitopes may be in the tegument
proteins, which are injected into the cell during viral entry,
including those encoded by genes UL25 and UL39 [236]
and envelope glycoproteins (i.e., gB and gD) [1, 153, 237].
Substantial research has been directed towards the devel-
opment of T-cell epitope-mediated vaccines that are based

on the identification and inclusion of immunogenic T-cell
epitopes. However, not all immunogenic T cell epitopes are
protective in nature, and some may even be harmful [238].
A good starting point for the development of an effective
herpes vaccine would be to identify T-cell epitopes from
HSV envelope and tegument proteins that are recognized
by “asymptomatic” patients, to include these “protective”
epitopes in the vaccine, and to exclude the symptomatic
epitopes that might be “pathogenic” and harmful. Vaccines
excluding (pathogenic) “symptomatic” epitopes should have
increased efficacy against disease.

Several lines of evidence, in both animal models and
humans, support a critical role for T cells in controlling
genital herpes infections and disease [136, 153]. The pre-
cursor frequency of HSV-2-specific CD8+ CTL is correlated
with HSV-2 disease severity in HIV-1/HSV-2 coinfected
humans [239]. HSV-2-specific CD4+ and CD8+ T cells
persistently infiltrate healed genital herpes lesions [153]. In
mice, following ocular infection, the HSV-1-specific CD8+

T cells infiltrate the infected ganglia during both acute and
latent phases and may mediate control of viral reactivation in
an IFN-γ-dependent manner [136]. In human genital biopsy
specimens with recurrent HSV-2 disease, viral clearance is
associated with a high concentration of local virus-specific
CD8+ CTLs [240]. Considering the wealth of information
addressing the role of T cells in animal models, it is surprising
how few reports exist exploring the immunologic basis of
symptomatic and asymptomatic HSV infections in humans.
Thus, we recently detected such segregation of human CD4+

T-cell epitopes in gB [1].
The outcome mother-to-infant HSV-2 vertical transmis-

sion and neonatal infection is orchestrated by two main
factors: (1) the virus itself, which can directly cause the
injury and (2) the maternal and fetal immune responses,
which either protect from or exacerbate the neonatal
disease. Particularly, cell-mediated immune responses can
be a double-edged sword during pregnancy: (a) cellular
immunity is important in viral control and clearance of
infected tissues; (b) an overactive cellular immunity within
the delicate environment of the placenta could also cause
immunopathology. The mother’s immune response, while
necessary to reduce viral burden in the placenta, may also
result in cell-mediated pathology in the placenta and the
fetus, leading to placental/fetal dysfunction, fetal injury, fetal
sequelae, and/or potentially the loss of the fetus. Regrettably,
there is little known about whether and how maternal T
cells responses affects neonatal herpes infection and what
consequences this has for the newborn.

6. Concluding Remarks

(a) HSV-1 and HSV-2 are infectious pathogens that
cause serious diseases at every stage of life, from
fatal disseminated disease in newborns to cold sores,
genital ulcerations, eye disease, and fatal encephalitis
in adults. Mucosal surfaces constitute an impressive
first-line defense that is frequently exposed to HSV-1
and HSV-2 infections [80, 241–243].
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(b) Most of the current drug therapies are either ineffec-
tive or inadequate for preventing the mucosal surface
from the invading HSV-1 and HSV-2. Among the
tools available for disease prevention and control,
vaccines rank highly with respect to effectiveness as
well as logistic and economic feasibility.

(c) Identifying the cellular and molecular immune com-
position of the various mucosal immune systems that
are exposed to herpes infection should lead to an
improved understanding of the immune-mediated
herpetic infectious diseases and tissue destruction
during various inflammatory states. This should be
helpful in developing safe mucosal immunoprophy-
lactic and/or immunotherapeutic vaccine strategies.

(d) An important lesson learned from the preclinical
and clinical vaccine trials described above is the true
feasibility (i.e., practicability) of a herpes vaccine.
“Common denominators” between most of the above
vaccine strategies are that (i) the cellular immunity
appears to be crucial, rather than the humoral
immunity, in protecting against herpes; (ii) the
delivered antigens includes both “symptomatic” and
“asymptomatic” T-cell epitopes.

(e) Considering the limited success of the recent her-
pes clinical vaccine trial [5], new mucosal vaccine
strategies are needed.Our recent findings show that
T cells from symptomatic and asymptomatic men
and women (i.e., those with and without recurrences,
resp.) recognize different herpes epitopes. Mucosal
immunization with HSV-1 and HSV-2 epitopes
that induce strong in vitro CD4 and CD8 T-cell
responses from PBMC derived from asymptomatic
men and women (designated here as “asymptomatic”
protective epitopes”) could boost local and systemic
“natural” protective immunity induced by wild-type
infection.

(f) Mucosal subunit vaccines are designed for needle-
free application, therefore safe and cost effective com-
pared to other vaccines. Tremendous research efforts
have significantly improved the classical approach
used to create these vaccines and alternative methods
of immunization based on new concepts of mucosal
immunity are being developed.

(g) HSV-specific CD8+ T cells, selectively activated and
retained in latently infected sensory ganglia [136,
153, 244, 245], play a crucial role in suppressing
full-blown reactivation [136, 246] by interfering with
virus replication and spread. Thus, rather than com-
pletely eliminating the latent HSV-1 from sensory
ganglia, reactivations appear to be “kept in check” by
CD8+ T cells [138, 139, 153, 247].

(h) It is still unclear why and how the virus manages to
sporadically escape CD8+ T-cell-mediated immuno-
surveillance and reactivate from latency, causing
ocular and genital herpes diseases. Identification
of the immune evasion mechanisms would help

develop stronger preemptive immunotherapeutic
vaccine strategies against herpes.

(i) We believe that future research endeavors should
focus on (1) identifying more “asymptomatic” ver-
sus “symptomatic” herpes epitopes, (2) qualitatively
and quantitatively analyzing T cells in symptomatic
versus asymptomatic patients to understanding the
immune mechanisms underlying herpes pathogene-
sis in humans, (3) incorporating only promiscuous
“asymptomatic” epitopes into vaccines, (4) using
mucosal vaccine strategies, such as lipopeptides, to
immunize against herpes, and (5) using “humanized”
susceptible HLA transgenic mice and rabbits to assess
the immunogenicity and protective efficacy of herpes
epitopes against primary and recurrent infection.

(j) A targeted mucosal immunotherapeutic vaccine
is necessary to induce robust localized immune
responses (i.e., in the central nervous system, trigem-
inal ganglia, and sacral ganglia), to quell virus
replication, to drive the pathogen into a ”latent” state,
and likely hinder reactivation.
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Neumann-Haefelin, and G. Köhler, “Generalized herpes sim-
plex virus infection in an immunocompromised patient—
report of a case and review of the literature,” Pathology
Research and Practice, vol. 201, no. 2, pp. 123–129, 2005.

[32] A. Wald and K. Link, “Risk of human immunodeficiency
virus infection in herpes simplex virus type 2-seropositive
persons: a meta-analysis,” Journal of Infectious Diseases, vol.
185, no. 1, pp. 45–52, 2002.

[33] G. N. Milligan, D. I. Bernstein, and N. Bourne, “T lym-
phocytes are required for protection of the vaginal mucosae
and sensory ganglia of immune mice against reinfection with
herpes simplex virus type 2,” Journal of Immunology, vol. 160,
no. 12, pp. 6093–6100, 1998.

[34] N. A. Kuklin, M. Daheshia, S. Chun, and B. T. Rouse, “Role
of mucosal immunity in herpes simplex virus infection,”
Journal of Immunology, vol. 160, no. 12, pp. 5998–6003, 1998.

[35] A. G. M. Langenberg, L. Corey, R. L. Ashley, W. P. Leong,
and S. E. Straus, “A prospective study of new infections with
herpes simplex virus type 1 and type 2,” The New England
Journal of Medicine, vol. 341, no. 19, pp. 1432–1438, 1999.

[36] A. Wald, J. Zeh, S. Selke et al., “Reactivation of genital herpes
simplex virus type 2 infection in asymptomatic seropositive



Clinical and Developmental Immunology 15

persons,” The New England Journal of Medicine, vol. 342, no.
12, pp. 844–850, 2000.

[37] D. M. Koelle and L. Corey, “Recent progress in herpes
simplex virus immunobiology and vaccine research,” Clinical
Microbiology Reviews, vol. 16, no. 1, pp. 96–113, 2003.

[38] N. O’Farrell, “Increasing prevalence of genital herpes in
developing countries: implications for heterosexual HIV
transmission and STI control programmes,” Sexually Trans-
mitted Infections, vol. 75, no. 6, pp. 377–384, 1999.

[39] H. Weiss, “Epidemiology of herpes simplex virus type 2
infection in the developing world,” Herpes, vol. 11, supple-
ment 1, pp. 24A–35A, 2004.

[40] J. E. Malkin, “Epidemiology of genital herpes simplex
virus infection in developed countries,” Herpes, vol. 11,
supplement 1, pp. 2A–23A, 2004.

[41] T. H. Bacon, M. J. Levin, J. J. Leary, R. T. Sarisky, and D.
Sutton, “Herpes simplex virus resistance to acyclovir and
penciclovir after two decades of antiviral therapy,” Clinical
Microbiology Reviews, vol. 16, no. 1, pp. 114–128, 2003.

[42] R. T. Sarisky, T. H. Bacon, R. J. Boon et al., “Profiling
penciclovir susceptibility and prevalence of resistance of
herpes simplex virus isolates across eleven clinical trials,”
Archives of Virology, vol. 148, no. 9, pp. 1757–1769, 2003.

[43] Y. K. Shin, A. Weinberg, S. Spruance et al., “Susceptibility
of herpes simplex virus isolates to nucleoside analogues
and the proportion of nucleoside-resistant variants after
repeated topical application of penciclovir to recurrent
herpes labialis,” Journal of Infectious Diseases, vol. 187, no. 8,
pp. 1241–1245, 2003.

[44] M. Ziyaeyan, A. Alborzi, A. Japoni et al., “Frequency of
acyclovir-resistant herpes simplex viruses isolated from the
general immunocompetent population and patients with
acquired immunodeficiency syndrome,” International Jour-
nal of Dermatology, vol. 46, no. 12, pp. 1263–1266, 2007.

[45] M. Ziyaeyan, A. Japoni, M. H. Roostaee, S. Salehi, and H.
Soleimanjahi, “A serological survey of herpes simplex virus
type 1 and 2 immunity in pregnant women at labor stage in
Tehran, Iran,” Pakistan Journal of Biological Sciences, vol. 10,
no. 1, pp. 148–151, 2007.

[46] C. F. Pereira, K. Rutten, R. Stránská et al., “Spectrum of
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