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Abstract
Human-induced climate change and ocean acidification (CC-OA) is changing the 
physical and biological processes occurring within the marine environment, with 
poorly understood implications for marine life. Within the aquaculture sector, mol-
luskan culture is a relatively benign method of producing a high-quality, healthy, 
and sustainable protein source for the expanding human population. We modeled 
the vulnerability of global bivalve mariculture to impacts of CC-OA over the period 
2020–2100, under RCP8.5. Vulnerability, assessed at the national level, was depend-
ent on CC-OA-related exposure, taxon-specific sensitivity and adaptive capacity in 
the sector. Exposure risk increased over time from 2020 to 2100, with ten nations 
predicted to experience very high exposure to CC-OA in at least one decade during 
the period 2020–2100. Predicted high sensitivity in developing countries resulted, 
primarily, from the cultivation of species that have a narrow habitat tolerance, while 
in some European nations (France, Ireland, Italy, Portugal, and Spain) high sensitiv-
ity was attributable to the relatively high economic value of the shellfish production 
sector. Predicted adaptive capacity was low in developing countries primarily due to 
governance issues, while in some developed countries (Denmark, Germany, Iceland, 
Netherlands, Sweden, and the United Kingdom) it was linked to limited species di-
versity in the sector. Developing and least developed nations (n = 15) were predicted 
to have the highest overall vulnerability. Across all nations, 2060 was identified as a 
tipping point where predicted CC-OA will be associated with the greatest challenge 
to shellfish production. However, rapid declines in mollusk production are predicted 
to occur in the next decade for some nations, notably North Korea. Shellfish culture 
offers human society a low-impact source of sustainable protein. This research high-
lights, on a global scale, the likely extent and nature of the CC-OA-related threat to 
shellfish culture and this sector enabling early-stage adaption and mitigation.
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1  | INTRODUC TION

Climate change and ocean acidification (CC-OA), caused by man-
kind's release of carbon dioxide and other greenhouse gases, poses a 
major threat to current and future human well-being (Doney, Fabry, 
Feely, & Kleypas, 2009; Houghton et al., 2001). Securing food, par-
ticularly protein, for the growing human population is a major global 
concern, considering the current fully or overexploited status of 
many wild food stocks and limited supply of freshwater for terres-
trial protein production (Alleway et al., 2019; Callaway et al., 2012). 
Outside of food provisioning, the ecosystem services generated by 
bivalve aquaculture have been valued at ~$6.5 billion per year (van 
der Schatte Olivier et al., 2018).

Mariculture, the farming of food organisms in the sea is an in-
creasingly important source of animal protein that is indepen-
dent of freshwater and which usually occurs within a complex 
and space-competitive coastal margin (Callaway et al., 2012). 
Mariculture operations generate income and employment in coastal 
communities, and mollusk-culture operations are considered to have 
minor environmental impact compared to other forms of farming 
(De Silva & Soto, 2009; Mohanty, Sharma, Sahoo, & Mohanty, 2010; 
Wilding & Nickell, 2013). “Conservation aquaculture,” based around 
bivalves, can offer relief for wild-caught fisheries (Froehlich, Gentry, 
& Halpern, 2017), while simultaneously increasing water quality and 
providing habitats for other species.

Noncephalopod mollusks (termed “mollusks” here), and the focus 
of the current paper, are cultured both inter- and subtidally in every 
populous continent and are of considerable economic value (>US$17 
billion per annum in 2015; FAO, 2016). Molluskan aquaculture of-
fers considerable scope for expansion including into areas damaged 
by climate change-linked sea water intrusion or coastal flooding (De 
Silva & Soto, 2009). Mollusks are cultured at a range of scales and 
constitute a staple protein or a niche, luxury food (e.g., Europe; De 
Silva & Soto, 2009). Mollusk mariculture growth potential extends 
to nations not currently culturing mollusks (De Silva & Soto, 2009).

Climate change and ocean acidification will have direct conse-
quences on molluskan mariculture operations and also a range of 
indirect effects via changing patterns of precipitation, salinity, the 
frequency and severity of extreme weather events (Brugère & De 
Young, 2015; Frost et al., 2012), changes in primary productivity, 
the nature/frequency of harmful algal blooms, and the incidence/
spread of disease and invasive species (Karvonen, Rintamäki, Jokela, 
& Valtonen, 2010). CC-OA will threaten the viability of molluskan 
mariculture at local and national spatial scales which depend primar-
ily on the geographical location of the farms, the species being culti-
vated, the hosting nation's ability to adapt to CC-OA, developments 
in market and trading patterns, and the emergence of new culture 
practices and technologies (Brugère & De Young, 2015).

Mollusks have been identified as a group particularly vulner-
able to the combined effects of CC-OA (Hughes et al., 2012). 
Vulnerability assessments are routinely applied to fishery stocks and 
fish-aquaculture operations, from both environmental and socio-
economic perspectives (reviewed in Barsley, De, Young, & Brugère, 

2013). While the vulnerability of aquaculture more broadly has been 
recently investigated (Handisyde, Telfer, & Ross, 2017), the specific 
vulnerabilities of shellfish mariculture to CC-OA are currently poorly 
understood and national-level predictions are urgently needed to 
identify at-risk populations and economies (Allison, Perry, et al., 
2009). Identification of nations with high sensitivity and low adap-
tive capacity to future CC-OA changes is crucial for future decision 
making and policy development. Froehlich, Gentry, and Halpern 
(2018) quantified the effect of climate change on the future pro-
duction potential of finfish and bivalves, while Gentry et al. (2017) 
mapped the potential for global development of marine aquaculture. 
However, these studies did not incorporate socio-political factors 
such as governance, and the economic and nutritional importance 
of mariculture at a national level (Froehlich et al., 2018; Gentry 
et al., 2017). For nations with the highest nutritional or economic 
dependence on mariculture, declines in production due to CC-OA or 
other threats, will be disproportionately felt (Froehlich et al., 2018). 
In Froehlich et al. (2018), while the species-specific growth limits 
are used to map where cultivation could occur, the current diver-
sity and consequent resilience of the national mariculture industry 
is not taken into account. This is an important factor to capture, as 
the diversity of a system, natural or anthropogenic, confers adaptive 
capacity to threats related to CC-OA.

Our objective was to conduct a vulnerability assessment of shell-
fish production on a global scale and to highlight where and when 
the global mollusk mariculture sector will be at highest risk (tipping 
points). In order to achieve this objective, we predicted the vulner-
ability of global mollusk mariculture, over the period 2010–2100, to 
the effects of CC-OA, by deriving then combining, at a national level, 
indices of exposure, sensitivity, and adaptive capacity.

2  | METHODS

The background and context to the model are described; then, we 
detail the model construction. The model structure and components 
are summarized in Figure 1.

2.1 | Model rationale

This vulnerability assessment was applied at a national level since 
this is the level at which changes in policy and infrastructure can best 
be initiated (Brugère & De Young, 2015). Antarctica was considered 
a “nation” for the purposes of this analysis. All coastal nations were 
assessed, including those where there is no Food and Agriculture 
Organization (FAO) record of mollusk mariculture. As most mollusk 
aquaculture production (97.5% in 2014) takes place in the marine 
environment (FAO, 2016), this analysis was limited to marine mollusk 
aquaculture.

Vulnerability is defined by the Intergovernmental Panel on 
Climate Change (IPCC, 2007) as the degree to which a system is 
susceptible to adverse effects. In this study, we use the approach 
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outlined by the IPCC to build a vulnerability assessment using indi-
cators to build sublayers of exposure, sensitivity, and adaptive ca-
pacity in the mollusk mariculture industry (Adger, 2006; IPCC, 2007; 
Figure 1).

The exposure sublayer is a measure of the predicted physical ef-
fects of CC-OA on the mollusk mariculture industry including their 
direct effects (elevated sea surface temperatures and decreased 
pH) and indirect effects (primary productivity, and risk of extreme 
weather events; Adger, 2006). Exposure to predicted sea surface 
temperatures (SST) outside of a species' thermal tolerance and a 
reduction in aragonite saturation (AΩ) are both detrimental to mol-
lusks (Cooley, Lucey, Kite-Powell, & Doney, 2012; Pörtner & Farrell, 
2008). OA was represented by the predicted change in depth (m) of 
the aragonite saturation horizon, since availability of suitable habitat 
will decrease as the saturation horizon becomes shallower.

Food satiation provides a buffer against the detrimental effects 
of OA (Melzner et al., 2011) and, since maricultured mollusks are 
primarily filter feeders consuming phytoplankton (Winter, 1978), 
predicted ocean primary productivity (PP) was used as an indica-
tor for food availability. It was assumed that predicted decreases 
in primary productivity would render mollusks proportionally less 
able to buffer the effects of OA (Burgiel & Muir, 2010; Dupont & 
Thorndyke, 2009; Parker et al., 2012). Extreme weather events 
have the potential to cause substantial mariculture-infrastructure 
damage. Predicting future extreme weather events is challenging 

(Nehls & Thiel, 1993) and, consequently, we used the approach ad-
opted by Handisyde et al., (2006), which used current-day cyclone 
risk from CCCMA (2016) as an indicator for future extreme weather 
risk. Other relevant variables, such as occurrence of harmful algal 
blooms, disease, and pest species, were not included in this study 
due to paucity of data availability at the spatial and temporal scale 
considered here.

Climate change and ocean acidification projections (sea surface 
temperature, aragonite saturation, and primary productivity) were 
derived from the IPCC's Representative Concentration Pathways 8.5 
(RCP8.5) “business as usual” model (AR5; Moss et al., 2010; Stocker, 
2014). RCP8.5 assumes the highest greenhouse gas emissions and, 
consequently, the greatest degree of CC-OA (Riahi et al., 2011; van 
Vuuren et al., 2011).

The sublayer sensitivity (Figure 1) is defined by the IPCC as the 
intrinsic degree to which biophysical, social, and economic conditions 
are likely to be influenced by extrinsic stresses or hazards (Houghton 
et al., 2001; IPCC, 2007). Here, we measure sensitivity using indica-
tors for species sensitivity and the relative economic and nutritional 
contribution made by mollusks. Different species have different inher-
ent capacity to adapt to environmental changes, and species with a 
wider habitat range are likely to be less sensitive to those changes 
(Pörtner & Farrell, 2008). Our species sensitivity index assumes that 
species characterized by broad environmental tolerances will be more 
robust against future environmental change (Morrison et al., 2015). 

F I G U R E  1   Schematic representation of the vulnerability assessment model illustrating that overall vulnerability was determined as a 
combination of three exposure, sensitivity, and adaptive capacity each of which consisted of subfactors. Details for each factor/subfactor 
are given in the methods
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The economic and nutritional contribution index assumed that nations 
with a higher proportion of their aquaculture sector invested in mol-
lusk mariculture and with a larger per-capita consumption of mollusks 
are more likely to be sensitive to CC-OA-related fluctuations in mari-
culture industry production (Allison, Perry, et al., 2009; Handisyde, 
Ross, Badjeck, & Allison, 2006).

The sublayer adaptive capacity includes social, economic, tech-
nological, biophysical, and political indicators that determine the 
capacity of systems to adapt to change (IPCC, 2007). CC-OA rep-
resents a significant test to the stability and adaptive capacity of 
the mariculture sector, and factors such as socioeconomic status 
have not been incorporated in prior studies (Froehlich et al., 2018). 
Adaptive capacity was measured here using indicators for industry 
diversity (number of species and quantity per species) and gover-
nance (national ability to manage the necessary investment into 
mariculture to overcome CC-OA; Handisyde et al., 2006).

The impacts of CC-OA on mariculture will change over time; 
identification of tipping points, where CC-OA could trigger sharp 
declines in industry production, is important to identify appropri-
ate timelines for mitigation/management plans (Cai, Judd, Lenton, 
Lontzek, & Narita, 2015; Lenton, 2013). Further details in relation to 
model parameterization and the derivation of indices are provided in 
following subsections.

2.2 | Model construction

The vulnerability assessment was based on overlaying spatially ex-
plicit CC-OA projections and national mollusk production statistics/
metrics and socioeconomic data. All spatial data were standardized 
onto the World Geodetic System 1984 (WGS84), using R version 
3.3.2 (R Core Team, 2013).

All indices generated within the sublayers exposure, sensitivity, 
and adaptive capacity (Figure 1) were applied to United Nations rec-
ognized nations (and Antarctica, see caveat above), and these were 
assigned World Bank development classifications (Prince & Fantom, 
2014). The numerical values generated for all indices were reclassi-
fied to an impact scale of one to five (Handisyde et al., 2006), with 
five indicating the greatest impact. Since the data used here were 
varied in type, scale, and composition, it was not possible to apply a 
standard method of reclassification to all indices. Reclassification of 
each variable was made on a case-by-case basis as indicated by rele-
vant literature (see below). For variables where there was no reclas-
sification precedent, value-reclassification followed Allison, Perry, 
et al. (2009); all values were normalized onto a scale from 0 to 1 
(

X�
=

X−Xmin

Xmax−Xmin

)

 and linearly reclassified to our 1–5 risk score. Missing 
data for indices within each sublayer were not included and an aver-
age value calculated for each nation. The overall score for each sub-
layer was assigned using the mean value from indices within each 
sublayer (0–1 = very low, 1–2 = low, 2–3 = moderate, 3–4 = high, and 
4–5 = very high).

To test for redundant indices within each sublayer of our vul-
nerability model, we conducted principal component analysis (PCA; 

Wold, Esbensen, & Geladi, 1987) following data normalization. To 
facilitate global analysis, all indicators were necessarily coarse-scale, 
and we acknowledge that this reduces accuracy and resolution of 
results at finer scales.

2.2.1 | Exposure sublayer

The exposure sublayer was generated by combining indicators 
for sea surface temperature (SST), OA (as indicated by aragonite 
saturation horizon; AΩ), primary productivity (PP), and risk of ex-
treme weather events (Figure 1). Forecasted data for the exposure 
submodel (period 2006–2100) were obtained from the CMIP5 ar-
chive (see Data availability statement, 1) based on the “business as 
usual” RCP8.5 scenario (Moss et al., 2010). We used the RCP8.5 
scenario exclusively in this analysis, as other scenarios include 
future changes in socioeconomic status of nations not modeled 
here. As such, it is appropriate that the scenario used is in line with 
the static nature of the indicators in the sensitivity and adaptive 
capacity sublayers. In order to set a baseline for each index, the 
mean values from historical data for the period 1860–2005 were 
calculated (Henson, Beaulieu, & Lampitt, 2016). The projected 
data were projected on to a latitude–longitude grid with a 1° and 
1/3° resolution between 90° to 30° and 30° to zero degree lati-
tude, respectively. Our model was based on RCP8.5 water column 
parameter projections from surface to 100 m resolved to 10 m in 
the CMIP5 data (Collins et al., 2008).

Sea surface temperature, depth of the aragonite saturation hori-
zon, and primary productivity (primary organic carbon production com-
bined across all phytoplankton) were averaged for 120-monthly values 
as predicted for each decade between 2011–2020 and 2091–2100 
(Cooley et al., 2012). This average was then expressed as % change (for 
aragonite saturation horizon and primary productivity) or change in °C 
(for SST), with respect to the baseline mean for 1986–2005 (Henson 
et al., 2016). Changes in SST (°C), saturation depth, and primary pro-
ductivity were reclassified to represent higher levels of exposure to 
CC-OA as in Allison, Perry, et al. (2009; Table 1) (see Tables S1–S3 
for temperature, aragonite saturation, and productivity, respectively).

The index for extreme weather event submodel used data from the 
Center for Hazards and Risk Research (CHRR) at Columbia University 
(see Data availability statement, 2), based on global 2.5° grid of 1,600 
cyclone events over the period 1980–2000 (CCCMA, 2016). In the 
absence of relevant, usable forecasted data, it was assumed that 
the number/intensity of extreme events was most likely to increase 
in areas that currently experience high frequencies of these events 
(Handisyde et al., 2006). Layers were linearly reclassified from the 
CHRR risk deciles to our impact scale of 1–5 (Table 1, Table S4).

All spatial data predictions for indices within the exposure sub-
model (sea surface temperature, aragonite saturation horizon, pri-
mary productivity, and cyclone risk) were reprojected on to a standard 
WGS84 grid and assigned to nations using national boundary data from 
the Flanders Marine Institute Maritime Boundaries Geodatabase (see 
Data availability statement, 3) (Cooley et al., 2012; VLIZ, 2012). As in 
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Froehlich et al. (2018), we assume that nations will not establish mari-
culture operations outside of their jurisdiction, and so we restrict our 
estimates for exposure to the areas bounded by each nation's exclusive 
economic zone (EEZ). Mean exposure submodel predictions were de-
termined for each time period (2020–2100). The exposure values for 
discontinuous EEZ's (i.e., those nations with overseas territories) were 
collated prior to the average being determined.

2.2.2 | Sensitivity sublayer

The sensitivity sublayer of the mollusk mariculture industry to 
CC-OA was quantified by collating cultured-species sensitivity and 
economic/nutritional contribution indicators (Figure 1).

Species sensitivity was determined by the thermal, depth, and sa-
linity tolerances of each species based on their distribution (see Data 
availability statement, 4) (Ocean Biogeographic Information System; 
Grassle, 2000). A species sensitivity score was calculated for each spe-
cies for each of the temperature, depth, and salinity variables (Table 2, 
Table S6 for species detail and Table S7 for national species sensitivity 
scores). The arithmetic mean of the sensitivity scores for all species was 
calculated for each nation, providing an average overall species sensi-
tivity score for the mollusk mariculture industry. Species with greater 
habitat range were assigned a lower sensitivity score (Table 2). In the 
absence of species-specific data, data from congenerics were used and, 
where this was absent, the species was excluded from this analysis.

The economic contribution index was calculated as the total mol-
luskan mariculture production value (US$; FAO, 2016) expressed as a 
percent of GDP (see Data availability statements 5 and 6, respectively) 

(World Bank Development Indicators; Prince & Fantom, 2014) as di-
rected in Allison, Perry, et al. (2009) and Cooley et al. (2012). For each 
nation, the mean mollusk production value from 2012 to 2014 was de-
termined (Handisyde et al., 2006) as a percent of GDP (Allison, Perry, 
et al., 2009). The nutritional contribution index was, for each nation, 
represented by the percentage of dietary protein contributed by mol-
lusks (Allison, Perry, et al., 2009; Cooley et al., 2012) as indicated on 
FAO food balance sheets (FAO, 2016). The economic and dietary con-
tributions were then normalized and linearly reclassified to our 1–5 
impact scale (detail given above; Allison, Perry, et al., 2009).

2.2.3 | Adaptive capacity sublayer

The adaptive capacity sublayer for the mollusk mariculture indus-
try was calculated for each nation and was based on a combination 
of current industry diversity (i.e., number of species cultivated, see 
Data availability statement, 7) (US$; FAO, 2016) and national govern-
ance indices (Figure 1 and see below). For diversity, we determined 
the Shannon Index, H' (base = natural logarithm) (Shannon, 2001), 
which balances the richness (species count) and evenness (produc-
tion tonnage per species; FAO, 2016). The diversity index value for 
each nation was normalized (see “Model construction”) and inverted 
(1 = high diversity, 5 = low diversity; Table S12).

The governance index was defined by the World Bank Worldwide 
Governance Indicator (WGI), which combines six dimensions of gov-
ernance (Cooley et al., 2012; Kaufmann, Kraay, & Mastruzzi, 2011). 
The WGI used here see (Data availability statement, 8) was the av-
erage determined over the period 1996–2015 equally weighted for 

Exposure

Sea surface 
temperature 
(°C) increase

Aragonite saturation 
depth (%) decline

Primary 
productivity (%) 
decline

CHHR 
cyclone index

1 0–2 <0 <0 1–2

2 2–3 0–25 0–25 3–4

3 3–4 25–50 25–50 5–6

4 4–5 50–75 50–75 7–8

5 5 75–100 75–100 9–10

Note: CHHR—Center for Hazards and Risk Research (see main text for additional explanation).

TA B L E  1   Reclassification of data layers 
used in the exposure to CC-OA submodel, 
where 5 indicates the highest exposure to 
CC-OA for the year 2100

Sensitivity score

Species' distribution

Depth range (m)
Temperature range 
(°C)

Salinity 
range (PSS)

1 >100 > 20 > 20

2 75–100 15–20 15–20

3 50–75 10–15 10–15

4 25–50 5–10 5–10

5 0–25 0–5 0–5

Note: An unweighted average of the scores for each layer (depth, temperature, and salinity) 
determined the overall species sensitivity for each species cultured within each nation.

TA B L E  2   Reclassification of data layers 
used in the species sensitivity index within 
the sensitivity sublayer, where 5 indicates 
the highest sensitivity to CC-OA
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the six components and divided into 5 equal classes and inverted to 
reclassify on to our 1–5 scale.

2.2.4 | Overall Vulnerability

Overall vulnerability, per nation, was determined by combining the 
unweighted average score for sublayers exposure, sensitivity, and 
adaptive capacity (Allison, Perry, et al., 2009). The sublayers of vul-
nerability have been given various objective-dependent weightings in 
prior studies (Brugère & De Young, 2015). Some studies have sourced 
expert elicitation (Handisyde et al., 2006; Morrison et al., 2015) while 
others based weighting on scientific evidence supporting their rela-
tive importance (Cinner et al., 2013), or have given equal weighting 
to all components (Allison, Beveridge, & van Brakel, 2009). Given this, 
and the absence of an intuitive relationship between the three com-
ponents in our model, we opted to leave sublayers unweighted. As the 
robustness of vulnerability scores to additive and multiplicative ap-
proaches is highly correlated (Allison, Perry, et al., 2009), we opted for 
an additive model where the unweighted mean score of the sublayers 
(exposure, sensitivity, and adaptive capacity) was combined to give an 
overall vulnerability score (0–1 = very low, 1–2 = low, 2–3 = moder-
ate, 3–4 = high, and 4–5 = very high). Missing data were omitted in 
the determination of the mean (see Table S14 for overall vulnerability 
over time, by nation).

Tipping points
Nonmetric multidimensional scaling (MDS; Kenkel & Orlóci, 1986) 
was performed on the overall vulnerability score for each nation 
for the decades 2011–2020 to 2090–2100 to identify temporal 
trends in predicted vulnerability and tipping points. MDS creates 
an ordination that displays the differences between objects (here: 
decades), where objects with greater difference are displayed fur-
ther apart. For each of the top 15 mollusk producers, MDS axis 
scores were correlated with exposure scores for indices within the 
exposure sublayers to assess which sublayer was driving any ob-
served patterns. Environmental indices were added to MDS plots 
to demonstrate potential drivers of tipping points. Cyclone risk 
was excluded from the MDS-based analysis as it was calculated 
from historic observations and did not vary over time. For correla-
tions between MDS axis scores and indices within the exposure 
sublayer, for the top 15 mollusk mariculture-producing nations 
(Table S15).

3  | RESULTS

Indices for exposure, sensitivity, and adaptive capacity were deter-
mined for 137, 142, and 208 nations, respectively, and were com-
bined to calculate overall vulnerability for 117 nations. Differences 
in the number of indices generated between the different submodel 
components occurred because not all indices were applicable to all 
nations (e.g., not all nations currently culture mollusks) and because 
of data availability.

3.1 | Exposure

Exposure was calculated for sea surface temperature (SST), arago-
nite saturation horizon (AΩ), primary productivity (PP), and risk of 
extreme weather events, for 52,646 locations in 137 maritime na-
tions, for each decade from 2020 to 2100. Within the exposure sub-
layer, PCA of the initial four indices found no redundant indices. The 
strongest correlation (r = −.39) was between SST and AΩ.

Exposure risk increased over time from 2020 to 2100, with ten 
nations predicted to experience very high exposure to CC-OA in at 
least one decade during the period from 2020 to 2100 (Figure 2).

Nations that scored high exposure for changes in SST also tended 
to score high for changes in AΩ (Table 3). Georgia and neighboring 
Turkey, along with Tunisia, scored very high exposure for both SST 
(>5 C increase) and AΩ (>75% shallower; Table 3). Japan, Taiwan, and 
Vietnam were also categorized into the highest exposure risk, but 
this was primarily attributable to a combination of predicted declin-
ing primary productivity (>75% by 2100) and high cyclone risk.

Eight of the 15 top mollusk mariculture-producing nations 
scored high or very high in terms of overall exposure (Table 4). Six of 
the 15 top-producing nations are in Asia (China, Japan, South Korea, 
Vietnam, Taiwan, and North Korea), with overall high exposure pri-
marily attributable to high cyclone risk (Table 4). Outside of Asia, the 
United States and Italy were the only top-producing nations with 
predicted high exposure (attributable to SST/cyclone and SST/ara-
gonite depth, respectively; Table 4).

3.2 | Sensitivity

Sensitivity was calculated for 144 nations. Indices for species sen-
sitivity, nutritional contribution, and economic sensitivity were cal-
culated for 55, 124, and 136 nations, respectively (see Tables S7–S9 
for details). PCA of the initial four indices showed that the first three 
principal components contributed 98.5% to the total variation; a cor-
relation of 0.88 was observed between the mollusk economic value 
and the production index so the production index was dropped.

Nations predicted with the very high sensitivity score were Peru, 
Antigua and Barbuda, and the Cook Islands. This very high sensitivity 
was primarily attributed to the narrow habitat range of species cul-
tured, for example, the Cook Islands' and Peru's mollusk mariculture 
sectors are dominated by the clam Tridacna spp. and Peruvian calico 
scallop (Argopecten purpuratus), respectively (FAO, 2016), which are 
both habitat specialists (Grassle, 2000). Five of 11 nations with high 
sensitivity were in Europe (France, Ireland, Italy, Portugal, and Spain) 
primarily driven by the mariculture sector's economic value (Figure 3; 
Table 5). Conversely, high sensitivity in Asia (China, Japan, and Thailand) 
was attributed mostly to the dietary importance of mollusks (Figure 3).

Eight of the 15 top mollusk-producing nations scored high or 
very high overall sensitivity (Table 6). Peru was the most sensitive 
of top-producing countries with high or very high scores for all sen-
sitivity indices. Three of the top 15 producing nations were in Asia 
(China, Japan, and South Korea), with overall sensitivity primarily 
attributable to the nutritional contribution made by mollusks. In 
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Europe, four top-producing nations had high sensitivity due to high 
relative economic contribution; this also applied to New Zealand.

3.3 | Adaptive capacity

Adaptive capacity, in terms of governance and bivalve mariculture 
diversity, was determined for 208 and 54 nations, respectively, giv-
ing a score for a total of 208 nations. PCA of the initial three indices 

showed that the first two principle components contributed 92% 
to the total variation and, given the high correlation (r  =  .75) be-
tween the governance and human development indices  (HDI), the 
HDI was dropped. Eight of 14 nations that scored very high risk for 
adaptive capacity were missing data for industry diversity and had 
very high governance index impact scores (Figure 4; Table 7). These 
were mainly developing and least developed nations not currently 
practicing aquaculture. Scores for governance, by nation, are given 
in Table S11.

F I G U R E  2   Exposure to CC-OA for nations with current mollusk aquaculture operations, measured as nation-specific mean of indices 
within the exposure sublayer from 2020 to 2100, for IPCC scenario RCP8.5. Colors represent exposure score (1 = very low, 2 = low, 
3 = moderate, 4 = high, and 5 = very high), with white where no data were available. See Table S5 for national values

Country

Sea surface 
temperature 
(°C)

Aragonite 
saturation 
depth

Primary 
productivity

Cyclone 
risk

Exposure 
2100

Developed          

Japan 4 4 4 5 5

Developing          

Bahamas*       5 5

Taiwan 3 4 5 5 5

Vietnam* 3   5 5 5

Georgia* 5 5 3   5

Tunisia* 5 5 3   5

Turkey* 5 5 3   5

Note: Values in bold indicate very high exposure to an index within any layer. Blank cells indicate 
missing data. The overall score for exposure was assigned using the mean value from indices 
within the layer and categorized thus: 0–1 = very low, 1–2 = low, 2–3 = moderate, 3–4 = high, and 
4–5 = very high. Nations missing data for any single index have been identified with an asterisk (*).

TA B L E  3   Exposure risk values for 
nations with very high overall exposure 
to CC-OA in the decade ending 2100, 
showing indices that make up the 
exposure sublayer
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Eight of the 15 top mollusk-producing nations in the world scored 
very high in one or both of the indices within the adaptive capacity sub-
layer (Table 8); all eight scored very high risk for industry diversity and, 
with the exception of North Korea, were European (Table 8). These in-
cluded many developed nations where the mollusk mariculture industry 
was dominated by one species (Denmark, Germany, Iceland, Netherlands, 
Sweden, United Kingdom all >94% Mytilus edulis; New Zealand 98% 
Perna canaliculus, and Norway 98% Crassostrea gigas; FAO, 2016).

3.4 | Overall vulnerability

Overall vulnerability was calculated for 117 coastal nations, for each 
decade from 2020 to 2100 (Figure 5). In general, predicted vulnerabil-
ity increased over time to 2100 (Figure 5), with 26 nations predicted 
high or very high overall vulnerability by 2100 (Table 9). Of these, 17 
were developing nations and 9 were developed nations (Table 9).

Nation
Sea surface 
temperature (°C)

Aragonite 
saturation depth

Primary 
productivity

Cyclone 
risk

Exposure 
2100

China 3 4 3 5 4

Japan 4 4 4 5 5

South Korea 3 5 3 5 4

Chile* 2 3 2   3

Spain 4 2 2 1 3

Thailand 3 1 3 2 3

Vietnam 3   5 5 5

USA 4 3 3 4 4

France 3 3 2 4 3

Italy* 5 4 2   4

New Zealand 3 4 2 2 3

Taiwan 3 4 5 5 5

North Korea 4 5 2 4 4

Netherlands 4 1 2 2 3

Peru* 3 2 2   3

Note: For other table details (highlights, asterisk, missing values, and scoring), see Table 3 caption.

TA B L E  4   Predicted exposure to CC-
OA for 15 largest producers of mollusk 
mariculture in 2014 (FAO, 2016), for the 
year 2100 including indices sea surface 
temperature (SST), aragonite saturation 
horizon, primary productivity, and cyclone 
risk

F I G U R E  3   Sensitivity to CC-OA for nations with current mollusk aquaculture operations, measured as nation-specific mean of indices 
within the sensitivity sublayer. Colors represent sensitivity score (1 = very low, 2 = low, 3 = moderate, 4 = high, and 5 = very high). White 
areas indicate nations where no data were available
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By 2100, 12 of the 15 top mollusk-producing nations were pre-
dicted to score high or very high for overall vulnerability (Table 10). 
Seven of these top-producing nations are in Asia (China, Japan, 
South Korea, Thailand, Vietnam, Taiwan, and North Korea), with 
overall high vulnerability primarily attributable to high exposure 
(Table 9). However, four of these nations are missing data for one 
sublayer, which may contribute to their overall high vulnerability 
score (Table 10). Conversely, the classification of top-producing 
nations in South America (Chile and Peru) and Europe (Spain and 
Italy) as high for overall vulnerability was attributed to their high 
risk for both the adaptive capacity and sensitivity (Table 9). France, 
the Netherlands, and the United States were the only top-produc-
ing nations that were predicted to remain in the moderate overall 
vulnerability category by the year 2100 (Table 10).

3.4.1 | Tipping points

Nonmetric multidimensional scaling (MDS) of the overall vulner-
ability scores for each decade between 2020 and 2100 indicated a 
clear trend of change over time (Figure 6). When combined across 
all nations, the decades 2020–2060, 2070–2080, and 2090–2100 
formed distinct groups (Figure 6). The period of greatest decline/
threat to the global mollusk mariculture sector is predicted to 
begin in 2060 and continue to accelerate beyond 2080 (Figure 6). 
Predicted tipping points varied regionally but were earliest in South 
Korea and Vietnam, and Spain, beginning as early as 2020 in North 
Korea (Figure 7). Predicted tipping points for South America (Chile 
and Peru) occurred later than the global average (>2080; Figure 7).

Multidimensional scaling for vulnerability for the top 15 mollusk 
mariculture-producing nations identified clear tipping points in 11 
nations. MDS 2D-stress values exceeded 0.20 for Japan, Italy, and 
the Netherlands, and these are not shown.

Sea surface temperature had the highest correlation with the 
MDS axis 1 for 11 of the 15 top-producing mollusk mariculture na-
tions (see Table S15). In some nations, this correlation was strong 
(i.e., R >  .50; Chile, China, North Korea, Peru, South Korea, Spain, 
Thailand, United States, and Vietnam), while in others this correla-
tion was weaker (Japan and the Netherlands; Table S15).

Clear tipping points at 2060 were predicted for South Korea 
and Vietnam, and this was associated with increases in sea surface 
temperature and declining primary productivity. In Europe, tipping 
points in Spain and France are predicted by 2060 and 2080, re-
spectively, and were most closely correlated with sea surface tem-
perature and aragonite saturation (Figure 7). Tipping points were 
unclear in other nations (Figure 7).

4  | DISCUSSION

This study is the first of its kind to specifically assess and pre-
dict the unique challenges posed by CC-OA to the global mollus-
kan mariculture industry using the IPCC method for vulnerability 

TA B L E  5   Sensitivity risk values for nations with high to very 
high overall sensitivity to CC-OA, showing indices that make up the 
sensitivity sublayer

Nation
Economic 
contribution

Nutritional 
contribution

Species 
sensitivity Sensitivity

Developed        

France 5 4 1 4

Ireland 5 3 2 4

Italy 4 4 4 4

Japan 4 5 1 4

New 
Zealand

5 2 3 4

Portugal 4 4 2 4

Spain 5 4 2 4

Developing        

Antigua 
and 
Barbuda*

  5   5

Bermuda*   4   4

China 3 5 2 4

Cook 
Islands*

5   5 5

Palau* 3   5 4

Peru 4 5 5 5

Thailand 3 4 3 4

Note: For table details (highlights, asterisk, missing values, and 
scoring), see Table 3 caption. See Table S10 for the full list of national 
sensitivities.

TA B L E  6   Predicted sensitivity to CC-OA for 15 largest 
producers (by weight) of mollusk mariculture in 2014 (FAO, 2016), 
including indices for economic and nutritional contribution and 
species sensitivity

Nation
Economic 
contribution

Nutritional 
contribution

Species 
sensitivity Sensitivity

China 3 5 2 4

Japan 4 5 1 4

South Korea 3 5 2 4

Chile 3 2 2 3

Spain 5 4 2 4

Thailand 3 4 3 4

Vietnam 2 3 2 3

USA 4 3 2 3

France 5 4 1 4

Italy 4 4 4 4

New Zealand 5 2 3 4

Taiwan* 2   3 3

North Korea 3 2 2 3

Netherlands 5 2 2 3

Peru 4 5 5 5

Note: For other table details (highlights, asterisk, missing values, and 
scoring), see Table 3 caption.
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assessments. Our global nation-by-nation scale perspective pro-
vides a context for finer scaled regional, local, or site-specific anal-
yses of the impacts of CC-OA and provides an insight into complex 
and nonintuitive species-specific spatiotemporal interactions that 
will play a key role in determining challenges for future global mol-
lusk production. National- and international-level predictions, of 

the type presented here, facilitate industry and governments in 
preparing strategies and policies that will mitigate the impacts of 
CC-OA. Our approach complements that of Froehlich et al. (2018), 
but we collate data across nations and include current mollusk 
mariculture production and adaptive capacity in our assessment of 
national vulnerability.

F I G U R E  4   Adaptive capacity to CC-OA for nations with current mollusk aquaculture operations, measured as nation-specific mean of 
indices within the adaptive capacity sublayer. Colors represent adaptive capacity risk (1 = very low, 2 = low, 3 = moderate, 4 = high, and 
5 = very high), with white where no data were available

Nation Governance Industry diversity Adaptive capacity

Developing      

Channel Islands*   5 5

Congo* 5   5

Cook Islands*   5 5

Eritrea* 5   5

Libya* 5   5

New Caledonia*   5 5

North Korea 5 5 5

Somalia* 5   5

St. Pierre and 
Miquelon*

  5 5

Sudan* 5   5

Syrian Arab Republic* 5   5

Ukraine 4 5 5

Venezuela 4 5 5

Yemen* 5   5

Note: For table details (highlights, asterisk, missing values, and scoring), see Table 3 caption. For 
other nations, see Table S13.

TA B L E  7   Adaptive capacity sublayer 
indices for nations with very high overall 
adaptive capacity risk values
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Most (15/26) nations with predicted high to very high overall vul-
nerability were developing or least developed nations. This was largely 
attributable to both high exposure and low adaptive capacity in these 
nations, and it follows that increasing adaptive capacity in these vulner-
able nations may be the most effective means of mitigating the impacts 
of CC-OA to their shellfish mariculture industry (see adaptive capacity 
below). In addition, we predict that the mariculture industry in the cur-
rent top-producing nations will be challenged by CC-OA for a variety 
of reasons and, consequently, meeting that challenge should be ap-
proached on a case-by-case basis. While vulnerability varied regionally 
and nationally, we predict that it will, generally, increase over time as a 
result of CC-OA, with the largest changes beginning in 2060. However, 
within this general pattern we predict considerable variability.

4.1 | Exposure

This study highlights that several, linked, CC-OA-related factors are 
likely to act synergistically, and detrimentally, to reduce molluskan 
mariculture production and that this is likely to increase over time but 
varies between nations. Our model predicted that existing molluskan 
mariculture is under the greatest threat in Asia (Japan, Taiwan, and 
Vietnam) linked primarily to declining primary productivity and high cy-
clone risk. This concurs with the finding of Froehlich et al. (2018) who 
linked predicted declines in primary productivity to a loss of suitable 
habitat for bivalves. Our exposure index captured the main CC-OA-
related threats to mollusk shell production; it simultaneously accounted 
for changes in food availability, for example, allowing for the potential 
for mollusk to offset the effects of CC-OA and thrive where food is 
abundant (Melzner et al., 2011). We predict that Georgia, Turkey, and 
Tunisia will experience the greatest challenge to future mollusk produc-
tion from OA primarily because of a decline in aragonite saturation and, 
consequently, space in which successful culture can occur.

Nation Governance Industry diversity Adaptive capacity

China 3 1 2

Japan 2 3 3

South Korea 2 3 3

Chile 2 5 4

Spain 2 5 4

Thailand 3 3 3

Vietnam 3 5 4

USA 2 2 2

France 2 2 2

Italy 3 5 4

New Zealand 1 5 3

Taiwan* 2   2

North Korea 5 5 5

Netherlands 1 5 3

Peru 3 5 4

Note: For other table details (bold emphasis, asterisk, missing values, and scoring), see Table 3 
caption.

TA B L E  8   Predicted adaptive capacity 
to CC-OA for 15 largest producers (listed 
in order of production output by weight in 
2014; FAO, 2016), calculated as the mean 
of indices for governance and industry 
diversity

F I G U R E  5   Overall vulnerability to CC-OA for coastal nations, 
measured as nation-specific mean for exposure, sensitivity, and adaptive 
capacity sublayers for decades 2020, 2060, and 2100. Colors represent 
overall vulnerability score, while white indicates the absence of data
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4.2 | Sensitivity

Very high overall sensitivity was generally attributable to high species 
sensitivity within a given nation's mariculture industry. As such, one 
solution to the CC-OA challenge could include switching to the culture 
of less sensitive species and/or moving culture operations to higher lati-
tudes (Burrows et al., 2014), provided space, and markets exist. Nations 
that are characterized by limited cultivatable land (e.g., China) and those 
with deep-seated cultural identities as “sea-faring” nations (e.g., Antigua 
and Barbuda, Cook Islands, New Zealand, Thailand, French territories; 
Cooley et al., 2012) have tended to focus on marine sources of protein 
(FAO, 2014) and, as a consequence, such nations are more sensitive to 
challenges to molluskan mariculture (Cooley et al., 2012). China, with a 
growing population and concomitant food demand, is likely to face par-
ticular challenges.

4.3 | Adaptive capacity

The adaptive capacity sublayer was composed of indices for indus-
try diversity and governance. Countries with governance-related 
low adaptive capacity may require additional support to maintain 
and develop mariculture operations (Blanchard et al., 2017). In gen-
eral, high risk for adaptive capacity (8 of 14 nations) was attributed 
to poor governance as currently prevalent in developing and least 
developed nations in Africa. Climate change is likely to negatively 
impact upon terrestrial crop production in these regions necessi-
tating consideration of other protein sources (Cooley et al., 2012; 
Lobell & Field, 2007), and this could include mollusks. Given the 
sustainability of molluskan mariculture (relatively low environ-
mental impact, high-quality, local market development, and em-
ployment opportunities), we recommend that future international 

Nation Exposure 2100 Sensitivity Adaptive capacity

Developed      

Croatia 4 3 4

Greece 4 3 4

Ireland 4 4 2

Italy 4 4 4

Japan 5 4 3

New Zealand 3 4 3

Portugal 4 4 2

Romania 4 2 4

Spain 3 4 4

Developing      

Antigua and Barbuda 4 5 2

Brazil 3 3 4

Bulgaria 4 3 4

Chile 3 3 4

China 4 4 2

Cuba 3 3 4

Libya 4 1 5

Montenegro 4 3 4

Namibia 4 3 4

Palau 4 4 3

Peru 3 5 4

Philippines 4 3 4

Thailand 3 4 3

Tonga 4 3 4

Turkey 5 2 3

Ukraine 4 3 5

Least developed      

Cambodia 3 3 4

Note: There were no coastal nations with very high overall vulnerability. For other table details 
(bold emphasis, missing values, and scoring), see Table 3 caption.

TA B L E  9   Components of overall 
vulnerability for developed, developing, 
and least developed nations with high 
overall vulnerability in 2100
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development goals (e.g., UN Summit on Sustainable Development) 
for sustainable food production (UN, 2015) should encompass mol-
luskan mariculture. Diversification of the molluskan-production 
sector is recommended for many European nations where low 
mollusk-culture species diversity reduces resilience and adaptabil-
ity. Industry diversification will have its own challenges, particularly 
where markets for existing species are very entrenched and/or 
where the optimal culture species is non-native and may pose an 
invasive-risk (Callaway et al., 2012).

4.4 | Overall vulnerability and tipping points

The consequences of a high overall vulnerability to CC-OA in the 
molluskan mariculture sector will vary widely between nations. 
We predict that many of the current top mollusk-producing na-
tions are likely to be adversely affected by predicted CC-OA 
impacts, but for different combinations of reasons. In South 
America, high overall vulnerability was attributable to low spe-
cies diversity in Chile, while in Peru it was attributable to high 
species sensitivity and the dietary importance of shellfish. While 
not centered around shellfish mariculture, other vulnerability as-
sessments have also found Chile to be a nation highly vulnerable 
to climate change (Handisyde et al., 2017). Our recommendation, 
particularly in these nations, is to diversify the industry and/or 
identify species that are better adapted to the projected CC-OA-
related change.

In Europe, particularly Spain and Italy, high overall vulnerability 
was attributable to relatively high economic value of the mollusk 
mariculture sector. In addition, most of the European industry is 
based on the blue mussel (Mytilus sp), a habitat generalist and low 
sensitivity species. While Mytilus sp. might be robust against the 
threats, we identify here its dominance makes the European sector 
potentially vulnerable to indirect CC-OA-linked threats such as dis-
ease, harmful algal blooms, and invasive species. Our recommenda-
tion is to add adaptive capacity by diversifying the sector.

Asia hosts 7 of the 15 top mollusk-producing nations (China, 
Japan, South Korea, Thailand, Vietnam, Taiwan, and North Korea) 
that together produce >98% of the world's total mollusk aqua-
culture production by weight (FAO, 2014). Our results concur 
with Froehlich et al. (2018) that many of these Asian nations are 

Nation Exposure 2100 Sensitivity Adaptive capacity Vulnerability 2100

China 4 4 2 4

Japan 5 4 3 4

South Korea* 4   3  

Chile 3 3 4 4

Spain 3 4 4 4

Thailand 3 4 3 4

Vietnam* 5 3    

USA 4 3 2 3

France 3 4 2 3

Italy 4 4 4 4

New Zealand 3 4 3 4

Taiwan* 5 3    

North Korea* 4   5  

Netherlands 3 3 3 3

Peru 3 5 4 4

Note: For other table details (bold emphasis, missing values, and scoring), see Table 3 caption. 
Overall vulnerability could not be calculated for any nations missing data for any single sublayer, 
and these have been identified with an asterisk (*).

TA B L E  1 0   Predicted vulnerability to 
CC-OA for the 15 largest producers of 
mollusks by mariculture in 2014 (FAO, 
2016), including sublayers exposure (for 
the year 2100), current sensitivity, and 
current adaptive capacity

F I G U R E  6   Nonmetric MDS of overall vulnerability to CC-OA 
for all coastal, shellfish mariculture-producing nations from 2020 to 
2100. Clusters of decades most similar to each other are grouped. 
The greatest change (tipping point) occurs after 2060
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predicted to experience overall declines in the area suitable for 
shellfish cultivation making them vulnerable. These findings are in 
line with those made by Handisyde et al. (2017), which also found 
aquaculture in Asian nations including China, Thailand, and Vietnam 
to be highly vulnerable to climate change. Improvements in pro-
duction infrastructure may mitigate against increases in extreme 
weather events, but other solutions will be required to address 

regional-scale primary productivity declines. Consideration should 
be given to generating supplementary feed and selecting stock bet-
ter adapted to lower levels of primary productivity.

We found that the majority of nations with high overall vulnerability 
were developing or least developed nations (n = 15) and that most of 
these nations did not currently host a substantive molluskan mariculture 
industry. High overall vulnerability in these developing/least developed 

F I G U R E  7   Nonmetric MDS of overall vulnerability for 12 top-producing mollusk mariculture nations from 2020 to 2100. The strength 
and correlation between years and changes in sea surface temperature (SST), primary productivity (PP), and aragonite saturation (OA) 
are represented by arrows (e.g., for Thailand, the long arrows toward 2080 indicate that this ordination was driven by a strong, positive 
relationship between decade and increasing SST and declining PP, and that these stressors increased toward 2080/90/100). Stress was 
<0.010 in all nations with the exception of New Zealand, where it was 0.10



3532  |     STEWART-SINCLAIR et al.

nations was primarily attributable to high exposure and low adaptive ca-
pacity, and we predict that building adaptive capacity in these nations 
by improving governance and/or increasing the species diversity within 
any existing industry would be the best way to buffer the impacts of 
CC-OA to their existing or future shellfish mariculture sector (see above 
adaptive capacity).

Tipping points indicate when major shifts in mariculture-suc-
cess may occur and, in our model, are based on existing industry 
patterns of production. Sea surface temperature was identified as 
the driver with the greatest association with tipping points. Our 
model predicted that overall vulnerability will increase in severity 
each decade as a result of CC-OA and, considering the sector as a 
whole, that the largest decadal changes beginning in 2060 concur-
ring with Froehlich et al. (2018). However, within this generalization, 
we predict Asian nations including North Korea will suffer CC-OA-
related change as early as 2020 primarily driven by increases in sea 
surface temperature and declining primary productivity, while in 
South America (Chile and Peru) changes in sea surface temperature 
and aragonite saturation depth over time are predicted to cause the 
greatest change from 2080. These predictions are, again, in line with 
those of Froehlich et al. (2018).

4.5 | Study challenges

Vulnerability assessment  (VA) models, of the type and scope 
adopted here, are required to take complex, diverse data and sim-
plify/reclassify and recombine it to make the goal of predicting 
overall vulnerability tractable (Adger, 2006). This VA considered 
the current vulnerability of shellfish mariculture, at a national 
level, to future climate change and as such, only the exposure sub-
layer is projected temporally to 2100. While a nation's sensitivity 
and adaptive capacity will change over time, our goal is to esti-
mate vulnerability under present day conditions (e.g., of species 
diversity and socioeconomic status) to predict where the greatest 
vulnerability lies and where the greatest change in practice should 
be adopted.

While this study considered four environmental indicators, other 
CC-OA-linked factors such as disease, non-native species, and future 
changes in trade practices may also have meaningful consequences 
for mollusk mariculture (Karvonen et al., 2010). This study neces-
sarily adopted an indicator-based approach but such approaches are 
based on relatively coarse spatial resolutions (e.g., of marine param-
eters), and are subject to gaps in data availability (Barsley et al., 2013 
see below).

The species-specific response to CC-OA is complex and accu-
rately predicting sensitivity is challenging, though habitat range (as 
adopted here) is a well-recognized sensitivity indicator (Morrison 
et al., 2015). In this study, species sensitivity was based on adult 
habitat tolerances (i.e., the harvested stage of mollusks; Grassle, 
2000). While CC-OA will impact mollusks throughout their life 
cycle, juveniles are known to be particularly sensitive albeit to the 
same drivers (Morrison et al., 2015). In this respect, the results 

presented here may accurately represent patterns of CC-OA-
induced change, but underestimate the magnitude, particularly 
for operations dependent upon wild-sourced juveniles (Morrison 
et al., 2015).

Missing data are one of the most pervasive problems in trying to 
create balanced indicator-based models (De Silva & Soto, 2009). In 
the current study, many nations were not represented by any of the 
data layers and most nations were missing information for one or 
more variables within each sublayer particularly those in developing 
countries or those without an active mariculture sector (see Table 
S16). In a similar fisheries-based study using temperature change as 
the predictor, only 60 nations had sufficient data to calculate vulner-
ability (Allison, Perry, et al., 2009).
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3.	 Maritime boundaries geodatabase: http://www.marin​eregi​ons.
org/downl​oads.php, data under “world EEZ.”

4.	 Species sensitivity: https://obis.org/manua​l/acces​s/, data under 
API, search for species by taxon name. Download.csv file.

5.	 Molluskan mariculture production value: http://www.fao.org/
fishe​ry/stati​stics​/en, data under “Global aquaculture production” 
accessed via online query, specify environment: “marine,” specify 
species: “mollusks” (excluding “Squids, cuttlefishes, octopuses”), 
specify time: 2012, 2013, and 2014. Download.csv file.

6.	 Global GDP: https://data.world​bank.org/ , data under “Indicators,” 
then “GDP” (current US$), specify: 2012, 2013, and 2014. 
Download.csv file.
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7.	 Industry diversity in molluskan mariculture: http://www.fao.org/
fishe​ry/stati​stics​/en data under “Global aquaculture produc-
tion” accessed via online query, specify country: select all na-
tions, specify environment: “marine,” specify species: “mollusks” 
(excluding “Squids, cuttlefishes, octopuses”), specify time: 2014. 
Download.csv file.

8.	 Worldwide governance index: https://info.world​bank.org/gover​
nance​/wgi/. Download full dataset.

The data, as downloaded then transformed, are shown in 
Appendix S1, Tables S1–S16 (as referenced in main text).
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