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BACKGROUND: Modern chemical toxicology is facing a growing need to Reduce, Refine, and Replace animal tests (Russell 1959) for hazard identifi-
cation. The most common type of animal assays for acute toxicity assessment of chemicals used as pesticides, pharmaceuticals, or in cosmetic prod-
ucts is known as a “6-pack” battery of tests, including three topical (skin sensitization, skin irritation and corrosion, and eye irritation and corrosion)
and three systemic (acute oral toxicity, acute inhalation toxicity, and acute dermal toxicity) end points.
METHODS:We compiled, curated, and integrated, to the best of our knowledge, the largest publicly available data sets and developed an ensemble of
quantitative structure–activity relationship (QSAR) models for all six end points. All models were validated according to the Organisation for
Economic Co-operation and Development (OECD) QSAR principles, using data on compounds not included in the training sets.

RESULTS: In addition to high internal accuracy assessed by cross-validation, all models demonstrated an external correct classification rate ranging
from 70% to 77%. We established a publicly accessible Systemic and Topical chemical Toxicity (STopTox) web portal (https://stoptox.mml.unc.edu/)
integrating all developed models for 6-pack assays.

CONCLUSIONS:We developed STopTox, a comprehensive collection of computational models that can be used as an alternative to in vivo 6-pack tests
for predicting the toxicity hazard of small organic molecules. Models were established following the best practices for the development and validation
of QSAR models. Scientists and regulators can use the STopTox portal to identify putative toxicants or nontoxicants in chemical libraries of interest.
https://doi.org/10.1289/EHP9341

Introduction
Historically, regulatory agencies have required animal testing for
hazard categorization and labeling (National Research Council
Committee on Animals as Monitors of Environmental Hazards
1991). However, there have beenmultiple calls, especially in the last
two decades, to Reduce, Refine, and Replace (three R’s) animal
tests for hazard identification (Flecknell 2002; Patlewicz and
Fitzpatrick 2016). The U.S. EPA estimated that the cost to
approve a single pesticide may reachmore than $500,000 for sev-
eral animal tests, reaching more than $1:8million for carcinoge-
nicity in rats or mice (U.S. EPA 2019b). In addition, studies
have shown that animal-based assay outcomes do not always
equate with human responses (Seok et al. 2013) and that
animal models are less reproducible than some alternative
methods (Luechtefeld et al. 2016c, 2016a, 2016b). The Strategic
Roadmap published by the Interagency Coordinating Committee
on the Validation of Alternative Methods (ICCVAM) as recently

as in 2018 (ICCVAM 2018) called for the development of alter-
native, “new approach methods” (NAMs), for reducing animal
testing of chemical and medical agents. In furthering this call, in
September, 2019, the U.S. EPA issued a directive to reduce ani-
mal testing, including a commitment to “eliminate all mammal
study requests and funding by 2035” (U.S. EPA 2019a). This
directive creates a critical need to develop robust in vitro and
computational tools for accurate and reliable hazard identifica-
tion in chemical and pharmaceutical products as part of their reg-
ulatory assessment.

Computational approaches, such as structural alerts, read-
across, and quantitative structure–activity relationship (QSAR)
modeling, have earned broad acceptance as a weight of evidence
for assessing chemical toxicity (ECHA 2017; U.S. EPA 2016).
Structural alerts are molecular substructures that are associated
with a particularly adverse outcome (Norman 2021). Read-across
is a technique that proposes to identify potential hazards of
untested compounds by associating them with structurally similar
compounds that have been tested (Ball et al. 2016). QSAR model-
ing is a computational approach that employs statistical or machine
learning techniques to establish correlations between intrinsic
chemical properties (chemical descriptors) and measured proper-
ties or toxicological effects (Tropsha and Golbraikh 2007). QSAR
modeling has been used extensively to model and predict chemical
toxicity, and best practices for model development and validation
have been developed to ensure their reliability (Tropsha 2010).
Regulators have preferred both structural alerts and read-across
approaches due to the ease of use, transparency, and mechanistic
interpretability. However, there have been concerns that these
tools often do not help with a reliable assessment of whether the
underlying compounds present a real hazard to humans and the
environment. For instance, we previously demonstrated that
alerts have a tendency to flag compounds as toxic even when the
experimental evidence shows otherwise (Alves et al. 2016b).
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In the last several years, both our (Alves et al. 2018a; Borba
et al. 2020; Braga et al. 2017) and other (Roberts et al. 2017;
Toropova and Toropov 2017) groups have developed reliable
computational models for predicting the skin sensitization poten-
tial of chemicals. These and other models developed for one or
more of the “6-pack” end points are summarized in Table 1,
which indicates that the development of reliable computational
models for predicting the outcomes of all 6-pack tests is still a
significant challenge. To address this challenge, we compiled,
integrated, and curated a collection of experimental in vivo data
on 6-pack end points, which, to the best of our knowledge, is the
largest 6-pack data set in the public domain. Using this compiled
data, we developed and rigorously validated QSAR models for
all 6-pack assays and demonstrated their utility in identifying poten-
tially safe or unsafe chemicals in industrial products (Figure 1). In
addition, we integrated these models into a software package called
STopTox (Systemic and Topical chemical Toxicity (STopTox) and
made it publicly available to the research community via a dedi-
cated web portal (https://stoptox.mml.unc.edu/). We especially
emphasize, with vivid examples, the importance and impact of data
curation on the rigor of our study design and the reliability of the
study outcomes.

Materials and Methods

Data Collection
We compiled data from multiple publicly available databases and
from the literature. These data encompass animal sources of the
experimental tests for the following 6-pack end points: a) skin
sensitization; b) skin irritation and corrosion; c) eye irritation and
corrosion; and acute systemic toxicity via d) dermal, e) inhala-
tion, and f) oral routes. The literature search was conducted using
the PubMed database and Chemotext (Capuzzi et al. 2018) with
the following search terms: “Skin sensitization” AND/OR
“LLNA” AND/OR “QSAR” AND/OR “Read Across”; eye irri-
tation AND/OR “Draize test” AND/OR “QSAR” AND/OR
“Read Across”; skin irritation AND/OR “Draize test” AND/OR
“QSAR” AND/OR “Read Across”; “acute oral toxicity” AND/
OR “QSAR” AND/OR “Read Across”; “acute dermal toxicity”
AND/OR “QSAR” AND/OR “Read Across”; and “acute inhala-
tion toxicity” AND/OR “QSAR” AND/OR “Read Across.” No
inclusion/exclusion criteria were used, and the last search date
was executed in January 2019. All the replicate matches were
done using only the standardized chemical structures, never
identifiers or simplified molecular input line entry specification
(SMILES). The CAS numbers were retrieved from PubChem
(https://pubchem.ncbi.nlm.nih.gov/) when not available. All the
curated data sets are available in Excel Tables S1–S7.

Data Curation
We extensively cleaned and standardized the data and converted
measurements to the same units in each data set employing regu-
lar expressions to find essential features for the database that
were described in text format; this approach was key to end point
classification into Globally Harmonized System of Classification
and Labeling of Chemicals (GHS) hazard classes. To convert the
data into the binary toxicity calls, we followed the GHS classifi-
cation criteria: for acute systemic end points GHS classes 1–4
were considered as “toxic,” and class 5 was considered as “not
classified.” For skin irritation, classes 1–3 were considered as “ir-
ritant or corrosive”; for eye irritation, classes 1–2B were consid-
ered “irritants or corrosive”; and for skin sensitization, class 1
was considered “sensitizer.” The criteria for GHS classification
are different for each end point and more information can be T
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found elsewhere (UNECE 2019). Following this laborious data
preparation and standardization, we conducted both chemical and
biological data curation. This requisite attention to detailed data
curation at different levels of the data preparation protocol is,
unfortunately, uncommon in computational chemical toxicology,
as we noted previously (Alves et al. 2019).

Data sets were thoroughly curated following the workflows
developed by us earlier (Fourches et al. 2016). First, we excluded
inconsistent data, which represented a big share of our data sets
(Figure 2). Data were categorized as inconsistent if they were gen-
erated not following the OECD protocols; if compounds were not
tested in multiple concentrations and could not be classified into
GHS classes, labeled as nonexperimental (e.g., labeled as obtained
using QSAR and/or read across predictions and/or weight of evi-
dence decisions); if measurements were different from the standard
protocols for the 6-pack end points: For systemic end points we
only used median lethal dose (LD50) measurements; for skin sensi-
tization, we used effective concentration, third percentile (EC3)
measurements; for skin irritation, we used the mean scores for ery-
thema and edema and reversibility information; and for eye irrita-
tion, we used corneal and iritis gradings and reversibility
information, according to the GHS classification system (UNECE
2019). Biological data curationwas followed by chemical structure
curation: We removed mixtures, inorganics, and organometallic
compounds; cleaned and neutralized salts; normalized the specific
chemotypes; and applied the special treatment to chemicals with
multiple replicated records as follows: a) when replicated records
presented the same binary outcome, only one record was kept; b)
when themajority of replicate chemicals presented the same binary
outcome and one had different binary outcome, only one record
with the most common binary outcome was kept; and c) when
replicated records had different binary outcomes, all of them were
removed. All the curated data are available in the Supplementary
Material in xlsx format (Excel Tables S1–S7) and can also be
downloaded in SDF from the STopTox web portal (https://stoptox.
mml.unc.edu/) andGitHub (https://github.com/joyvb/stoptox).

Data Sets

Skin sensitization. Skin sensitization data were compiled from two
sources: a) National Toxicology Program InteragencyCenter for the
Evaluation of Alternative Toxicological Methods on behalf of
ICCVAM (ICCVAM 2013) and b) the publicly available
Registration, Evaluation, Authorisation and restriction of Chemicals
(REACH) study results database (ECHA and OECD 2019). The
ICCVAM database included 1,060 chemical records with local
lymph node assay (LLNA) data. Chemicals were classified as sensi-
tizers/nonsensitizers following the Global Harmonization System
(GHS) (UNECE 2019), where the presence of a dose that produces
the stimulation index of three (EC3) was used as a threshold for a
positive response. In otherwords, compoundswithout (EC3 are clas-
sified as nonsensitizers, whereas those with a reported dose are clas-
sified as sensitizers.

After curation, 515 unique compounds (330 sensitizers and 185
nonsensitizers) were retained. The REACH database initially com-
prised 10,588 records for 9,801 chemicals. The REACH data set is
composed ofmany types of assays and study categories. In vitro and
weight of evidence categories were discarded. Data from different
OECD skin sensitization assays (OECD guidelines 406, 411, 429
and 442B; OECD 1981, 1992, 2010a, 2010b) were available; only
the data corresponding to LLNA assays (429 and 442B) were
selected, resulting in 1,275 data points with LLNA records.
After curation, 541 compounds (192 sensitizers and 349 non-
sensitizers) were retained. Eventually, we merged the curated
data from ICCVAM and REACH and examined the content of
this combined data. There were 56 groups of replicated chemi-
cals between these two data sets, and the sensitization potential
of five of these pairs was different. These discordant records
were removed, and only one record for each concordant set of
replicates was kept. The merged data set had 1,000 unique com-
pounds (481 sensitizers and 519 nonsensitizers).

Skin irritation and corrosion. Experimental animal data on
skin irritation and corrosion were retrieved from the REACH

Figure 1. General workflow of STopTox. Experimental data from all 6-pack end points were collected and carefully curated following a well-stablished proto-
col accepted by the cheminformatics community. The data were then integrated and QSAR models were built for each end point individually. Finally, the mod-
els were implemented in a publicly available web application termed STopTox available at https://stoptox.mml.unc.edu/.
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study results database (ECHA and OECD 2019). After removing
inconsistent data, 1,631 out of the original 5,274 data points were
left. After removal of mixtures, inorganics, and counter-ions,
1,326 records remained. We followed the GHS (UNECE 2019)
to classify the data: If the mean erythema/edema score is bigger
than 2.3 and the effects are reversible, the chemical is considered
as an irritant. If the effect is irreversible and corrosive reactions
are present, the chemical is considered to be corrosive to the skin
(OECD 2015).

Among 124 replicate groups of chemicals in the data set,
95 had concordant and 29 had discordant toxicity calls. All
the discordant replicates were removed, and only one representative
of a pair/pool of concordant replicates was kept. The final data set
had 1,012 unique chemical compounds, including 40 corrosives, 277
irritants, and 695 nonirritants. Because there were only a few corro-
sive compounds in our data set, we decided to merge the corrosive
and irritant classes and model only irritant vs. nonirritant com-
pounds. We note that these models have limited regulatory value at
the moment with respect to compounds predicted to be toxic,
because regulators typically would like to see more granular mea-
surement or prediction at the level of specific subcategories of toxic-
ity. However, we highlight and emphasize that our models make
accurate predictions of nontoxic compounds, thereby helping both
regulators and respective regulated industries to support the develop-
ment of safer chemicals. Our resulting data set contained 317 irri-
tants vs. 695 nonirritants. Because the data set was imbalanced, we
applied an undersampling technique where the majority class was
sampled in a way to match the number of records of the minority
class. This sampling was done by searching for the compounds in
the majority class that had higher similarity (Tanimoto coefficient)
with compounds in the minority class. The balanced data set con-
sisted of 554 compounds (277 irritants and 277 nonirritants).

Eye irritation and corrosion. The eye irritation and corrosion
data set was retrieved from the REACH study results database
(ECHA and OECD 2019) and the literature (Adriaens et al. 2017;
Barratt 1997, 1995; Barroso et al. 2017; Basant et al. 2016; Cruz-
Monteagudo et al. 2006; Geerts et al. 2017; Verheyen et al. 2017;
Verma and Matthews 2015). We first curated data from each
source separately and then merged the curated data sets and
checked for the overlapping compounds. We followed the OECD
Test No. 405 (OECD 2017). The eye irritation assessment is
based on scoring lesions of conjunctiva, cornea, and iris at spe-
cific intervals after application of a single dose of the test sub-
stance. If the effects are reversible after 21 d, the chemical is

considered an irritant, and if the effect is irreversible, the chemi-
cal gets a corrosive flag.

After we removed the inconsistent data, 7,196 out of the
original 7,332 experimental animal data points for eye irritation
and corrosion remained. After we removed mixtures, inor-
ganics, and counter-ions, 5,985 records remained. All the dis-
cordant replicates were removed, and only one representative of
a pair/pool of concordant replicates was kept. The final data set
had 3,545 unique chemical compounds, including 1,145 irri-
tants and 2,400 nonirritants. Because the data set was imbal-
anced, we applied an undersampling technique where the
majority class was sampled in a way to match the number of
records of the minority class. This sampling was achieved by
searching for the compounds in the majority class that had
higher similarity (Tanimoto coefficient) with compounds in the
minority class. The balanced data set consisted of 2,292 com-
pounds (1,146 skin irritants and 1,146 nonirritants).

Acute dermal toxicity. The acute dermal toxicity data set was
retrieved from the REACH study results database (ECHA and
OECD 2019), the publicly available database ToxValDB (Judson
2018), and from the literature (Creton et al. 2010). After remov-
ing the inconsistent data, 5,259 out of the original 29,824 data
points were left; the major reason for compound removal was the
presence of many compounds without a defined (LD50. The GHS
was used to classify the chemicals (UNECE 2019). The chemical
was labeled as toxic if the LD50 was smaller than 2,000 mg=kg
body weight (BW). After the removal of mixtures, inorganics,
and organometallic compounds, 4,601 records remained. Among
1,979 groups of chemical replicates in the data set, 1,836 had
concordant toxicity calls, and 143 were discordant. All the dis-
cordant replicates were removed, and only one representative of
a pair/pool of concordant replicates was kept. The final data set
had 2,616 unique chemical compounds, including 382 dermally
toxic compounds and 2,234 Not Classified compounds. Because
the data set was imbalanced, we applied an undersampling tech-
nique where the majority class was sampled to match the number
of records of the minority class. This sampling was conducted by
searching for the compounds in the majority class that had higher
similarity (Tanimoto coefficient) with compounds in the minority
class. The balanced data set consisted of 764 compounds, includ-
ing 382 toxic compounds and 382 Not Classified compounds.

Acute inhalation toxicity. The acute inhalation toxicity data set
was retrieved from the REACH study results database (ECHA and
OECD 2019) and from the publicly available database ToxValDB

Figure 2. Summary of data curation steps. Data sources: ECHA (ECHA 2019; ECHA and OECD 2019), Interagency Coordinating Committee on the
Validation of Alternative Methods (ICCVAM 2013), ToxValDB (Judson 2018), and National Toxicology Program Interagency Center for the Evaluation of
Alternative Toxicological Methods (NICEATM; ICCVAM 2019).
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(Judson 2018). The chemicals were classified as toxic according
to the GHS thresholds for gases: LD50 ≤ 2,500 ppm; vapors:
LD50 ≤ 10 mg=L and dusts/mists: LD50 ≤ 20 mg=L (UNECE
2019). After removing inconsistent data, only 2,061 out of the origi-
nal 8,176 data points were left. This dramatic reduction of the data
set wasmainly because of the presence ofmany compounds without
a defined LD50 and because of the absence of information regarding
the exposure method used (gas, dust, or mist), which is essential for
GHS classification. After the removal of mixtures, inorganics, and
counter-ions, 1,637 records remained. Among 527 groups of chemi-
cal replicates in the data set, 501 had concordant toxicity calls, and
26were discordant. All the discordant replicates were removed, and
only one representative of a pair/pool of concordant replicates was
kept. The final data set had 681 unique chemical compounds and
was balanced because it included 345 toxic compounds and 336 Not
Classified compounds.

Acute oral toxicity. The acute oral toxicity data set was
retrieved from the National Toxicology Program Interagency
Center for the Evaluation of Alternative Toxicological Methods
(NICEATM) workshop for the Collaborative Acute Toxicity
Modeling Suite (CATMoS) project that our team was part of
(ICCVAM 2019; Kleinstreuer et al. 2018; Mansouri et al. 2021).
The GHS was used to classify the chemicals (UNECE 2019). If
the LD50 is smaller than 2,000 mg=kg BW, then the chemical
was labeled as toxic. After removing inconsistent data, 8,981
out of the original 8,994 data points were left. After removal of
mixtures, inorganics, and counter-ions, 8,978 records remained.
A total of 406 groups of chemical replicates were found in the
data set. All the discordant replicates were removed, and only
one representative of a pair/pool of concordant replicates was
kept. The final data set has 8,442 unique chemical compounds,
including 4,803 toxic compounds and 3,639 Not Classified
compounds.

Cosmetic ingredient database (CosIng). CosIng is the
European Commission database for information on cosmetics sub-
stances and ingredients (European Commission 2017). This data
set contained 5,166 chemical records with a defined chemical
structure. After curation, 3,850 unique chemical substances were
kept for virtual screening using the developed models. The virtual
screening results are available Excel Table S8.

REACH. The REACH data come from registration dossiers
submitted to the European Chemicals Agency (ECHA) by May
2019 (ECHA 2019). The database contained 20,000 substances, of
which 15,438 were chemical records with a defined chemical struc-
ture. After curation, 10,465 unique chemical substances were kept
for prediction purposes. The virtual screening results are available
in Excel Table S9.

Cheminformatics approaches. Binary QSAR models were
developed and rigorously validated according to the best prac-
tices of QSAR modeling (Tropsha 2010). Two-dimensional
Morgan fingerprints (Aslett et al. 2010) and Molecular
ACCess System (MACCS) keys (Anderson 1984), calculated
with RDKit package (version 2020.03.1.0), and Mordred, cal-
culated with Mordred package (version 1.2.0) for Python
(Moriwaki et al. 2018) were combined with random forest
(Breiman 2001) algorithm (RandomForestClassifier) imple-
mented in scikit-learn (version 1.0) (Pedregosa et al. 2012) for
model development.

We followed a proper external 5-fold cross-validation proce-
dure. First, the entire data set was split into five parts of the same
size. Then, for each iteration, one of these subsets (20% of com-
pounds) was used as a test set, and the other four sets (80% of com-
pounds) were used as the training set. We repeated this procedure
five times until each of the five subsets was used once as a test set.
In addition, each training set was internally divided into multiple

training and validation sets for model training and hyperparameter
tuning. The models were generated using only the training set. The
true test sets were never employed to generate or to select the mod-
els. We repeated this procedure using three different types of
descriptors (Morgan, MACCS, and Mordred). The final statistics
were based on the consensus (average prediction) of these models.
The consensus model considers the majority rule (at least two out
of three) for the final classification.

In every case, only the modeling set was used to develop the
models, whereas the external sets were used for the evaluation of
their predictive power. In addition, 10 rounds of Y-randomization
were performed for each data set to ensure that the model perform-
ance was not due to chance correlations. The applicability domain
(AD) of the models was estimated using the z-cutoff method
(Tropsha and Golbraikh 2007) along with dice similarity. In the
STopToxweb app, the user can visualize the similarity distribution
of the training set and how far the query compound is from the
threshold (see Figure S1). If the query compound is below the
threshold, then it is outside the model’s applicability domain. If it
is above the threshold, then it is inside. All the codes used to gener-
ate themodels are available at https://github.com/joyvb/stoptox.

The predictive performance ofQSARmodelswas evaluated using
correct classification rate (CCR), sensitivity (SE), specificity (SP), and
positive (PPV) and (NPV) predictive values (Equations 1–5):

SE=
TP

TP+FN
, ð1Þ

SP=
TN

TN+FP
, ð2Þ

CCR=
SE+SP

2
, ð3Þ

PPV=
TP

TP+FP
, ð4Þ

NPV=
TN

TN+FN
, ð5Þ

where N represents the number of compounds, TP and TN repre-
sent the number of true positives and true negatives, and FP and
FN represent the number of false positives and false negatives,
respectively.

Additional external validation using known toxicants from
the literature. For additional external validation of our models,
we conducted a literature search for toxicants that were absent in
our database but were later described elsewhere. We used the
PubMed database and Chemotext web portal (Capuzzi et al.
2018) with the following search criteria: “Skin sensitization” OR
“Skin sensitizers” AND “Clinical studies”/“Skin irritation” OR
“Skin irritants” AND “Clinical studies”/“Eye irritation” OR “Eye
irritants” AND “Clinical studies”/“Acute oral toxicity” AND
“compound” AND “Clinical studies”/“Acute dermal toxicity”
AND “compound” AND “Clinical studies”/“Acute inhalation
toxicity” AND “compound” AND “Clinical studies.” No inclu-
sion/exclusion criteria were used, and the last search date was ex-
ecuted in July 2020. After collecting these data, we curated the
data (see “Data Curation” section) and analyzed it to ensure that
they were not included in the modeling data set. Then, we
employed STopTox models to predict each toxicant and analyzed
whether our models were capable of correctly predicting their
toxicity potential.

Virtual screening. We applied the developed QSAR models
to predict toxicities for compounds included in the CosIng and
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REACH databases as well as to augment the STopTox data ma-
trix, which is extremely sparse, to identify additional putative
toxicants. Both CosIng and REACH databases are described in
the “Data Sets” section. The virtual screening results for CosIng,
REACH, and STopTox are available in Excel Tables S8, S9, and
S10, respectively.

Model implementation. The STopTox web-based application
runs machine learning routines written in Python by using Flask
(version 2.03; Python Software Foundation), a small framework
for creating web microframeworks at the back end. Models
were developed using Scikit-Learn (version 1.0) (Scikit-Learn
Developers). Angular (version 4) and Typescript were used for
the development of the frontend, and Docker 19.03 and Docker-
Compose (version 1.27.0) for the orchestration of containers.
The developed models and all data sets are publicly available at
https://stoptox.mml.unc.edu/.

Results

QSARModeling
Statistical characteristics of QSAR models developed in this
study are summarized in Table 2. All cross-validated models for
the 6-pack end points showed high predictive accuracy on inde-
pendent external evaluation sets based on several metrics, includ-
ing CCR, SE, SP, PPV, and NPV. The acute toxicity models
showed CCR of 70%–77%; SE of 66%–85%; SP of 66%–80%;
PPV of 69%–79%; and NPV of 71%–78%. A literature search ex-
ecuted after models were developed identified toxicants that were
absent in our data sets. We used these compounds as an addi-
tional validation set for our models (see the section below).

Model Validation with Known Toxicants Not Used in Model
Development
For additional external validation of our models, we conducted a
literature search for toxicants described in clinical studies or
known toxicants for each end point that were absent in our data-
base. We found 45 compounds for skin sensitization, 2 compounds
for skin irritation, 3 compounds for eye irritation, 2 compounds for
acute dermal toxicity, 5 compounds for acute inhalation toxicity,
and 2 compounds for acute oral toxicity.

Altogether, our models correctly predicted 18 out of 25 (72%)
of the known toxicants identified in the literature that were not
present in our modeling set (see Figure 3 and Excel Table S11).

For skin sensitization, a list of 45 potential skin sensitizers in
cosmetic ingredients was compiled by the Norwegian Scientific
Committee for Food Safety (Norwegian Scientific Committee for
Food Safety 2007). Eleven out of 45 compounds were absent
from our skin sensitization data set, and 8 of the 11 chemicals
were correctly predicted as sensitizers by our skin sensitization
model [Sensitivity ðSEÞ=72%].

For skin irritation, we found the compounds MS-222, a fish
anesthetic commonly used in aquaculture (Park 2019), and so-
dium lauryl sulfate (De Jongh et al. 2006), a product widely used

in personal care products—both known skin irritants that were
not present in our skin irritation training data. Our models pre-
dicted sodium lauryl sulfate as a skin irritant and MS-222 as not
classified (according to OECD Test No. 404 (OECD 2015),
chemicals not classified as skin irritants are considered “Not
Classified”).

We found three compounds that were not present in our eye
irritation data set: glutaraldehyde, glyphosate, and Paraquat
(1,1’-Dimethyl-4,4’-bipyridinium dichloride). Our model pre-
dicted glutaraldehyde and glyphosate as eye irritants. Exposure
to glutaraldehyde during cataract surgery was associated to the de-
velopment of toxic eye anterior segment syndrome in six patients
(Ünal et al. 2006). Ocular glyphosate exposure was reported to be
associated with the development of chemosis, heart palpitations,
raised blood pressure, headache, and nausea (Bradberry et al. 2004).
In two cases of accidental eye exposure to Paraquat, eye damage
was reported (Joyce 1969).

For the acute dermal end point, the compounds dichloromethane
(Pacheco et al. 2016) and methanol (Kahn and Blum 1979) have
been reported as systemic toxicants after dermal exposure and were
not present in themodeling set. Our acute dermal toxicitymodel cor-
rectly predicted both compounds as toxic after dermal exposure.

For acute inhalation end point, 20 chemicals commonly pres-
ent in occupational inhalation accidents were compiled elsewhere
(Miller and Chang 2003). There were five organic chemicals in
this list that were absent in our acute inhalation data set. All five
compounds were correctly predicted by acute inhalation models.

For acute oral end point, we found one clinical case of acci-
dental oral exposure to the pyrethroid deltamethrin that led to the
poisoning of a 4-y-old girl who consumed insecticidal chalk and
was found unconscious 20 min after going outside to play
(O’Malley 1997). We also found that mephedrone, a psychoac-
tive drug, has been proven toxic in a study reporting cases of
acute toxicity related to self-reported use of mephedrone (Wood
et al. 2010). Our acute oral toxicity model predicted both com-
pounds as toxic if swallowed.

Figure 4 shows the predictions generated for N-phenyl-p-
phenylenediamine, a known skin sensitizer usually added to tem-
porary black henna tattoos, leading to many cases of contact
allergy (Panfili et al. 2017). We also generated maps showing the
relative significance of fragment contributions, providing a
graphical interpretation of developed models (Figure 4). Atoms
and structural fragments enhancing toxicity are highlighted in
pink, and those decreasing toxicity are shown in green. These
maps are generated for each of the 6-pack end points independ-
ently. Overall, these maps allow the user to analyze the individual
contribution of each fragment for acute toxicity, facilitating a
mechanistic interpretation of reported predictions.

Virtual Screening of CosIng, REACH, and STopTox
Compounds
In the CosIng data set (n=3,850 compounds), 1,366 compounds
were predicted as skin sensitizers, 1,152 compounds were pre-
dicted as skin irritants; 1,674 compounds were predicted as eye

Table 2. Statistical characteristics of QSAR models for 6-pack end points evaluated by 5-fold external cross-validation.

End point CCR Se Sp PPV NPV Coverage Number of compounds

Skin sensitization 0.70 0.66 0.75 0.71 0.75 0.96 1,000
Skin irritation/corrosion 0.72 0.77 0.66 0.69 0.74 0.94 1,012
Eye irritation/corrosion 0.72 0.72 0.71 0.71 0.71 0.95 3,547
Acute dermal 0.76 0.74 0.78 0.77 0.75 0.93 2,622
Acute inhalation 0.74 0.69 0.80 0.77 0.72 0.95 681
Acute oral 0.77 0.85 0.70 0.79 0.78 0.95 8,442

Note: CCR, correct classification rate; NPV, negative predictive value; PPV, positive predictive value; QSAR, quantitative structure–activity relationship; Se, sensitivity; Sp,
specificity.
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irritants; 361 compounds were predicted as toxic if swallowed;
301 compounds were predicted as toxic if inhaled; and 257 com-
pounds were predicted as toxic after dermal exposure. Out of
3,850 total compounds, there were 2,695 compounds predicted as
toxic in at least one end point and 1,155 compounds predicted as
“Not Classified” in all six end points.

In the REACH data set (n=10,465 compounds), 4,018 com-
pounds were predicted as skin sensitizers; 2,445 compounds were
predicted as skin irritants; 4,605 compounds were predicted as
eye irritants; 2,679 compounds were predicted as toxic if swal-
lowed; 2,139 compounds were predicted as toxic if inhaled; and
1,899 compounds were predicted as toxic after dermal exposure.
There were 7,641 compounds predicted as toxic in at least one
end point and 2,824 compounds predicted as “Not Classified” in
all six end points.

In the STopTox data set (n=11,941 compounds with missing
toxicity values), 4,792 compounds were predicted as skin sensi-
tizers; 2,491 compounds were predicted as skin irritants; 4,766
compounds were predicted as eye irritants; 5,232 compounds
were predicted as toxic if swallowed; 2,394 compounds were pre-
dicted as toxic if inhaled; and 2,902 compounds were predicted
as toxic after dermal exposure. There were 7,641 compounds pre-
dicted as toxic in at least one end point and 2,824 compounds
predicted as Not Classified in all six end points.

Model Implementation in the STopTox Web App
The QSAR models were implemented in the STopTox web app
(https://stoptox.mml.unc.edu/). STopTox has an intuitive user inter-
face in which the user may draw a compound of interest in the “mo-
lecular editor” box or directly paste the SMILES string of the
chemical structure of interest. After hitting the “Predict STopTox”
button, the user will receive the predicted outcomes (e.g., toxic, non-
toxic) using the QSAR models developed for each of the 6-pack
acute toxicity end points. For each prediction, we also list its confi-
dence based onhow close the compound is to themodelADestimate
(Tropsha and Golbraikh 2007); we also provide visual mechanistic
interpretation of the prediction using color-coded maps of predicted
fragment contribution (Riniker and Landrum 2013). In this algo-
rithm, the predicted contribution of an atom is obtained by accessing
the difference in the prediction if each bit corresponding to that
atom/fragment is removed. Then, the normalized contribution is
used to color the atoms in a topography-like map. Using these maps,
the structural fragments predicted to increase the respective toxicity
are highlighted in red, and the fragments predicted to decrease toxic-
ity are highlighted in green.Gray isolines define the frontier between
the positive (red) and the negative (green) contributions (see Figures
3 and 4). In addition, the prediction confidence, which is estimated
by the majority voting of internal models (number of trees) in the
random forest algorithm (Breiman 2001), is also available.

Figure 3. Toxicants identified in the literature using PubMed and Chemotext (see “Data Collection” section in “Materials and Methods” section) that were
absent in our modeling data. STopTox predictions for a given end point are listed below each structure’s contribution map, also generated with STopTox.
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Discussion
Data Curation and QSARModel Development
Although predictivemodels have been developed and reported pre-
viously for subsets of the 6-pack end points (Table 1), many of
thesemodels did not fully complywith themodel validation guide-
lines specified by the OECD (OECD 2004) and, most notably,
lacked proper data curation. Notably, in our study, we allocated a
significant effort toward the curation of both chemical and biologi-
cal data using robust protocols established by our group previ-
ously (Fourches et al. 2010, 2016). As can be seen in Figure 2,
data curation had a dramatic effect on the size of the data: It
decreased the size of the available data, in all but one case, by
about 52%–92%. Our final database comprised a matrix contain-
ing 11,941 compounds with activity measurements for at least
one of the 6-pack end points (sparsity degree of 76%).

Previously, we built models to predict skin sensitization end
points using a combination of animal (Alves et al. 2015),
OECD-validated in vitro assays (Alves et al. 2018a), and human
data (Alves et al. 2016a, 2018a; Borba et al. 2020). In this
study, we developed QSAR models for predicting skin sensiti-
zation testing outcomes using only the LLNA because
STopTox is intended as a reliable NAM for the 6-pack assays.
The models were thoroughly validated by employing the best
practices for model development and validation suggested by
the OECD to employ QSAR models for regulatory purposes
(OECD 2007). The models showed high accuracy when eval-
uated by 5-fold external cross-validation and by predicting and
additional set of known toxicants external to the models (see
the “Results” section). Therefore, all the models reported here
were built using only data collected from animal tests that fol-
lowed the OECD protocols.

Table 3. Indirect comparison of STopTox (5-fold external cross-validation) and RASAR (as reported in the original publication).

End point

Number of chemicals CCR Sensitivity Specificity

RASAR* STopTox RASAR* STopTox RASAR* STopTox RASAR* STopTox

Skin sensitization 7,670 1,000 0.88 0.7 0.8 0.73 0.96 0.68
Skin irritation/corrosion 46,331 1,012 0.86 0.72 0.75 0.67 0.86 0.76
Eye irritation/corrosion 48,767 3,547 0.84 0.77 0.99 0.72 0.7 0.81
Acute dermal 11,252 2,622 0.92 0.77 0.89 0.79 0.94 0.75
Acute inhalation 11,369 681 0.91 0.76 0.9 0.72 0.91 0.79
Acute oral 32,411 8,465 0.9 0.78 0.94 0.78 0.86 0.78

Note: CCR, correct classification rate; RASAR, read-across structure–activity relationships. *Data retrieved from (Luechtefeld et al. 2018).

Figure 4.Maps of fragment contributions and predictions of each model for N-phenyl-p-phenylenediamine. The predicted fragment contribution of a toxic
effect is accompanied by the map of the atomic contributions to toxicity. Red regions with continuous lines indicate the fragment is predicted to increase toxic-
ity. Green regions with dashed lines indicate the fragment is predicted to decrease the toxicity.
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Comparative Assessment of New 6-Pack Models vs.
Alternative Tools: The Importance of Data Curation
The ECHA database curation proved to be an extremely laborious
task and the most time-consuming part of this work. It is important
to emphasize that much of the 6-pack end point data included in the
ECHA database could not (and should not) be used for model devel-
opment. As seen from the summary of data curation (Figure 2), the
major reduction in the size of individual data sets used eventually
for QSARmodel development was due to a large fraction of incon-
sistent data in the original ECHA database. Data were categorized
as inconsistent if they were generated not following the OECD pro-
tocols, if compounds were tested in few or only one concentration
and could not be classified into GHS classes, labeled as nonexperi-
mental (e.g., labeled as obtained using QSAR and/or read across
predictions and/or weight of evidence decisions) or found in com-
plex mixtures. In addition, for each end point, we kept only the data
containing measurement for the standard OECD protocol (see
“Materials and Methods” section). As an example, the report on
acute inhalation toxicity for Diboron trioxide (ECHA 2020b) lacks
very important information, such as the animal species used for test-
ing, route of administration, and duration of exposure. GHS classifi-
cation for acute inhalation toxicity depends on the route of
administration (UNECE 2019), making it difficult to classify this
compound as toxic or nontoxic. The OECD guidelines also state
that the test must be done in rats with 4 h of exposure to the tested
chemical. Calcium iodate, an inorganic, was reported as an eye irri-
tant from category 2A based on a QSAR prediction (ECHA 2020a).
ECHA presented other reports showing clinical evidence of eye irri-
tation in humans. Still, because categorization is done based on ani-
mal tests, we could not trust these data for modeling. There were
many other examples of incomplete/nontrustable reports from the
databases, which significantly decreased the data set size.

Comparison of our results with models developed for the same
end points without rigorous data curation (Luechtefeld et al. 2018)
suggests that our extensive data curation procedures resulted in the
decreased data set size and, formally, lower than reported model
performance. Indeed, we compared models produced in this study
to those reported by Luechtefeld et al. (2018), who described the de-
velopment of a suite of in silico models, termed read-across struc-
ture–activity relationships (RASAR) for the 6-pack end points.
Because the model predictions based on RASAR could only be
accessed through a fee-based commercial platform (https://www.
ulreachacross.com,which now is defunct), we performed an indirect
comparison of the respective statistics (see Table 3). Our models
showed, on average, a 10% lower CCR.The amount of data reported
in the studymentioned above (Luechtefeld et al. 2018) was, on aver-
age, five times larger than the size of the carefully curated data set
used in this study. Previously, we already expressed concerns that
the high accuracy of models as reported (Luechtefeld et al. 2018)
could be the consequence of inadequate data curation, leavingmany
replicate compounds in themodeling and validation data sets (Alves
et al. 2021). We posit that our results reflect the actual model per-
formance for these end points more accurately because we elimi-
nated such confounders as replicate entries or the use of predicted or
“not reliable” values and conducted more rigorous validation proce-
dures according to the established guidelines. We strongly suggest
that our exercise reemphasizes the importance of proper data cura-
tion and cautions against overinterpreting results from models built
on noncurated data sets.

STopTox Usability and Interpretation
It is essential to note that, if the model predicts a compound as
toxic or nontoxic, such prediction should be considered only in
the context of specific dose-dependent observation for each

assay; obviously, increasing the dose of any compound in any
assay could often lead to toxic effects. For instance, the skin sen-
sitization potencies for substances are based on a function of
lymph node cell proliferation induced by the test chemical and
expressed as a stimulation index (SI) relative to values obtained
with concurrent controls. If SI≥3, the substance is considered as
a sensitizer in the tested concentration. Similar considerations
were applied in transforming the results of measurement into bi-
nary format for other end points.

These considerations are often overlooked when making pre-
dictions or assertions concerning the expected chemical toxicity.
The ultimate goal of any method for evaluating acute toxicity is
to provide an accurate assessment of the potential risk of a chemi-
cal concerning human safety (Basketter et al. 2015). Therefore,
we reinforce that the limitation of assays should influence both
the interpretation of the predictions made by the models and the
use of these models to help toxicologists in their decision-
making. Predictions with QSAR models implemented in
STopTox (actually, with any models) do not take the dose into
account; they merely state whether a chemical is predicted to be
toxic or nontoxic in each assay. Thus, users interpreting these
predictions should always be familiar with and keep in mind the
underlying experimental conditions under which compounds in
the training sets were denoted as toxic or nontoxic. Further,
these models are limited to binary hazard-based predictions,
rather than providing information on potency and GHS or U.S.
EPA subcategorization. Therefore, they are not directly applica-
ble for many regulatory classifications and labeling require-
ments requiring a higher level of granularity. However, these
models are well suited to assist in hazard assessment and chem-
ical screening/prioritization, and, because of their high accuracy
in terms of both sensitivity and specificity, they can be instru-
mental in identifying nontoxic compounds (tested in the same
conditions as those identified as toxic where additional subcate-
gorization is indeed necessary).

Virtual Screening of CosIng, REACH, and STopTox
Compounds
As a case study illustrating STopTox usability, we applied our
QSAR models to the European Commission CosIng database,
REACH, and STopTox data matrix (sparsity degree of 76%),
including AD estimation. Most compounds in each of these data
sets were predicted as “Not Classified” by each individual model.
The predictions of acute toxicity of these databases illustrate
QSAR models’ utility for prioritizing chemicals of concern for
targeted biological testing in different chemical spaces such as
cosmetics, pesticides, and industrial chemicals (Alves et al.
2018b). All compounds and corresponding predictions are avail-
able in the Supplemental Material.

Conclusions
STopTox is a comprehensive collection of computational models
that can be used as an alternative to in vivo 6-pack tests for pre-
dicting chemical toxicity hazard. Models were established fol-
lowing the best practices for the development and validation of
QSAR models (OECD 2004; Tropsha 2010) using the largest
publicly available and carefully curated data sets that we com-
piled for all 6-pack assays. To the best of our knowledge,
STopTox is the first publicly available portal that enables accu-
rate prediction of chemical hazards in all the 6-pack end points at
once using a model developed with transparent approaches and
carefully curated data. Despite the model limitations concerning
potency classes, they are reliable for predicting chemicals that do
not require regulatory classification, such as in the early stages of
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drug discovery (Hasselgren and Myatt 2018). We suggest that
these models are valuable for both regulatory agencies and re-
spective industries in helping them identify safer chemicals using
inexpensive in silico alternatives to in vivo testing of chemicals
of interest. We reinforce that, to build predictive models, it is not
enough just to use adequate chemical descriptors and powerful
machine learning algorithms (Fourches et al. 2016); we shall
stress that STopTox is the only 6-pack end point predictor in the
public domain developed with extensively curated data and
OECD-compliant modeling approaches. The STopTox web app
provides users with access to statistically significant and exter-
nally predictive QSAR models of acute toxicity tests. The web
app can rapidly evaluate acute toxicity hazards in chemical inven-
tories. STopTox is freely available at https://stoptox.mml.unc.
edu/. To the best of our knowledge, STopTox does not have ana-
logs in terms of the level of data curation, validated statistical ac-
curacy of constituting models, transparency of the data, modeling
methods and software tools, and public accessibility.

Supplemental Material
Supplemental Material includes curated data sets for each of the
6-pack end points and results for the virtual screening of the
STopTox matrix, and CosIng, and REACH databases in xlsx
format.
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