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Understanding how humans evaluate credibility is an important scientific question in the

era of fake news. Source credibility is among the most important aspects of credibility

evaluations. One of the most direct ways to understand source credibility is to use

measurements of brain activity of humans who make credibility evaluations. This article

reports the results of an experiment during which we have measured brain activity during

credibility evaluation using EEG. In the experiment, participants had to learn source

credibility of fictitious students based on a preparatory stage, during which they evaluated

message credibility with perfect knowledge. The experiment allowed for identification

of brain areas that were active when a participant made positive or negative source

credibility evaluations. Based on experimental data, we modeled and predicted human

source credibility evaluations using EEG brain activity measurements with F1 score

exceeding 0.7 (using 10-fold cross-validation). We are also able to model and predict

message credibility evaluations with perfect knowledge, and to compare both models

obtained from a single experiment.

Keywords: credibility, EEG, sLORETA, trust and distrust, source localization

1. INTRODUCTION

In the wake of the pandemic, we live in an information society that is struggling with a new social
problem: global and fast spread of disinformation on the Web. While propaganda, conspiracy
theories and urban legends or gossip have most likely been around ever since humans have
developed language and civilization, the problem of online disinformation is different. The
Web enables fast and low-cost publishing of disinformation, while at the same time providing
incentives for spreading it, due to the possibility of monetizingWeb users attention through online
advertising. Numerous recent examples have amply demonstrated the importance of the problem
of spreading disinformation on the Web: from the role of fake news in the presidential campaign
and presidency of Donald Trump, to the case of disinformation about COVID-19 and vaccines
against the virus.

Efforts aimed at combating the spread of online disinformation are focused on two areas:
detection and debunking of disinformation, and increasing the awareness and skills of information
consumers in evaluating credibility (also referred to as media literacy). While many of these efforts
are promising, they would all benefit from a better understanding of how humans evaluate the
credibility of information. Research in this area has stared from psychology and media science
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(Hovland andWeiss, 1951) and has continued actively since then
(Lazer et al., 2018; McIntyre, 2018). Today, research in the area
of social psychology has identified many reasons of why humans
make wrong credibility evaluations (Rutjens and Brandt, 2018;
Forgas and Baumeister, 2019). Yet, research in social psychology
is based on declarative information that is in itself subject to
bias and cannot reveal real, but unconscious reasons for making
credibility evaluation (Viviani and Pasi, 2017; Self and Roberts,
2019).

Very little is known about the underlying phenomena
that occur in the brain during credibility evaluation. In
neuroinformatics and neuroscience, most research related to
credibility has focused on lie detection (Wang et al., 2016; Meijer
and Verschuere, 2017), which is based on the investigation
of the brain activity of the author, and not the receiver of
the message. Previous research has attempted to study source
credibility evaluation separately using EEG (Kawiak et al., 2020b).
In this work, we set a different goal. We aim to compare the brain
processes involved in source credibility and message credibility
evaluation directly, in a single experiment. We hypothesize that
these two types of credibility evaluation will involve different
processes in the brain.

It is known that credibility evaluations are affected by
multiple criteria and can be quite complex (as complex as the
evaluated information) (Tseng and Fogg, 1999; Kakol et al., 2017;
Wierzbicki, 2018). Credibility evaluations can be impacted by the
evaluated information itself (the message) or by the message’s
source (Hovland and Weiss, 1951). The evaluation of message
credibility is, in turn, influenced by the knowledge and experience
of the evaluator, as well as by the design and presentation of
the message. Research efforts aimed at understanding the brain
processes involved in credibility evaluation would have to deal
with this complexity by adequately controlling the involved
criteria and variables.

Our goal requires a more elaborate experimental design. In
realistic situations, message and source credibility is usually
mixed. We need to create an experimental condition where
message credibility can be studied in isolation from source
credibility, and vice versa. Moreover, message and source
credibility evaluation are affected by different variables. As
mentioned above, message credibility evaluation depends on the
knowledge of the evaluator about the information contained in
the message. On the other hand, source credibility evaluation
requires knowledge about the past messages sent by a certain
source. In an experiment, both of these kinds of knowledge
will need to be controlled and separated. This means that
ideally, during the part of the experiment used to study message
credibility, participants should have no knowledge about the
source and complete knowledge about the message, and vice
versa, during the study of source credibility, participants should
have no knowledge about the message, but very good knowledge
about the sources.

A better understanding of the brain processes involved in
both source credibility and message credibility evaluation will
bring us closer to the far-reaching goal of creating a diagnostic
method for evaluation of credibility of Web content through
the use of EEG. Such a method would be free of biases and

i would be able to reveal the full impact of disinformation on
human brain. While this goal is quite difficult to reach, we
hope that the contributions made in this article bring it closer.
We were able to create predictive models of both message and
source credibility evaluations. The models are interpretable and
reveal huge differences between brain processes involved in
the two kinds of credibility evaluation. Moreover, our source
credibility model strongly confirms and validates results obtained
in previous research (Kawiak et al., 2020b), confirming that we
are indeed increasing our understanding of how the human brain
evaluates source credibility.

2. RELATED WORK

2.1. Source, Message, Media Credibility
The concept of credibility, similarly to the concept of trust,
is grounded both in science as well as in common sense.
Credibility has been subject to research by scientists, especially
in the field of psychology and media science. One of the earliest
theoretical works on credibility dates back to the 1950s. This
influential work of the psychologist Carl Hovland (Hovland
and Weiss, 1951) introduced the distinction between source,

message, and media credibility. Out of these three, two are
a good starting point for a top-down study of the complex
concept of credibility: source credibility and message credibility.
These two concepts are closely related to the natural-language
(dictionary) definitions of the term “credibility.” In the English
language dictionary (Oxford Advanced Learner’s Dictionary),
credibility is defined as “the quality that somebody/something
has that makes people believe or trust them.” When this
definition is applied to a person (“somebody”), it closely
approximates source credibility— an essential concept in real-
life, face-to-face communication. However, we should notice
as well that the dictionary definition of credibility can also be
applied to “something”—the message itself. And, in many online
environments, message credibility must be evaluated without the
knowledge about the source.

Information scientists have studied credibility evaluations
with the goal of designing systems that could evaluate Web
content credibility automatically or support human experts in
making credibility evaluations (Wawer et al., 2014; Liu et al.,
2015; Kakol et al., 2017; Oshikawa et al., 2018; Zhou and
Zafarani, 2020; Ansar and Goswami, 2021). This research effort
is supported by large corporations, such as Google and Twitter—
who have started the Google Fact Check Explorer1 and Twitter
Birdwatch2, respectively. Both of these services are based on
human credibility evaluations - for instance, to quote the
description of Twitter Birdwatch: “Birdwatch allows people to
identify information in Tweets they believe is misleading.”

However, human credibility evaluations are often subjective,
biased or otherwise unreliable (Kakol et al., 2013; Rafalak
et al., 2014), making it necessary to search for new methods of
credibility evaluation, such as the EEG-based methods proposed

1https://toolbox.google.com/factcheck/explorer
2https://blog.twitter.com/en_us/topics/product/2021/introducing-birdwatch-a-

community-based-approach-to-misinformation
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in this article. State of the art research on automatic fake news
detection uses machine learning models trained on datasets that
contain human credibility evaluations (D’Ulizia et al., 2021). The
research described in this article can be seen as a step toward
obtaining more objective and reliable training data for automatic
fake news detection.

2.2. Message Credibility
A search for the term “message credibility” on Google
Scholar returns over 1,000 results (for an overview of recent
publications, especially on the subject of Web content credibility,
see Wierzbicki, 2018). Researchers from the media sciences
have attempted to create scale for declarative measurements
of message credibility (Appelman and Sundar, 2016). The
importance of message credibility on social media has been
recognized in many studies (Wierzbicki, 2018), for example in
the area of healthcare (Borah and Xiao, 2018).

As defined by Hovland, message credibility is the aspect of
credibility that depends on the communicated message, not on
its source or the communication medium. As such, message
credibility depends on all information contained in the message
itself. Consider a Web page that includes an article. The entire
Web page is (in the information-theoretic sense) a message
communicated to a receiver. Message credibility can depend on
the article’s textual content, on images or videos embedded in the
article, on Web page design and style, or even on advertisements
embedded in the Web page.

This simple example shows that message credibility can be
affected by many factors, or features of the message. Even if we
limit ourselves to just the textual content of the message, message
credibility is affected by both the semantic content of the message
(its “meaning”) and by the pragmatic content of the message (its
style, persuasiveness, sentiment, etc.) This is especially important
since message credibility is usually evaluated rapidly. The work of
Tseng and Fogg (Tseng and Fogg, 1999) introduced the concepts
of “surface credibility” and “earned credibility,” both of which
can be applied to message credibility. Surface credibility is the
result of a fast and superficial examination of the message.
Earned credibility is the result of a slower and more deliberative
reasoning about the message. The two concepts are similar to
Kahneman’s distinction about the fast, heuristic-based System I
and the slower, deliberative System II (Kahneman, 2011). Surface
credibility is message credibility based on System I reasoning,
while earned credibility is message credibility based on System II
reasoning. Research results (Wierzbicki, 2018) have established
that most users evaluate Web page credibility quickly, in a matter
of minutes (3 min are enough for most Web page credibility
evaluations). These results are relevant for our experiment
design. In order to begin to understand brain activity during
message credibility evaluation, we shall limit message design to
a single aspect that can be rapidly evaluated.

2.3. Reputed and Earned Source Credibility
Tseng and Fogg also introduced the concept of “reputed
credibility.” When compared to earned credibility, reputed
credibility is a notion that bases credibility evaluations on prior

assumptions, rather than knowledge learned from direct, first-
hand interactions. The distinction between the two concepts can
be applied to source credibility. Reputed source credibility is the
evaluation of a source based on prior assumptions: for example,
if an article on the Web is written by a well-known doctor or
scientists, we may assume that the article is credible. On the other
hand, earned source credibility is based on first-hand, repeated
interactions with a source. For example, if a person on social
media frequently shares disinformation, we may decrease that
person’s source credibility evaluation.

The distinction between reputed and earned source credibility
is useful to understand the scope of this article. Previous
work (Kawiak et al., 2020b) investigated brain process involved
in reputed source credibility evaluation. In an experiment
participants were informed about sources’ frequency of correctly
answering a question. This information was given prior to the
experiment, and was therefore equivalent to reputed source
credibility. In our work, experiment participants learn about the
correctness of sources first-hand, by evaluating their responses.
Therefore, in this article we report on our investigation of brain
processes involved in earned source credibility evaluations, and
compare it to models of reputed source credibility evaluations
obtained in Kawiak et al. (2020b). Moreover, we also investigated
message credibility (under perfect knowledge), allowing to
directly compare (in a single experiment) models of brain
processes involved in earned source credibility and message
credibility evaluation.

3. EXPERIMENT DESIGN

The aim of the experiment was to observe participant’s brain
activity during a task that involved credibility evaluation. The
experiment was divides into two consecutive stages P1 and P2.

3.1. Experiment Participants
Our experiment had 73 male, right-handed subjects aged 21
– 22 (avg. 21.3, s.d 0.458). For 40 participants, the recorded
EEG signal (in both stages of the experiment) was adequate
for future analysis and the signal-to-noise ratio (SNR) was at
a satisfactory level, all tasks (screens) were completed and the
number of recorded epochs was large enough to carry out
source localization.

In order to perform the experiment, we obtained the approval
of the Universtity’s Bioethical Commission (MCSU Bioethical
Comission permission 13.06.2019).

3.2. Credibility Evaluation Task
The participants who had no knowledge of Japanese (which was
checked during the recruitment process by questionnaire), were
told that they were looking at results of a real Japanese language
test taken by other students. Participants were informed that they
would be checking the responses of 3 other students: S1 - Bruno,
S2 - Cesar, and S3 - John.

The aim of the first stage of experiment was to simulate a
holistic credibility evaluation task with controlled knowledge.
Participants were shown the questions and answers of S1, S2, or
S3, along with a correct answer. The knowledge of participants
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FIGURE 1 | Typical screen shown to participant in stage 1 of the experiment.

FIGURE 2 | Typical screen shown to participant in stage 2 of the experiment.

was, therefore, complete, although their initial knowledge of the
message topic (Japanese language) was nil.

A typical screen shown to participants in stage 1 of the
experiment is shown in Figure 1. The screen is divided into 4
sections. All participants were informed about the screen design
during an initial instruction before starting the experiment.

The first two sections of the screen originate from the test.
The students taking the test were asked to evaluate the proposed
meaning of some Kanji signs as true or false.

Consequently, the first section on top of the screen displays a
Kanji sing and the intended question about the sign’s meaning in
the native language of participants.

The second section of the screen contains the responses of the
student S1, S2, or S3. The response shows that according to the
tested student, the meaning of the Kanji sign in the first section is
true or false.

The following two sections are the hint and the task for
our participants.

In the third section, there is a correct, dictionary meaning of
the Kanji sign from Section 1.

The fourth section displays the task for the participant: to
assess the response of the tested student as correct or incorrect.

During stage 1 of the experiment, participants were shown
408 screens: 136 for each student S1, S2, and S3. The first 136
screens consisted responses of S1, next 136 shown to participant
consisted responses of S2, the last 136 screens consisted of student
S3’s responses on the fake test. Before the first screen of the
assessment series of each student S1, S2, and S3, there was a
screen informing participant that from now you he would be
assessing the student: S1, S2, or S3 respectively.

The responses (shown to participants) of students S1, S2, and
S3 were chosen in a special way:

• Student S1 was a weak student: he had only 25% of correct
responses during the test.

• Student S2 was an average student: 50% of his responses
were correct.

• Student S3 was quite a good student: 75% of his responses
were correct.

Note that since in stage 1 of the experiment participants had
perfect knowledge of the answer, but no previous knowledge of
the students’ performance, they were making their credibility
evaluations based on message credibility. This design ensured a
condition that after assessment of 136 responses of each student
S1, S2, and S3, our participants knew which student is good,
which one is poor and who is average. We checked this condition
by asking participants about their opinion about the level of each
student S1, S2, and S3 (using a special shown screen after stage 1
of the experiment).

Knowing the reputation of S1, S2, and S3, participants were
asked to move on to stage 2. In stage 2 of the experiment,
participants were shown screens similar to screens in the first
stage, except there were no hints about the dictionary meaning
of the Kanji sign (see Figure 2). Since participants now had no
knowledge about the message, but knew the reputation of S1, S2,
and S3, they were making their credibility evaluations based on
message credibility.

Participants had to assess whether the student S1, S2, or
S3 responded correctly basing only on their reputation learned
in stage 1.

There were 102 screens in stage 2 of the experiment, 34 screens
for each student S1, S2, and S3 but in contrast to stage 1—
the screens of S1, S2, and S3 were presented to participants in
random order.

3.3. Experimental Cases and Data
Based on the experiment setup, we were able to register EEG
activity in 12 basic cases. These cases are similarly defined for
stage 1 where participants had perfect knowledge (6 cases), and
for stage 2 where participants had no knowledge (also 6 cases).
The 12 experimental cases are defined in Table 1.

Note that during stage 1 of the experiment, participants
had perfect knowledge, but had no knowledge of the student’s
performance. During stage 1, participants evaluated credibility
based on message contents (message credibility). Knowledge
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TABLE 1 | The set of 12 Experiment Cases for 2 stages of the experiment.

Experiment stage Student accuracy Evaluated message as Evaluated message as

Credible (C) Not Credible (NC)

Perfect knowledge Weak student (S1) CP1
S1 NCP1

S1

Average student (S2) CP1
S2 NCP1

S2

of message subject (P1) Good student (S3) CP1
S3 NCP1

S3

No knowledge Weak student (S1) CP2
S1 NCP2

S1

Average student (S2) CP2
S2 NCP2

S2

of message subject (P2) Good student (S3) CP2
S3 NCP2

S3

of the student’s accuracy in answering questions (student’s
reputation) was learned by the participants during stage 1 of
the experiment.

However, our experiment design cannot fully guarantee that
participants would not learn about student’s accuracy faster
than intended. This means that in the cases CP1

S1 , NC
P1
S1 , C

P1
S3

and NCP1
S3 , participants may still be influenced by source

credibility. For this reason, the most important cases in stage
1 of the experiment are MC = CP1

S2 and MNC = NCP1
S2 .

In these cases, participants evaluated student S2 who had
an average accuracy of 50%, and, therefore, could not learn
anything positive or negative about source credibility. For
simplicity, we shall refer to these two special experimental cases
during stage 1 as MC (Message Credible) and MNC (Message
Not Credible).

The joint cases for stage 1 are: CP1
= CP1

S1 ∪ CP1
S2 ∪ CP1

S3 and
NCP1

= NCP1
S1 ∪ NCP1

S2 ∪ NCP1
S3 .

On the other hand, during stage 2 of the experiment,
participants had no knowledge and had to rely on student’s
reputation. Therefore, they evaluated credibility based
on source credibility. This experiment design allowed
for comparing the two processes of message and source
credibility evaluation.

However, the most clear effects in stage 2 should occur for
the cases CP2

S1 , NC
P2
S1 , C

P2
S3 and NCP2

S3 . This is because in these
cases, participants can rely on the source credibility that they have
learned in stage 1 about student S1 (accuracy of 25%) or student
S3 (accuracy of 75%). For both students, there will be a strong
impact of source credibility on the participant. This means that it
will be interesting to compare two sums of cases: SC = CP2

S1 ∪CP2
S3

and SNC = NCP2
S1 ∪ NCP2

S3 . For simplicity, we shall refer to
these two special experimental cases during stage 2 as SC (Source
Credible) and SNC (Source Not Credible). For student S2, the
impact of source credibility is expected to be weak even in stage 2
of the experiment.

The joint cases for stage 2 are: CP2
= CP2

S1 ∪ CP2
S2 ∪ CP2

S3 and
NCP2

= NCP2
S1 ∪ NCP2

S2 ∪ NCP2
S3 . We can also define joint cases

that include all participants credibility evaluations (credible or
not credible), but differ in the level of source credibility: AP2

S1 =

CP2
S1 ∪ NCP2

S1 , A
P2
S2 = CP2

S2 ∪ NCP2
S2 and AP2

S3 = CP2
S3 ∪ NCP2

S3 .

3.4. EEG Measurements
Our empirical experiments involved top EEG devices.

The laboratory is a complete and compatible system provided
by electrical geodesic systems (EGI)3.

We were equipped with a dense array amplifier recording
the cortical activity with up to 500 Hz frequency through 256
channels HydroCel GSN 130 Geodesic Sensor Nets provided
by EGI. In addition, in the EEG Laboratory the Geodesic
Photogrammetry System (GPS) was used, which makes a model
of subject brain based on its calculated size, proportion, and
shape, owing to 11 cameras placed in its corners, and then
puts all computed activity results on this model with very good
accuracy. The amplifier works with the Net Station 4.5.4 software,
GPS under the control of the Net Local 1.00.00, and GeoSource
2.0. Gaze calibration, eye blinks, and saccades elimination are
obtained, owing to the application of eye tracking system
operated by SmartEye 5.9.7. The event-related potential (ERP)
experiments are designed in the OpenSesame 3.2.8 environment.

The artifact removal system (eye-blinks, saccadic eye
movements) were removed using the scripts implemented into
the EGI system software which is not open source, however
broadly described in Waveform Tools Technical Manual (EGI,
2006).

For the sLORETA source localization analyses (used for
verification of the hypotheses) the ERP for all 256 electrodes had
to be in fact calculated on the fly. However, one should note that
research referred herein is not a typical ERP experiment. Having
the ERP signal estimated for each one out of 256 electrodes, it
was possible to calculate the mean electric charge (MEC) flowing
through the BA situated under these electrodes on the brain
cortex in so-called Cognitive Processing Time Range (CPTR).
For the 1st stage of stage experiment the CPTR was between 420
and 520 ms, for the 2nd stage it was between 510 and 610 ms.
The length of ranges was chosen by assessment of meaningful
differences in shape for particular electrodes ERP plots. Thus,
it was possible to conduct the full source localization analysis
of the signal originating from all 256 electrodes using sLORETA
algorithm (GeoSource parameters set as follow: Dipole Set: 2 mm
Atlas Man, Dense: 2,447 dipoles Source Montages: BAs). Mean
electric current flowing through each BA and varying in time
was given as an output. Having those values calculated, it was
possible to integrate that current in time and then get the MEC.

3Electrical Geodesic Systems, Inc., 500 East 4th Ave. Suite 200, Eugene,

OR 97401, USA.
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The mean electric charge calculated for each electrode using
source localization techniques could, as we intended, indicate
the hyperactivity of some BAs that are not necessary precisely
situated under the cognitive electrodes. For all calculations in
both stages of experiment the CPTR was divided into 5 ms time
intervals to calculate discrete MEC (dMEC) values. The idea
and procedure of calculating MEC has been described in detail
in Wojcik et al. (2018).

3.5. Experiment Hypotheses
Our experiment design allowed us to compare brain activity
of message credibility evaluations and source credibility
evaluations. We hypothesized that these two types of credibility
evaluations involve different processes in the brain. This allowed
us to formulate Hypothesis 1:

1. Cognitive ERP signals during source credibility evaluation
and during message credibility evaluations have statistically
significant differences (comparison of ERP signals based on
cases: CP1 and CP2, NCP1 and NCP2).

Our experiment also allowed us to investigate the effect of source
credibility on participants’ decisions and cognitive ERP signals.
Therefore, we formulated the following hypotheses:

2. Increase of source credibility increases the number of positive
credibility evaluations made by participants (comparison of
number of decisions in cases: CP2

S1 and NCP2
S1 , C

P2
S2 and NCP2

S2 ,
CP2
S3 and NCP2

S3 ).

Hypothesis 2 concerned the existence of a relationship between
the source credibility level (reputation of students’ S1, S2, and
S3), which was one of the main independent variables in our
experiment, and the number of positive credibility evaluations.
The validation of this hypothesis was a test of our experiment’s
internal validity.

Finally, we wished to investigate the ability of predicting
participant’s credibility evaluations based onMECmeasurements
in diverse Brodmann areas and time intervals. This led us to
formulate the following hypotheses:

3. Participant’s message credibility evaluations made in stage 1
of the experiment for student S2 can be predicted with high
accuracy based on the mean electric charge flowing through
various Brodmann areas in a certain time interval (cases:
MC = CP1

S2 andMNC = NCP1
S2 ).

4. Participant’s source credibility evaluations made in stage 2
of the experiment for students S1 or S3 can be predicted
with high accuracy based on the mean electric charge flowing
through various Brodmann areas in a certain time interval
(cases: SC = CP2

S1 ∪ CP2
S3 and SNC = NCP2

S1 ∪ NCP2
S3 ).

5. The best model for classification of message credibility
decisions based on cases: MC and MNC differs from the best
model for classification of source credibility decisions (based
on cases: SC and SNC).

Note that the validation of hypothesis 5 requires that the
classifiers be interpretable, which excludes the use of black-box
classifiers such as neural networks.

Finally, we wished to validate our results using the model
obtained in Kawiak et al. (2020b). For this reason, we formulated
the hypothesis:

6. The best model for classification of source credibility decisions
(based on cases: CP2

S1 ∪ CP2
S3 and NCP2

S1 ∪NCP2
S3 ) will be using as

explanatory variables Brodman areas found significant for the
classification of source credibility in Kawiak et al. (2020b).

4. EXPERIMENT RESULTS

4.1. Efficacy of Learning in Part 1
In stage 1 of the experiment, participants were supposed to learn
source credibility evaluations of the three fictitious students:
S1, S2, and S3. After the first stage of the experiment was
completed, participants were asked to assess students S1, S2,
and S3. Our intention was to evaluate whether participants
obtained full knowledge about the students’ past performance.
Only participants who had such knowledge were allowed to start
the second stage P2. 30 out of 40 participants (for whom we had
a signal of sufficient quality) were able to appropriately assess the
knowledge level of fictitious students S1, S2, and S3.

The data was analyzed using Python 3.8.5 and scikit-learn

0.23.1, statsmodels 0.11.1 or scipy 1.5.0 libraries.

4.2. Data Analysis
Hypothesis 1 verification Using the Mann-Whitney U test
we have found statistically significant differences in all 88
Brodmann areas for both pairs of cases: CP1 and CP2,
NCP1 and NCP2. The p-value for all 88 BAs is less then
0.001.The significance threshold was set to .05 Finding
statistically significant differences in the signal for all BAs
confirmed hypothesis 1.

Hypothesis 2 verification Observing experiment logs and
participant’s responses we could confirm the existence of a
relationship between the source credibility level (which increases
respectively for students: S1-25%, S2-50%, and S3-75%) and
the number of positive or negative credibility evaluations. The
number of positive credibility evaluations is significantly larger
when the student’s source credibility is high (case CP2

S3 ) and
is smallest when the student’s source credibility is low (case
CP2
S1 ). Similarly, the number of negative credibility evaluations

is smallest for the student with high source credibility (case
CP2
S3 ) and increases as the student’s source credibility rises

(see Figure 3).

4.3. Data Preparation for Machine Learning
Models
Before we started building a machine learning model, we had
to select a machine learning algorithm and prepare data for
the model.

Out of many machine learning algorithms, it was decided
to use a logistic regression algorithm. It is characterized by
simplicity in implementation and analysis of the obtained
results, which was necessary for hypothesis verification. For
both stages of the experiment, models that are binary classifiers
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FIGURE 3 | The impact of the source credibility on the numbers of decisions made by participants in the second stage of the experiment. We analyzed two cases: the

participants considers the source as not credible (left side) or considers the source as credible (right side).

were built, with the participant’s credibility evaluation as the
dependent variable.

Data preparation requires time interval selection, MEC
standardization, dividing data into a training set and test set and
limiting the number of independent variables for the model.

Time interval selection In order to select a time interval
for MEC measurements, we examined the mean activity of
BAs over time. We do that by creating line graphs for
each participant. By analyzing the signal, we were able to
determine the time period when the participant’s brain was
most active. Two intervals were selected by repeating the
procedure for results of stage 1 of the experiment: 420–520 ms
from stimulus, and for stage 2 of the experiment: 510–610 ms
from stimulus.
MEC Standarization

In our previous research, we had used the mean electric
charge (MEC) flowing through each BA in a given interval of
time as independent variables of the machine learning models
(Pascual-Leone et al., 2002; Liu et al., 2015; Wojcik et al.,
2018; Kwaśniewicz et al., 2020). In this article we used a
new approach. The MEC values are standardized using the
StandardScaler method of the scikit-learn 0.23.1 Python library.
Standardization of a sample is a simple operation that uses the
sample’s mean and standard deviation. For each value in the
sample, the standardized value is obtained by substracting the
mean and dividing the result by the standard deviation. As a
sample, we used the MEC measurements for a single BA in a
given time period made for all participants. This means that
the mean and standard deviation were obtained from MEC
measurements of all participants. The brain cortex is covered by
the mantle of meninges, the bones of the skull, the skin, the hair
which results in a different SNR, and differing measurements of
electrophysiological activity of various participants (Kwaśniewicz
et al., 2021). That is why a standardization of theMEC is justified.

Division of data into a training set and a test set Thanks
to the standardization of the dMEC signal we have obtained

the continuum of signal for the whole cohort divided into 5 ms
intervals. Such super-set of signal contains positive and negative
credibility evaluations on all screens shown to all real participants
of both stages of the experiment.

The data of the super-set was divided into the training and
validation data sets. Eighty percent of the data was for used for
training and 20% for validation. All transformations made on
the data (e.g., standardization) were performed using transform
pipelines. This method reduces data leakage in the machine
learning process and no training set rows were repeated in the
validation set.
Limiting the number of independent variables for machine

learning models

In the beginning, we have dMEC values from 88 BAs. Using all
the BAs we could probably build a model with good performance
(accuracy), but difficult to interpret. Our goal was to build a
model with good performance, but with as few independent
variables as possible. To limit the amount of independent
variables for the logistic regression model, the recursive feature
elimination (RFE) method with 10-fold cross-validation with
3 replications was used. This method builds models with
an increasing number of independent variables chosen from
rankings of significance to the model. As a result of the method,
for any number of independent variables (from 1 to the 88), we
obtained 30 model accuracy (ACC) results. From these results,
we calculated mean ACC and standard deviation. A box plot
was created for each model. Analyzing box plots, we choose a
model with a small number of independent variables and good
performance. The particular set of independent variables (BAs)
of the model was chosen automatically by the RFE method.

This process of eliminating independent variables was
repeated separately for part 1 and part 2 of the experiment.
For part 1, models have been built for cases: CP1 and NCP1.
The process resulted in a choice of 32 independent variables
corresponding to BAs from which the MEC was calculated in
the chosen time interval (420–520 ms from stimulus). For part 2,
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the models have been built for cases: CP2 and NCP2. The process
resulted in a choice of 26 independent variables corresponding
to BAs from which the MEC was calculated in the chosen time
interval (510–610 ms from stimulus).

The two sets of independent variables (32 for part 1, and 26
for part 2) were still quite large. For this reason, we repeated
the RFE procedure for all models that were created to verify our
hypotheses. We used the set of independent variables determined
by the first application of the RFE procedure as an initial set,
and applied the RFE procedure again, but with different classes
for the models (for each the considered hypothesis, there are
different experimental cases for classification). The results of the
second application of the RFE procedure are described in the next
section, separately for each hypothesis.

4.4. Machine Learning Models
Hypothesis 3 verification

In the first stage of the experiment, participants’ credibility
evaluations were divided into two main cases: MC and MNC.

TABLE 2 | Results obtained during data preparation process for the model to

classify the cases of MC and MNC.

Name Value

Time interval 420–520 ms

Independent variables (RFE algorithm) 32 BA

Independent variables (model) 6 BA

mean ACC 0.71

Standard deviation 0.035

Training data 1,134 observations

Test data 126 observations

TABLE 3 | Quality measures of the logistic regression model for predicting

message credibility evaluations made in stage P1 of the experiment.

Accuracy 0.74

Precision 0.75

Recall 0.71

F1 0.73

These cases consist of credibility evaluations made only for
student S2 (see Section 3.3).

The purpose of building a machine learning model is to try to
predict whether the participant’s credibility evaluation belongs to
the the case of MC or MNC. MC was treated as the positive class.
The results of the model are presented in Table 2.

The 32 BAs mentioned in Table 2 were obtained from
the independent variable elimination process described in the
previous section. We repeated this process for the model to
predict cases MC and MNC. This time, we initially had 32
independent variables. Based on the box plots of the RFE
procedure, we chose a model with only 6 independent variables:
L-BA24, L-BA28, L-BA35, R-BA36, L-BA39, L-Hippocampus.

Finally, we built a classifier to predict cases MC and MNC
using 6 independent variables. We used logistic regression
estimator with 10-fold cross-validation with 3 replications. The
estimator was with default values, but with the solver set to
“newton-cg”. As a result, we obtained 30 ACC. From these
results, we calculated mean ACC and standard deviation (see
Table 2).

The quality measures of the classifier are presented in Table 3

and Figure 4.
The following BAs: L-BA24, L-BA39, L-BA35 had positive

regression parameters β equal to 1.831, 1.414, 1.184, respectively.
The following BAs: R-BA36, L-Hippocampus, L-BA28 had
negative regression parameters β equal to -2.735, -1.371,
-1.297, respectively. The anatomical structures and their
functionalities are presented in Appendix 4 and highlighted in
Figure 5.

The presented results prove that we can build a good model
for predicting message credibility, based on results of part 1 of
our experiment.
Hypothesis 4 verification

In the second part of the experiment, participants’ credibility
evaluations were divided into twomain cases: SC and SNC. These
cases consist of credibility evaluations made for students S1 and
S3 (see Section 3.3).

The purpose of building a machine learning model is to try to
predict whether a participant’s credibility evaluation belongs to
the case of SC or SNC. SC was treated as the positive class. The
results are presented in Table 4.

FIGURE 4 | Confusion matrix (left side) and the ROC curve (right side) for the model to classify message credibility evaluations (the cases of MC and MNC).
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FIGURE 5 | Heads with marked BAs that have the largest impact on the classification of message credibility evaluations (cases MC and MNC).

TABLE 4 | Results obtained during data preparation process for the model to

classify the cases of SC and SNC.

Name Value

Time interval 510–610 ms

Independent variables (RFE algorithm) 26 BA

Independent variables (model) 10 BA

mean ACC 0.70

Standard deviation 0.027

Training data 2,268 observations

Test data 252 observations

The 26 BAs mentioned in Table 4 were obtained from the
independent variable elimination process. We repeated this
process for the model to predict cases SC and SNC. This time
we initially had 26 independent variables. Based on the box plots
of the RFE procedure, we chose a model with 10 independent
variables: L-BA07, L-BA11, L-BA19, L-BA21, R-BA23, L-BA24,
R-BA28, R-BA42, R-BA43, L-BA47.

Finally, we built a classifier to predict cases SC and SNC using
10 independent variables. We used logistic regression estimator
with 10-fold cross-validation with 3 replications. The estimator
was with default values, but with the solver set to “newton-cg”. As
a result, we obtained 30 ACC. From these results, we calculated
mean ACC and standard deviation (see Table 4).

The quality measures of the classifier are presented in Table 5

and Figure 6.

TABLE 5 | Quality measures of the logistic regression model for predicting source

credibility evaluations made in part 2 of the experiment.

Accuracy 0.71

Precision 0.72

Recall 0.70

F1 0.71

The following BAs: L-BA07, R-BA42, L-BA47, L-BA24, L-
BA21 had positive regression parameters β equal to 1.631,
1.240, 1.237, 1.058, 0.679, respectively. The following BAs: L-
BA11, R-BA43, L-BA19, R-BA23, R-BA28 had negative regression
parameters β equal to –1.435, –1.396, –1.139, –0.758, and –0.606,
respectively. The anatomical structures and their functionalities
are presented in Appendix 4 and highlighted in Figure 7.

The presented results prove that we can build a good model
for predicting source credibility, based on results of stage 2 of
our experiment.
Hypothesis 5 verification

To verify hypothesis 5, we compared the models prepared to
verify hypotheses 3 and 4.

Qualitative indicators were compared for each model (see
Table 6).

The BAs that have the largest impact on message credibility
evaluations (used in models for hypothesis 3) and on source
credibility evaluations (used in models for hypothesis 4) are
presented in Table 7.
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FIGURE 6 | Confusion matrix (left side) and the ROC curve (right side) for the model to classify source credibility evaluations (the cases of SC and SNC).

FIGURE 7 | Heads with marked BAs that have the largest impact on the classification of source credibility evaluations (cases SC and SNC).

The results presented in Tables 6, 7 show that there are
differences between the models for hypotheses 3 and 4, which
proves hypothesis 5.
Hypothesis 6 verification

In Kawiak et al. (2020b), we found ROIs that have impact
on decision making based on source credibility. We decided to
map the ROI to BAs to check whether the detected BAs from
another experiment could be successfully used as input data for
the model built in hypothesis 4. As a result, from 10 ROI we
obtained 36 BAs (see Appendix Section 3.1). We compared the
results of the model from Kawiak et al. (2020b) with the results
from hypothesis 4 (see Table 8).

Then we built a model for the classification of source
credibility evaluations (based on cases: SC = CP2

S1 ∪ CP2
S3 and

SNC = NCP2
S1 ∪ NCP2

S3 ) using the BAs from Kawiak et al. (2020b)
as input data. The result of the classifier is presented in Table 9

and Figure 8.
The above results prove that we can build a good model for

predicting source credibility evaluations using BAs from Kawiak
et al. (2020b) as independent variables.

5. DISCUSSION

The results of our experiment confirmed our expectation that
it is possible to distinguish and predict credibility evaluations
based on brain activity registered using EEG. TheMann-Whitney
statistical test showed that there are statistically significant
differences between MEC in all BAs. This finding is in agreement
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TABLE 6 | Comparing quality measures of logistic regression models for

predicting message credibility evaluations and source credibility evaluations.

The best model for predicting

message credibility evaluations

The best model for predicting

source credibility evaluations

Accuracy 0.74 0.71

Precision 0.75 0.72

Recall 0.71 0.70

F1 0.73 0.71

TABLE 7 | Comparing BAs that had the largest impact on the classification of MC

and MNC in the best model for predicting message credibility evaluations with the

BAs that had the largest impact on the classification of SC and SNC in the best

model for predicting source credibility evaluations.

Hypothesis 3 Hypothesis 4

L-BA24 L-BA07

L-BA28 L-BA11

L-BA35 L-BA19

L-BA39 L-BA21

R-BA36 L-BA24

L-Hippocampus L-BA47

R-BA23

R-BA28

R-BA42

R-BA43

The BAs that are the same for both models are marked in green. The BAs that have the

same number for both models but different hemispheres of the brain (L or R) are marked

in orange.

TABLE 8 | Comparing quality measures of logistic regression models from Kawiak

et al. (2020b) and hypothesis 4.

Models Nb of BA ACC Precision Recall F1

ROI 36 0.70 0.71 0.70 0.70

Hypothesis 4 10 0.71 0.72 0.70 0.71

with previous work. Dimoka noticed that different BAs in
the brain are activated when we trust and distrust a person
(Dimoka, 2010). Previous work on source credibility (Kawiak
et al., 2020a,b) also reported similar findings.

Our experiment has been composed of two parts. In the
first part, participants made credibility evaluations based mainly
on message content. For the cases that involved student S2
who had an average accuracy of 50%, participants had no
relevant information about source credibility. In the second part,
participants could take into account their learned information
about source credibility of the three students (S1, S2, and S3).
Especially for S1 (average accuracy of 25%) and S3 (average
accuracy of 75%), participants made their credibility evaluations
based on source credibility. Our observations confirmed the role
of source credibility in the second part of the experiment, which
confirms the internal validity of the experiment.

In the first stage of the experiment, participants needed to
evaluate credibility based on message content. This process

TABLE 9 | Quality measures of the logistic regression model for predicting source

credibility evaluations using BAs from Kawiak et al. (2020b) as independent

variables.

Accuracy 0.74

Precision 0.77

Recall 0.69

F1 0.73

required, among other things, language processing, memory
encoding and retrieval, and calculation. These activities are
reflected in the activity of BAs when the classification of MC and
MNC is made by the machine learning algorithm. The BAs: L-
BA24, L-BA39, L-BA35, R-BA36, L-Hippocampus, L-BA28 had
the largest impact on the classification of MC and MNC (see
Appendix 4). The L-BA24 is responsible, among others, for
language processing. This BA is well described in the literature
(Ardila et al., 2016). During the experiment, the participant’s
brains processed information. Data was encoded in memory
and retrieved back. The following BAs are responsible for the
encoding process: L-BA28, L-BA35, R-BA36, L-Hippocampus
(Kircher et al., 2007; Yan et al., 2021) and for the retrieval process
the L-BA35 field. Rajah and McIntosh (2005) and Maguire
et al. (2000). The L-BA35 field contributes to both the encoding
and information retrieval process (Dougal et al., 2007). The
L-BA39 is responsible for mathematical calculation (Grabner
et al., 2007). The activity of this BA probably resulted from the
fact that participants tried to count good and wrong answers
of the students to gain knowledge about students’ accuracy in
answering questions.

In the second stage of the experiment, participants dealt
with Japanese signs, translating signs, making decisions, recalling
information about the student. These activities are reflected in
the activity of BAs when the classification of SC and SNC is
made by the machine learning algorithm. The BAs: L-BA07,
R-BA42, R-BA47, L-BA24, L-BA21, L-BA11, R-BA43, L-BA19,
R-BA23, R-BA28 had the largest impact on the classification
of SC and SNC (see Appendix 4).The presence of the R-BA42
field, which is largely responsible for the auditory processing,
was a big surprise (Appendix 4). This BA is also responsible
for repetition priming (Haist et al., 2001).The activity of this
BA probably results from the fact that the respondents formed
an opinion about a given student through repeated correct or
incorrect answers. For the classification of SC and SNC, the
R-BA23 appears. It is responsible for the evaluative judgment
(Zysset et al., 2002).The participants of our experiment had to
decide whether they trusted the answers of student S1, S2, or
S3. They must assess the source credibility. The BAs: L-BA47, R-
BA43, L-BA07, L-BA24, L-BA19, L-BA21 are responsible, among
others, for language processing. These BAs are well described in
the literature (Ardila et al., 2016). The L-BA19 is responsible for
processing Japanese signs. Söderfeldt et al. (1997), Horwitz et al.
(2003), and Ardila et al. (2015).

Comparing the BAs with the largest impact on the
classification of MC and MNC in the best model for predicting
message credibility evaluations with the BAs that had the largest
impact on the classification of SC and SNC in the best model for
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FIGURE 8 | Confusion matrix (left side) and the ROC curve (right side) for the model from hypothesis 6.

predicting source credibility evaluations, it can be noticed that L-
BA24 appears in both models. The presence of the same BA in
both models shows that there are common elements between the
two stages of the experiment. These elements include language
expression and working memory.

In this article, we compared the results of the classifier to
predicting source credibility decisions with the classifier from
Kawiak et al. (2020b).Analyzing the classifier’s independent
variables, it can be noticed that some BAs are common. These
BAs are: L-BA07, L-BA11, L-BA24, L-BA47, R-BA23, R-BA42, R-
BA43.The presence of a large number of common BAs proves
the correctness of the stage of experiment concerning the
source credibility and the existence of common elements in
both experiments.

The L-BA07 (Superior parietal gyrus) is located in the parietal
lobe and except of its widely reported somato-sensory functions
may be involved in language processing, even as reported in Li
et al. (2015) Chonese character processing whichmay refer to our
Japanese signs in experiment.

Brodmann Areas L-BA11, L-BA24 and L-BA47 are in
prefrontal cortex and are involved in executive tasks, attention,
and memory. They may be involved in the postulated in Kawiak
et al. (2020b) credibility loop as the credibility evaluation,
especially the source credibility, is associated more or less with
previous experience, recalling from memory, etc.

However, in the group of BAa mentioned above the most
interesting seem to be the R-BA23 (Posterior cingulate cortex),
R-BA42 (Secondary auditory cortex) and R-BA43 (Postcentral
gyrus). They are all located in the right hemisphere relatively
close to each other.

The R-BA23 according to Technologies (2012) associated
with evaluative judgement is also reported in Beer et al. (2008)
where they model Implicit Association Test (IAT) to examine the
automatic processes that contribute to social attitudes including
prejudice in their fMRI studies. Remember that after the first
stage of experiment participants could get prejudiced to weak or
average student.

The R-BA42 according to Technologies (2012) is associated
among others with working memory, visual speech perception
and several auditory acoustic and speech related patterns.
However, also in the fMRI studies it has been shown by Arsalidou

et al. (2013) that R-BA42 activity varies in function of task
difficulty engaging working memory. It is to be investigated
whether and when the credibility evaluation is difficult enough
to activate/deactivate R-BA42. Nevertheless, we suppose it may
be one of the most important in the credibility loop.

The R-BA43 according to Technologies (2012) is associated
with spoken language bilaterally. It is also found to play a
role in distributed face recognition system network (Cloutier
et al., 2017) and in female groups investigated in fMRI studies
(Toffoletto et al., 2014) where emotional and cognitive functional
imaging of estrogen and progesterone effects were discussed
and for the R-BA43 they were reported in Goldstein et al.
(2005). In that fMRI studies the difference in BOLD signal
intensity between aversive affective to neutral visual stimuli
during early follicular vs. midcycle menstrual phases in R-BA43
was noted.

So we hypothesize that gathering together working memory
in processing prejudices, faces, task difficulties and aversive,
affective and neutral stimuli may result in association of the
L-BA07, R-BA23, R-BA42 and R-BA43 also with credibility
evaluation. However, this requires intensive fMRI studies.

6. CONCLUSION AND FUTURE WORK

Our results confirm that using the source localization algorithms
(sLORETA) and machine learning classifiers it is possible to
predict message credibility evaluation with and without the
perfect knowledge, and construct a model involving finite
number of variables to achieve accuracy around 0.7. However,
the research described herein still can be considered as an
initial stage of larger series of experiments leading to the
precise indication of the so-called credibility loop postulated
by us in Kawiak et al. (2020b) to function in the brain.
The main limitation is still a relatively small number of
participants that makes it possible to gather full recording
of their EEG activity during the whole experiment. On the
other hand, our results confirm some similarities found in
our other independent experiments reported, i.e., in Kawiak
et al. (2020b) which may indicate that we are proceeding in
good direction.
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In the next step we will investigate a larger group of
participants in order to gain possibility of building universal
models able to predict decisions taken by people from outside
the cohort. Our first attempts have been promising, and
evaluating our approach for the signal collected from new
and completely separated from the training and validation
sub-cohorts subjects for tests give the average accuracy of
0.65 for both stages of the experiment, and it will be
reported in future.

It will be useful in future to engage convolutional neural
networks and deep learning methods that can improve the
efficiency of standard AI classifiers by several percent.

In future research it may be worth consideration to totally
move to the regions of interest (ROI) mappings instead of using
Brodmann Areas (BA). The remapping one to another is not
trivial, however, moving to ROI may make it possible to find
similarities in other researchers findings.

Finally, when the credibility loop is more precisely estimated
we hope to probe it more deeply using functional MRI scanning.
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APPENDIX

A. ADDITIONS FOR HYPOTHESIS 3

A.1. List of 32 Selected BAs After Using
RFE With CV for Hypothesis 3
R-BA06, L-BA07, L-BA10, L-BA11, R-BA11, L-BA17, L-BA18,
R-BA19, L-BA22, L-BA24, L-BA25, L-BA28, L-BA30, L-BA32,
R-BA32, L-BA33, L-BA35, R-BA36, L-BA37, R-BA37, R-BA38,
L-BA39, L-BA41, R-BA41, R-BA42, L-BA43, L-BA44, R-BA44,
L-BA45, R-BA45, L-BA47, L-Hippocampus.

B. ADDITIONS FOR HYPOTHESIS 4

B.1. List of 26 Selected BAs After Using
RFE With CV for Hypothesis 4
L-BA07, L-BA11, L-BA19, R-BA20, L-BA21, R-BA22, L-BA23,
R-BA23, L-BA24, R-BA24, L-BA25, R-BA28, L-BA29, R-BA30,
L-BA35, R-BA36, L-BA37, L-BA38, R-BA38, L-BA41, R-BA42,
L-BA43, R-BA43, R-BA44, L-BA46, L-BA47.

C. ADDITIONS FOR HYPOTHESIS 6

C.1. List of 36 BAs Mapped From ROI
L-BA02, R-BA02, L-BA04, R-BA04, L-BA06, R-BA06, L-BA07,
R-BA07, L-BA10, R-BA10, L-BA11, R-BA11, L-BA13, R-BA13,
L-BA23, R-BA23, L-BA24, R-BA24, L-BA31, R-BA31, L-BA32,
R-BA32, L-BA33, R-BA33, L-BA39, R-BA39, L-BA41, R-BA41,
L-BA42, R-BA42, L-BA43, R-BA43, L-BA44, R-BA44, L-BA47, R-
BA47.

D. LIST OF BAS WITH SELECTED
FEATURES

The full list of BAs and their cortical functions can be found
in [41].
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BA Anatomical structure Known functions

L-BA07 Somatosensory association cortex Working memory, Conscious recollection of previously experienced events, language

processing, processing emotions and self-reflections during decision making

L-BA11 Orbitofrontal area Decision making involving reward

L-BA19 Associative visual cortex (V3) Detection of patterns, word and face encoding, sign language

L-BA21 Middle temporal gyrus Sentence generation, word generation, deductive reasoning

R-BA23 Posterior cingulate gyrus Evaluative judgment

L-BA24 Anterior cingulate gyrus Language expression, working memory

L-BA28 Ventral entorhinal cortex Memory encoding, working memory

R-BA28 Ventral entorhinal cortex Memory encoding, working memory

L-BA35 Perirhinal cortex Memory encoding and retrieval

R-BA36 Hippocampal area Memory encoding, working memory

L-BA39 Angular gyrus Calculation

R-BA42 Primary and auditory association cortex Repetition priming effect, auditory working memory, visual speech perception, processing

discontinued acoustic patterns

R-BA43 Primary gustatory cortex Spoken language (Bilateral)

L-BA47 Inferior prefontal gyrus Semantic processing, semantic encoding, active semantic retrieval, single-word reading,

working memory, deductive reasoning

L-Hippocampus Hippocampus Regulating learning, memory encoding, memory consolidation
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