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Abstract

A phyletic vector, also known as a phyletic (or phylogenetic) pattern, is a binary representation of the presences and
absences of orthologous genes in different genomes. Joint occurrence of two or more genes in many genomes results in
closely similar binary vectors representing these genes, and this similarity between gene vectors may be used as a measure
of functional association between genes. Better understanding of quantitative properties of gene co-occurrences is needed
for systematic studies of gene function and evolution. We used the probabilistic iterative algorithm Psi-square to find
groups of similar phyletic vectors. An extended Psi-square algorithm, in which pseudocounts are implemented, shows
better sensitivity in identifying proteins with known functional links than our earlier hierarchical clustering approach. At the
same time, the specificity of inferring functional associations between genes in prokaryotic genomes is strongly dependent
on the pathway: phyletic vectors of the genes involved in energy metabolism and in de novo biosynthesis of the essential
precursors tend to be lumped together, whereas cellular modules involved in secretion, motility, assembly of cell surfaces,
biosynthesis of some coenzymes, and utilization of secondary carbon sources tend to be identified with much greater
specificity. It appears that the network of gene coinheritance in prokaryotes contains a giant connected component that
encompasses most biosynthetic subsystems, along with a series of more independent modules involved in cell interaction
with the environment.
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Introduction

Phyletic vectors were first introduced by Tatusov et al. [1] in

their work on the Clusters of Orthologous Groups (COGs). A

phyletic vector of a COG or of any gene indicates the binary presence

or absence of orthologs of this COG or gene in a series of

completely sequenced genomes. Each ‘‘measurement’’, or vector

coordinate, is assigned as a ‘‘1’’ if there is at least one ortholog

contained in a genome and a ‘‘0’’ if not. The authors pointed out

that phyletic vectors (which they called phylogenetic patterns) were

different for different functional classes of proteins/COGs. It is

reasonable to assume that closely related phyletic vectors

(essentially the same construct is also known as phylogenetic

profile [2]) suggest co-inheritance of these genes in the

evolutionary history of the involved organisms, and thus could

be used to infer possible functional linkages between genes/

proteins. There have been many studies to quantitatively assess the

utility of phyletic vectors for predicting such linkages. Various

distance measures between phyletic vectors have been developed

and evaluated, including correlation-based distance, mutual

information, a ‘‘trait-to-gene’’ matching based on set theory,

‘‘phenotype propensity’’, etc. [3–9]. The lists of new predictions

accompanied each publication, some of them were confirmed

experimentally, and many more are waiting to be tested.

Interactive web servers have also been set up to allow exploration

of gene co-inheritance [10].

Despite all this interest and the successes of phyletic vectors in

prediction of protein function, the quantitative properties of

phyletic vectors, and of distances between them, remain to be

studied in detail. One of the most important questions here

concerns the proper way to measure distances/similarities between

high-dimensional vectors. Speaking formally, different distance

measures vary in their quantitative behavior, and this may impact

the sensitivity and specificity of vector comparison. From the

biological point of view, it is quite clear that even those genes that

participate in the same pathway may not be co-inherited in perfect

synchrony, for a multitude of reasons, including complex topology

of metabolic networks that results in redundancy of some gene

products and polyfunctionality of others [11]; non-orthologous

displacement of isofunctional genes [12]; and the trend of profuse

gene loss in the genomes of parasitic microorganisms (which

account for a substantial fraction of all sequenced genomes) and

even in the free-living microbes with large genomes [13]. Thus, it

is important to devise ways to find groups of genes that are more

likely to be gained or lost together than random, even if those gains

and losses do not occur in a complete lockstep. In fact the main, if

sometimes implicit, goal of all described methods of phyletic vector

analysis has been to find the best way of treating the imperfect

matches between vectors.

Recently, the problem of comparison of gene vectors was

studied in the framework of explicit probabilistic pattern matching,

inspired by popular programs for sequence database searches,
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such as PSI-BLAST [14], and was implemented in the program

called Psi-square [15]. Tests on three different types of gene

vectors (phyletic vectors, gene expression vectors and protein-

protein interaction vectors) indicate that Psi-square usually is more

sensitive and sometimes also more specific than other methods,

including those that have been devised specifically for analysis of

each type of genome-wide vector space [15].

Psi-square algorithm allows us to obtain the list of nearest

database neighbors for each vector. In this work, we used an

extended Psi-square algorithm that incorporates pseudocounts to

analyze the space of phyletic vectors further. Our results indicate

that the extended algorithm yields more complete descriptions of

functional pathways than the original version, and thus helps to

predict novel protein functions and perhaps to understand their

evolution better.

Results

Phyletic vector matching using a Psi-square program: a
version that uses pseudocounts

We have a dataset represented by an m by n matrix and the

binary (i.e., presence/absence, or 1/0) data in each cell: the ith row

is called the ith vector and we have n data points associated with

each row (j~1, . . . , n). We want to find vectors in the database

(the whole dataset) that are most similar to the query vector, which

we do according to the following steps (see [15] for more detail):

1. For a given query vector, first quickly scan the dataset to

identify a set of vectors that are highly similar to the query at

the given threshold r.

2. Construct a profile from this set of vectors (‘‘target set’’) in the

form of a dimension-specific scoring matrix (DSSM):

skj~log
f T

kj

f D
kj

� �

where f T
kj~CT

kj

�
nT , f D

kj~CD
kj

�
nD

for k~0, 1 (the presence/absence data), j~1 . . . :n, where skj is

the score of value k at vector coordinate j, f T
kj is the probability

of value k at the jth column in the target set and f D
kj is the

probability of k at the jth column in the database, CT
kj and CD

kj

are counts of value k’s in the target set and the database,

respectively; and nT and nD are the number of vectors in the

target set and the database.

3. Calculate similarity scores for every vector in the database

based on the DSSM as: S vectorð Þ~
Pn

j~1 skj . Select vectors

with high scores based on a threshold (S).

4. Add selected vectors to the target vector set.

5. Repeat step 2 until no new vectors can be matched.

In many types of genome-scale data, vector coordinates are

dominated by zeroes, because most genes do not produce a signal

under most conditions in a given measurement space. In the

current work, this corresponds to the observation that most genes

are found in a minority of genomes. The COG dataset that we

used (COG-06 dataset) includes 14,714 phyletic vectors (COGs)

with 110 coordinates (genomes), and in this dataset 88.7% of all

vector coordinates have the value of zero, about half of vectors

have three or less of their coordinates equal to one, and only 7% of

vectors have more than half of their coordinates equal to one

(Figure 1). In this situation, gene presence typically enters a

probabilistic model with the frequency of zero, f T
kj~0. When

calculating skj for the DSSM, the initial Psi-square algorithm

assigned skj as 0, which means that this coordinate does not

contribute to the score of a new vector. In this work, with the goal

to retrieve all functional associations for a given query vector, we

have entered a pseudocount, a background frequency calculated

from the complete dataset, into the calculation of f T
kj as follows:

f T
kj~

CT
kjzf D

kj

nTz1

In this case, skj for the non-zero count of k (CT
kj) has only a

negligible effect on the DSSM; however, for the zero count of k,

skj~log
CT

kjzf D
kj

� ��
nTz1ð Þ

f D
kj

� �
~log

f D
kj

�
nTz1ð Þ

f D
kj

� �

~log
1

nTz1

� �

and thus skj is always a negative score, rather than 0 as in the

original version. During the iterative search, the vectors not

matching to the profile get relatively lower scores so that we could

identify more closed related vectors.

Pseudocounts increase sensitivity
To evaluate the impact of pseudocounts on Psi-square

performance, we used 52 pathways and functional systems and

the COG-06 dataset, representing 6,651 distinct phyletic vectors

(the list of pathways is given in Table S1). We studied the effect of

pseudocounts on the sensitivity of detection of these known

pathways. To initiate the Psi-square algorithm, we chose one or

Figure 1. The distribution of the COG-06 dataset by the
number of genomes that encode a representative of this COG
(i.e., by the number of coordinates set at 1 in the phyletic
vector corresponding to each COG). Only 1,021 proteins (7%) are
encoded in more than half of the 110 genomes.
doi:10.1371/journal.pone.0005326.g001
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more representative vectors from each of 52 pathways and

functional systems to be the query (one vector for pathways with

relatively uniform phyletic patterns and two or three vectors for

pathways with relatively diverse patterns). Typically, the comple-

ment of the correlation coefficient was used as the distance

measure when constructing a DSSM during the first iteration and

the threshold varied from 0.6 to 0.8 (see Methods section for notes

on selection of the appropriate distance measure and threshold). If

more then one query was used for a particular pathway, the results

of the searches for all queries were merged. The sensitivity of these

searches, defined as the percentage of recovered COGs that

belong to the same pathway or functional system as the query, was

measured for each of the 52 pathways and averaged.

The use of pseudocounts improved the average sensitivity from

64.7% to 71.6%. For example, the NADH-ubiquinone oxidore-

ductase complex (Complex I) in most bacteria consists of 14 core

subunits [16], but some bacteria and most archaea lack several of

them. When COG01905 (the 24 kD subunit) was used as the

query, we recovered 13 of the total 15 known Complex I

components, compared to only 4 relevant COGs recovered

without pseudocounts (Figure 2).

In another example, we compared phyletic vectors of the

machinery involved in assembly and function of bacterial flagella.

In the best-studied case of Salmonella typhimurium, there are more

than 40 components involved in various aspects of flagella

function, but only about 24 of them are broadly conserved in

other motile bacteria and are functionally indispensable [17].

These genes map to 21 COGs. We asked whether some of the

more variable components of flagella could be used as queries that

would specifically recover these core genes. We selected

COG01298 (FlhA), COG02882 (Flagellar biosynthesis chaper-

one), COG01317 (FliH), COG01334 (FlaG), and COG02747

(anti-sigma28 factor) as query vectors and performed Psi-square

searches with pseudocounts, again using the correlation coefficient

as the initial distance measure and setting the threshold around

0.7. For each of these five COGs, Psi-square was able to recover

all 21 COGs, and additionally found between 64 and 167 lower-

scoring genes including 11–15 genes from the variable subset of

flagellar proteins (Table 1). On average, the use of pseudocounts

increases the sensitivity by about 20% compared to the original

algorithm in this example.

These examples indicate that probabilistic modeling of phyletic

vectors is a sensitive way of finding groups of related vectors. On a

related note, probabilistic approaches may help to overcome ‘‘the

curse of non-transitivity’’, where sensitivity of a database search

may be biased by the choice of the query vector. As is often the

case with the Psi-square algorithm, an analogy can be observed in

sequence searches, where increasingly sophisticated probabilistic

models of sequence families are used to establish links between

sequences, but outlying members of even well-studied families

continue to be discovered [18].

Growth of the COG database and probabilistic search
strategy separately contribute to improved sensitivity of
pathway discovery

We next compared the performance of the extended version of

the Psi-square algorithm with our earlier results on pathway

Figure 2. Phyletic patterns of COGs recovered in Psi-square
searches (a) without pseudocounts and (b) with pseudocounts.
In both, the same query COG01905 (the 24 kD subunit of NADH
ubiquinone oxidoreductase complex) and the same parameters were
used to search the target COG-06 database. The x axis represents
genomes and the y axis represents COGs (See Table S7 for the detailed
lists). The boxed part includes the patterns of five COGs in the initial
DSSM.
doi:10.1371/journal.pone.0005326.g002

Table 1. Comparison of Psi-sqaure with and without pseudocounts in numbers of true positive (TP) and sensitivity.

COG Definition With pseudocount Without pseudocount

TP Sensitivity TP Sensitivity

01298 Flagellar biosynthesis pathway; component FlhA 32 0.78 26 0.63

01317 Flagellar biosynthesis/type III secretory pathway protein 34 0.83 26 0.63

01334 Uncharacterized flagellar protein FlaG 36 0.88 24 0.59

02747 Negative regulator of flagellin synthesis 35 0.85 26 0.63

02882 Flagellar biosynthesis chaperone 32 0.78 25 0.61

The table shows Psi-sqaure search results for the tightly linked group of proteins involved in flagellum structure and biogenesis. Based on our current knowledge, 41
COGs (TP) participate in flagellum structure and biogenesis pathway, including 29 known COGs defined in the pathway, 8 chemotaxis related COGs, and 4
experimentally verified proteins (COG02747, COG03144, COG03190, and COG04787).
doi:10.1371/journal.pone.0005326.t001
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discovery [3], which employed hierarchical clustering of phyletic

vectors. Here, we asked two main questions: first, whether

probabilistic iterative search of the database of phyletic vectors

results in a significant, across-the-board improvement in discovery

of functionally linked proteins as compared to a more rigid

hierarchical clustering approach; and second, whether this

discovery rate is further improved by including more species and

more proteins into the analysis.

We first used the COG-04 dataset (see Methods) to compare the

the extended Psi-square algorithm with our hierarchical clustering

approach that used the same data [15]. Our results indicate that

the iterative probabilistic Psi-square algorithm gives better

pathway coverage than hierarchical clustering of the same dataset,

i.e., 66% compared to 50% (p-value ,0.01 using Welch two-

sample t-test). Improvements in sensitivity were seen in 34 out of

52 pathways, in particular with those pathways that include

phyletic vectors not closely similar to each other, i.e., those

pathways whose evolutionary history may have been richer in

asynchronous gene gains and losses (Table S2). For example,

hierarchical clustering of phyletic vectors has indicated that a

subset of VirB genes, including VirB4 and VirB8-11, represented a

discrete module disjoint from the rest of VirB genes [3]. Using

VirB3 (COG03702) as the query vector, we recovered 110 COGs

with 2 iterations; when sorted by the distance from the query, the

first 15 matches contained VirB6 and VirB8-10 (VirB11 is a large

COG encumbered by paralogs, and is found only at the bottom of

the ranked list). Thus, Psi-square identified the link between two

subsystems of T4SS, again resulting in higher sensitivity than

earlier approaches.

COG-06 contains almost twice as many microbial genomes as

COG-04, including representatives of several additional diverse

clades of prokaryotes, such as Delta-proteobacteria, Bacillus, and

Corynebacterium. Additional members have been added in most

of the existing clades as well, including 15 more genomes in

Gramma-proteobacteria, three more in Epsilon-proteobacteria,

etc. Furthermore, the number of COGs in COG-06 is almost

three times as high as in COG-04. Here we asked whether these

increases were beneficial for our goal of discovering functional

links between genes, using the same benchmark of 52 known

pathways and functional systems. The sensitivity of Psi-square

analysis with the COG-06 database was 71.6% on average,

compared to 66% for COG-04, indicating that the larger

dimensionality of the phyletic vectors and perhaps their higher

complexity as well, provides better identification of co-inherited

groups of genes using phyletic patterns (Table S2). In contrast, the

original Psi-square algorithm shows little difference in sensitivity

between the COG-06 and COG-04 datasets, indicating that

pseudocounts help best when the dataset contains more sparse

data.

Two classes of pathways on which the specificity of Psi-
square is sharply different

The main conclusion from our analysis thus far is that a

probabilistic approach to phyletic vector matching provides

commendable sensitivity across a wide range of functions in

finding the co-inherited members of the same cellular pathway.

The specificity of the method, however, is more complicated to

assess, since there is a dramatic difference in the ability of Psi-

square to recover different cellular pathways and subsystems. In

particular, we have found that a large portion of the central

cellular metabolism consists of multiple pathways represented by

genes with strongly similar phyletic vectors, so that a probabilistic

model of one pathway was not able to distinguish between this

pathway and other subsystems. At the same time, there were other

pathways which can be represented by much more specific

DSSMs. In this section, we describe this distinction in more detail,

using the pathways for de novo biosynthesis of nucleotides and of

amino acids as an example of the former trend, and several

subsystems of secondary metabolism and cell envelope assembly as

examples of the latter.

Most of the free-living bacteria and archaea encode all enzymes

in nucleotide biosynthesis, whereas parasitic microorganisms with

small genomes typically retain only a small subset of these genes,

often restricted to the base salvage and thymidylate synthesis.

Similarity searches group together the proteins in the purine

biosynthesis pathway and pyrimidine biosynthesis pathway,

making it difficult to distinguish between these two pathways

based on phyletic patterns alone. More specifically, 18 COGs are

involved in purine biosynthesis and 14 COGs in pyrimidine

biosynthesis. Using COG00138 from the former and COG00044

from the latter group as query vectors, we found, respectively 256

and 214 COGs, with significant overlaps (156 COGs) between

them. Among the 256 COGs found by the purine biosynthesis

query, seven COGs that belong to the pyrimidine biosynthesis are

found in the first iteration. Some of these seven COGs are much

more closely related to the query COG00138 than other COGs in

the purine biosynthesis pathway. Similarly, 13 COGs that belong

to the purine biosynthesis pathway were retrieved by COG00044

before convergence, without clear separation from the pyrimidine

biosynthesis genes. Searches with other queries in these pathways

provide similar results. This suggests that in these searches, the

enzymes for biosynthesis of purines and those of pyrimidines start

to intermingle with each other at an early iteration and the

pathway models tend to become indistinguishable in the later

iterations of Psi-square search.

The situation with amino acid biosynthesis is similar. Biosyn-

thesis of most amino acids can be seen as a hierarchy, in which a

group of related pathways is associated with a specific precursor,

often derived from the citric acid cycle or glycolysis intermediates

[19]. Because of the shared biosynthetic enzymes in the trunk

portion of each of these groups of pathways, it does not come as a

surprise that a COG involved in biosynthesis of one amino acid,

when used as a Psi-square query, often retrieves components of

other pathways in the same group. Perhaps less expected is the

high similarity of the phyletic vectors that belong to different

families of amino acid biosynthesis pathways. For example, using

COG00141 (one of 12 COGs in the histidine biosynthesis

pathway) as a query, we retrieved 9 other COGs in the same

pathway, but also 8 out of 10 COGs from the Ile/Leu/Val

pathway, and 16 COGs involved in biosynthesis of other amino

acids. Thus, similarly to the case of purine and pyrimidine

biosynthesis pathways, genes involved in amino acid biosynthesis

appear to share phyletic vectors to such an extent that it is difficult

to specifically distinguish individual amino acid biosynthesis

pathways by comparing phyletic vectors alone.

In all these searches, applying conservative thresholds for model

inclusion tended to cause abrupt decomposition of the pathways

into small fragments, typically representing stoichiometric subunits

of the enzymatic complexes (data not shown), in agreement with

our earlier observations made using hierarchical clustering [3]. On

the other hand, permissive thresholds that produce more sensitive

probabilistic models and improve the recovery of the known

components of a given pathway, typically also result in multiple

matches from other pathways. Using an analogy from the analysis

of complex networks, if genes are modeled as nodes and high

similarity of two phyletic vectors represents an edge connecting

two genes that are characterized by these vectors, then most

pathways of the TCA cycle and of de novo biosynthesis of

Phyletic Vector Analysis
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nucleotides and amino acids will probably form one giant, not

strongly modular, connected component in the co-inheritance

network.

We found, however, that the state of affairs is different in the

pathways involved in complex coenzyme biosynthesis and in

interactions of cells with their environment. These functional

categories of genes are much more amenable to delineation using

the probabilistic matching of their phyletic vectors. For example,

cobalamin (vitamin B12) is a tetrapyrrole derivative that is used as

a cofactor of many enzymes. Phyletic vectors of different enzymes

of vitamin B12 biosynthesis are vastly different: for example,

cobalamin-5-phosphate synthase CobS/CobV (COG00368) cata-

lyzes the last step in the reaction and is found in 62 species out of

110 examined in this work, whereas precorrin-66reductase CbiJ/

CobK (COG02099) catalyzes an early step and is found in only 30

species. Nevertheless, when the latter is used as the query in Psi-

square search using Simpson similarity index as the distance

measure and 0.30 as the threshold for building the initial DSSM, it

retrieves at the first step four members of the same pathway found

in 27–42 species. When this group of vectors is used to build a

DSSM and search the database again, it produces a list of 42

matches (Table 2). The top half of the ranked list contains 12

confirmed members of the pathway and six COGs without known

connection to cobalamine metabolism, and the second half of the

list includes three more factors of cobalamine metabolism, which

nearly complete the pathway makeup. Notably, the last true

positive in the list, cobalt permease (COG00310) is found in only

24 species and its phyletic vector is 38 bits apart from CobS/

CobV, which was also found in the same iteration (Table 2). The

inspection of the other COGs on the list identifies at least one

candidate with a potential link to cobalamine function:

COG03920, which encodes a signal-transducing histidine kinase.

This COG has undergone lineage-specific expansions in several

archaea and in bacteria of the order Rhizobiales. In contrast, in

Clostridium, Listeria, and Fusobacterium COG03920 is not highly

duplicated and is adjacent on the chromosome to the ethanol-

amine utilization operon, which encodes a cobalamine-dependent

enzyme, ethanolamine-ammonia lyase. It is plausible that

COG03920 in these species is co-inherited and perhaps co-

regulated with the cobalamine biosynthesis genes, as a way to

coordinate the expression of the enzyme and the accumulation of

its cofactor.

We have ordered 52 pathways in the order of specificity with

which they could be identified by Psi-square in this work.

Although the absolute values of specificity are generally low

(below 0.2 for most pathways), the trend exemplified above is

clear: pathways of coenzyme biosynthesis and of cell surface

component assembly have higher specificity than central pathways

of intermediary metabolism.

Discovering new components of poorly characterized
pathways and molecular correlates of phenotypic traits

Many of our searches that were initiated with phyletic vectors of

poorly characterized proteins resulted in identification of relatively

compact groups of vectors, often containing a subgroup of

functionally linked genes along with uncharacterized proteins.

For example, a specialized Type VI secretion system (T6SS) has

been recently described in gammaproteobacteria [20–21]. T6SS is

made up of distinct molecular components, apparently not shared

with other functionally similar systems such as Type II and Type

IV secretion systems. The proteins that are thought to form the

core of the T6SS correspond to COGs 03157, 03455, 03466,

03501, and 03515–03523. However, our analysis indicates that

this group is coinherited together with many other genes, including

COGs 02975, 03009, 03026, 03123, 03124, 03132, 03148, 03150,

03164, 03497, 03530, 04575, and 04681. We predict that many, if

not all, of these genes are involved in T6SS. Interestingly, there are

virtually no matches in Psi-square searches to T6SS and T4SS,

and there is only a small degree of cross-matching to T3SS, each

of which also operates in many gammaproteobacteria.

A distinct way to define a phyletic vector is to code the

phenotypic traits of organisms as binary character states, and see

whether matching vectors can be found in the database. This idea

has been used to find genes whose phyletic vectors correlate with

ecological factors, such as extremely high-temperature habitats

[22], or with biochemical properties, such as the ability to

incorporate selenocysteine into proteins [23]. In this case again,

the match between phenotypic trait and gene presence is usually

imperfect, primarily because of gene displacements and functional

takeovers, or, in other words, relatively frequent functional

convergence of genes at the molecular level, when different

species use proteins with unrelated sequence and structure to

perform a molecular function that results in the same phenotype.

Psi-square allows us to match traits to genes by searching the COG

dataset using phyletic vectors of specific traits as queries.

In order to find molecular correlates of different phenotypes,

ecotypes, or disease symptoms associated with various prokaryotes,

we derived 20 phenotypic vectors (Table S3) representing the

presence or absence of a given phenotype in 110 genomes, without

any requirement that a COG with a corresponding phyletic vector

actually exists in the data. We then applied Psi-square to find

groups of the co-inherited COGs similar to these phenotypes. The

success of this approach was quite modest: in most cases there

were no well-defined groups of genes with a clear connection to a

known phenotype. This suggests that most strategies of biological

survival and adaptation to various lifestyles may require many

simultaneous changes at molecular and cellular levels, rather than

facile gain and loss of discrete groups of genes. Nonetheless, several

correlations were noted. In addition to the relatively well-studied

case of prokaryotic cell motility, which strongly correlates with the

presence of genes involved in flagella assembly and chemotaxis

([24], Table S4), we found that the phyletic vectors of reverse

gyrase (COG01110), previously proposed to be a strict determi-

nant of hyperthermophily [22], remains the closest match to the

phenotypic vector of hyperthermophily, even though it is not

found in moderately thermophilic bacteria (but note that a

plasmid-encoded copy of an orthologous gene has been identified

in bacterium Thermus thermophilus strain HB8 [25]). Interestingly,

COG01756, a putative SPOUT-domain rRNA methyltransferase,

appears to be equally close to the desired phenotype, but this

COG01756 is distinct from reverse gyrase by omnipresence of the

former, and complete absence of the latter, in eukaryotic genomes

which were not included in COG-06.

The second observation of considerable interest concerns a

strong correlation between the ‘‘food-poisoning’’ phenotype and

the ethanolamine utilization genes. There are 11 genomes in our

dataset that belong to bacteria associated with food poisoning.

These bacteria are from two genera of Gram-positive bacteria

(Bacillus and Clostridium) and two clades in Gram-negative

Proteobacteria (Escherichia, Salmonella and Bordetella in gammaproteo-

bacteria and Listeria in epsioloproteobacteria (Table S5). The

closest match to this phenotype is represented by three COGs with

the same phyletic vector: COG04810, COG04816, and

COG04917. These COGs are present in 12 genomes, seven of

which show a food-poisoning phenotype. All three COGs are

annotated as ethanolamine utilization proteins, and the next two

iterations of the Psi-square search detect, among many unchar-

acterized COGs, several additional COGs with assigned roles in

Phyletic Vector Analysis
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ethanolamine utilization, as well as in biosynthesis of the

cobalamine cofactor of ethanolamine lyase. The involvement of

ethanolamine catabolism and/or of the paralogous system of

propionate catabolism in pathogenicity of food has been suggested

by Korbel et al. [26] on the basis of a data-mining approach that

combined several lines of genomic evidence with parsing of

Pubmed abstracts. Our results appear to primarily implicate three

COGs, none of which, however, is directly responsible for

Table 2. Psi-square search results using COG02099 as the query.

match_ID cat function Iter. distance score

COG02099 H Precorrin-66 reductase 0 0 21

COG01429 H Cobalamin biosynthesis protein CobN and related Mg-chelatases 0 0.267 21

COG02073 H Cobalamin biosynthesis protein CbiG 0 0.278 21

COG02082 H Precorrin isomerase 0 0.286 21

COG01010 H Precorrin-3B methylase 0 0.286 21

COG02243 H Precorrin-2 methylase 1 0.302 79.906

COG02875 H Precorrin-4 methylase 1 0.318 77.972

COG02241 H Precorrin-6B methylase 1 1 0.318 73.949

COG03707 T Response regulator with putative antiterminator output domain 1 0.333 0.65

COG01903 H Cobalamin biosynthesis protein CbiD 1 0.353 52.597

COG01797 H Cobyrinic acid a;c-diamide synthase 1 0.356 71.256

COG02242 H Precorrin-6B methylase 2 1 0.364 67.15

COG01402 R Uncharacterized protein; putative amidase 1 0.382 23.498

COG02087 H Adenosyl cobinamide kinase/adenosyl cobinamide phosphate
guanylyltransferase

1 0.391 17.504

COG03339 S Uncharacterized conserved protein 1 0.4 2.996

COG01492 H Cobyric acid synthase 1 0.444 54.227

COG01270 H Cobalamin biosynthesis protein CobD/CbiB 1 0.464 55.07

COG02308 S Uncharacterized conserved protein 1 0.467 0.543

COG03920 T Signal transduction histidine kinase 1 0.467 1.009

COG01233 Q Phytoene dehydrogenase and related proteins 1 0.474 6.508

COG01240 H Mg-chelatase subunit ChlD 1 0.5 11.571

COG00368 H Cobalamin-5-phosphate synthase 1 0.516 43.335

COG02109 H ATP:corrinoid adenosyltransferase 1 0.519 21.555

COG02020 O Putative protein-S-isoprenylcysteine methyltransferase 1 0.528 0.645

COG00145 E N-methylhydantoinase A/acetone carboxylase; beta subunit 1 0.533 9.969

COG03387 G Glucoamylase and related glycosyl hydrolases 1 0.533 1.061

COG01239 H Mg-chelatase subunit ChlI 1 0.533 8.586

COG01082 G Sugar phosphate isomerases/epimerases 1 0.536 11.341

COG02038 H NaMN:DMB phosphoribosyltransferase 1 0.548 34.104

COG01364 E N-acetylglutamate synthase (N-acetylornithine aminotransferase) 1 0.554 5.419

COG01533 L DNA repair photolyase 1 0.565 9.048

COG00146 E N-methylhydantoinase B/acetone carboxylase; alpha subunit 1 0.567 1.042

COG00310 P ABC-type Co2+ transport system; permease component 1 0.567 5.422

COG01994 R Zn-dependent proteases 1 0.568 0.408

COG00378 O Ni2+-binding GTPase involved in regulation of expression and maturation of
urease and hydrogenase

1 0.571 3.752

COG02202 T FOG: PAS/PAC domain 1 0.574 2.619

COG01741 R Pirin-related protein 1 0.577 0.398

COG01201 R Lhr-like helicases 1 0.581 10.08

COG00467 T RecA-superfamily ATPases implicated in signal transduction 1 0.581 10.199

COG01305 E Transglutaminase-like enzymes; putative cysteine proteases 1 0.582 3.664

COG00182 J Predicted translation initiation factor 2B subunit; eIF-2B alpha/beta/delta
family

1 0.595 10.772

COG01878 R Predicted metal-dependent hydrolase 1 0.595 4.143

doi:10.1371/journal.pone.0005326.t002
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enzymatic transformation of ethanolamine. COG04810 and

COG04816 encode the structural subunits of an auxiliary

organelle, the metabolosome, which is thought to compartmen-

talize ethanolamine utilization, and COG04917 is a transporter of

the ABC class with unknown specificity. Thus, the toxic agent that

causes food poisoning is likely to be associated with the

metabolosome formation or function, but its molecular identity

remains to be discovered.

Discussion

Phyletic vectors of genes encoded by completely sequenced

genomes are thought to be a valuable resource for predicting gene

functions and identifying functional modules, but there is no

standard approach to analysis of co-inherited groups of genes [27].

In this work, we applied a probabilistic approach to the problem of

approximate matching of phyletic vectors. Our data indicate that

probabilistic models of phyletic vectors, which can be updated in

the course of iterative database searches, are useful for functional

inferences. They improve sensitivity of pathway recovery when

applied to a broad range of the known pathways, and they may

also suggest new components of the known pathways, help define

the composition of poorly studied pathways, and identify

molecular correlates of specific phenotypic traits. At the same

time, the specificity of probabilistic searches varies widely. This

may be attributed in part to the shortcomings of the model, or to

the low resolution intrinsic to the data. Indeed, even though Psi-

square has been inspired by algorithms for analysis of molecular

sequences, those approaches benefit from multi-state and multi-

parameter sequence models, whereas phyletic vector models have

only two character states and, in the current implementation, only

one implicit transition probability. On the other hand, there is a

clear distinction in the specificity of detection of different

pathways: a large group of intermediary metabolic enzymes,

centered on TCA and amino acid biosynthesis and linked to

nucleotide biosynthesis, appears to form a giant component of the

co-inheritance network, whereas many systems for interaction with

the environment, such as systems of secretion and motility, as well

as biosynthesis of certain coenzymes and utilization of secondary

metabolites, are much easier delineated using our approach.

Glazko et al. [15] have shown that Psi-square may be usefully

applied to many types of genome-wide datasets that can be

represented in vector form, such as gene expression time series,

genetic interactions, protein-protein interactions, and so on. An

intrinsic limitation of many such datasets is that the number of

coordinates of gene vectors may grow with time, but the number

of genes (i.e., vectors themselves) cannot. A phyletic vector

database, in contrast, is an example of a genomic dataset that

will continue to grow in both dimensions: with the addition of

novel genomes, the number of genes conserved in at least some of

the genomes will also grow. Thus, just as Psi-square displays better

sensitivity when applied to COG-06 vs. COG-04, we expect that

phyletic pattern searches, when applied to even larger datasets in

the future, will again show even greater sensitivity. It is our hope

that they may also become more specific, especially if scoring

functions employed by Psi-square and other methods are based on

more sophisticated models of gene gain, loss and co-inheritance.

Methods

The data
Phyletic vectors of COGs. We used phyletic vectors from

the most recent update of the NCBI COG database, as of June

2006 (Yuri I.Wolf, ftp://ftp.ncbi.nih.gov/pub/wolf/COGs/

COG0508/). This dataset consists of 14,714 COGs from 110

complete genomes of archaea and bacteria and is referred to as

COG-06 in this work. Each row of the data matrix represents the

state of a specific COG in 110 genomes and each column

represents the state of each of 14,714 COGs in a specific genome.

In addition to standard NCBI COGs [1] which include genes from

at least three lineages, we also included genes present in fewer than

3 organisms. This improves calculation of the background

frequencies but does not affect the results otherwise (not shown).

The COG-06 dataset covers genomes from 16 archaea and 94

bacteria (the list of genomes is provided in Table S6). We also used

an earlier release of the COG database [6], referred to as the

COG-04 dataset, which includes genomes from 13 archaea and 50

bacteria (http://www.ncbi.nlm.nih.gov/COG/).

Phyletic vectors of phenotypes. The phenotype dataset was

downloaded from the Genomes Online Database [28] on August

14, 2006. The data include descriptions of phenotypes, ecotype

and related disease for a total of 2,125 genomes, of which 521 of

are completely sequenced. We grouped phenotypes into 20 sets

based on the symptoms of disease, ecotypes and phenotypic

similarities (Table S3). Phyletic vectors for these 20 phenotypes for

the 110 genomes that appear in the COG-06 dataset were

constructed on the basis of presence or absence of the specific

phenotype.

Selection of appropriate distance measure and threshold
for Psi-square similarity search

The performance of Psi-square depends on the choice of

distance/similarity measure and several search parameters includ-

ing r, the threshold admitting closely related vectors into the target

set in the first step of the algorithm. In an earlier work [29], we

have hypothesized that the statistical properties of distribution of

pairwise distances between vectors, i.e., the values of the higher

moment of distribution, can be used as guidance for selecting the

distance measure for vector comparison. Using this criterion, we

selected the correlation coefficient and Simpson similarity index as

appropriate distance measures depending on the sparseness of the

phyletic vectors in this work. For our datasets, it is difficult to use a

fixed threshold r to admit closely related vectors into the target set

for different query vectors, because some COGs are more closely

related with correspondingly small distance, while other COGs are

more distantly related. Therefore, choices of parameters in this

work are based on preliminary testing and summary statistics from

the distance distribution between the query vector and all vectors

in the database. One the other hand, the value that this threshold r

is set to is not critical since the results do not differ much as long as

r is set in a reasonable range (data not shown).

Sensitivity and specificity
In this work, sensitivity is defined as the percentage of COGs

retrieved by a search that belong to the same pathway or

functional system as the query. Specificity is defined as the ratio of

true positives (the absolute number of retrieved COGs that are in

the same pathway or functional system as the query) to all COGs

retrieved by Psi-square.
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