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Abstract: Smartphone-based gait recognition has been considered a unique and promising technique
for biometric-based identification. It is integrated with multiple sensors to collect inertial data while a
person walks. However, captured data may be affected by several covariate factors due to variations
of gait sequences such as holding loads, wearing types, shoe types, etc. Recent gait recognition
approaches either work on global or local features, causing failure to handle these covariate-based
features. To address these issues, a novel weighted multi-scale CNN (WMsCNN) architecture is
designed to extract local to global features for boosting recognition accuracy. Specifically, a weight
update sub-network (Ws) is proposed to increase or reduce the weights of features concerning their
contribution to the final classification task. Thus, the sensitivity of these features toward the covariate
factors decreases using the weight updated technique. Later, these features are fed to a fusion module
used to produce global features for the overall classification. Extensive experiments have been
conducted on four different benchmark datasets, and the demonstrated results of the proposed model
are superior to other state-of-the-art deep learning approaches.

Keywords: gait recognition; multi-scale CNN; smartphone sensor; inertial sensor

1. Introduction

Human gait is a biometric attribute that is useful and attracting attention in different
fields such as surveillance, biomedical engineering, clinical analysis, etc. Commonly, gait
analysis is essential in a clinical investigations such as fall detection [1], rehabilitation [2,3],
physical therapy [4], etc., for the well-being of a patient suffering from underlying diseases
such as strokes, Parkinson’s, or progressive supranuclear palsy (PSP). Current studies
focus on the recent development of human gait rehabilitation therapy based on the state
of the brain by employing the brain–computer interface (BCI) system [5–7]. BCI systems
are capable of decoding the cognitive state of a patient to provide feedback to an external
device such as a wheelchair, robotic prostheses/orthoses, or muscle simulator by acquiring
brain signals from electroencephalographic (EEG), as discussed in these papers [6,8,9].
In [10], the authors utilized EEG-based brain signals for distinguishing between a healthy
person and a patient by measuring the level of attention of a person toward his gait.
Furthermore, to measure the attention level, numerous methods have been developed
such as the continuous performance test (CPT) and the test of variable attention (T.O.V.A.)
referred in [11]. Apart from that, the eye-movement tracking technique [4] is adopted
among the PSP patient to improve temporal aspects of the gait of the patient by estimating
the eye-movement parameters through a GP3 eye-tracker [12,13].

Although human gait is very familiar in the era of clinical analysis, the current paper
exploits this attribute in individual recognition. Generally, gait recognition models are
commonly implemented either through vision-based methods, which utilize the video
and image data [14–19] or through inertial-based devices such as wearable sensors/floor
sensors/smartphones’ sensors to capture signals of human movement [20–23] to infer gait
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identity. Although the vision-based method has been extensively studied and can achieve a
high recognition rate, its application is limited due to the high acquisition cost and difficulty
in the deployment of cameras in a real-life environment. On the other hand, inertia-sensor-
based technology such as smart devices with built-in sensors, wearable sensors, and
smartphones are on excess demand due to its low cost, convenience carrying, and good
real-time performance [23–25]. Today, smartphones are featured with many inertial sensors
such as an accelerometer and gyroscope to capture the speed and direction of a moving
person [26–28]. Therefore, it is beneficial to track the person in survieillance. Currently,
many research studies [24,29–31] have been completed in this area, which motivates us to
utilize smartphone sensor data for gait recognition.

In this article, an ideal approach is proposed to effectively handle covariate-based
gait signals by utilizing multi-scale CNN concepts to get deep spatial features using
down-sampled signals referred to as local features. However, the key difference between
traditional multi-scale CNN and our proposed approach is to predict features at different
scales to obtain discriminant features. To accomplish this task, a branch network called
a weight update subnetwork (Ws) is coupled to each CNN to highlight the relevance
feature vectors and specify more weights by using the fisher discriminant criterion [32].
The down-sampled signal from low scale to high scale indicates elusive variations between
gait poses due to the effect of the covariates. Therefore, a fusion module is implemented
to generate the effect of dependencies between low-scale samples to high-scale samples.
Eventually, all these weighted features are flattened into a 1D array for producing a single
feature vector. In the end, a softmax layer followed by a fully connected network (FCN) is
employed to process the feature vectors for final classification.

The main contributions of this article are briefly outlined as follows:

• Inspired by the multi-scale approach, the proposed model leverages multi-scale con-
volutional neural networks [33], a fusion network, and a weight update sub-network,
and it combines them in an end-to-end manner to address the covariate issues.

• In particular, it aims to highlight relevant local features in each scale with respect to
label-based gait patterns by incorporating weight update sub-networks (Ws). Further-
more, global features are extracted with the help of a fusion network. The significance
of discriminative local and global features is to handle intra-class variations and
inter-class variations, respectively.

• The proposed framework has been gone through extensive empirical evaluations using
four benchmark gait-based inertial datasets: OU-ISIR, whuGAIT, Gait-mob-ACC, and
IDNet, and the results are compared with many state-of-the-art gait recognition models
such as IdNet [23], CNN [34], LSTM [30], DeepConv [35], CNN+LSTM [24], and the
proposed model outperforms others.

The remainder of this paper is organized as follows. Literature related to the proposed
method is discussed in Section 2. The framework of the proposed model and its corre-
sponding architecture is described in Section 3. The experimental setup and results are
presented in Section 4 and discussed in Section 5. Section 6 provides the conclusion.

2. Related Work
2.1. Sensor-Based Gait Identification

Recently, sensors-based gait analysis has become a rapidly growing research plat-
form [21,24,30,36–40]. In early research, Nickel et al. [41] captured accelerometer data
through smartphones, where cepstral coefficients are extracted from the data to consider as
a feature set, and support vector machine (SVM) has been used for training these features.
In 2012, Juefei-Xu et al. [42] developed a step-independent gait identification model from a
continuous tracking of smartphone-based acceleration and gyroscope data. Furthermore,
several studies have been proposed for handling multi-modal sensor data in gait identifica-
tion using fusion-based techniques [43], a Gaussian mixture model (GMM-UBM) [42], and
CNN methodologies [44].
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2.2. Deep Learning Approaches on Gait Analysis

In the last few years, several deep learning models have been proposed for gait-based
identification [24,30,39,45,46]. For example, convolutional neural networks (CNN) are
widely used in many existing gait recognition methods [23,24,47]. IDNet [23] incorporates
both a CNN-based deep learning approach and machine learning tools such as SVM to
process inertial signals captured from smartphones for gait authentication. Here, the CNN
network has been adopted as a universal feature extractor and SVM for gait classification.
Another related work of deep learning is multi-scale analysis, which has achieved a series
of progress in the field of detection, classification, and identification. So far, a multi-scale
strategy has been widely used in deep learning for gait-based recognition [48–50] where
it explores spatial features at multiple scales and learns more details about different gait
regions to extract local features. However, it fails to find dependencies among the spatial
features as well as overall gait variations. Gait recognition methods based on global repre-
sentations deal with gait data as a whole and do not pay attention to local gait details; some
examples include GaitNet-1 [51] and GaitNet2 [52], but these methods are sensitive to the
covariate factors. To address the above issues, for the first time, in this context, a novel model
(WMsCNN-Local-Global) has been proposed to extract more comprehensive features, which
contains both local and global information of inertia signals acquired from smartphones.

3. System Overview

The proposed framework is comprised of five parts: acquisition of inertial gait data,
segmentation of gait cycle, deep feature extraction, training, and classification. The
schematic diagram of the proposed framework is shown in Figure 1. The acquisition
of inertial gait data is done through an accelerometer and gyroscope sensor, which are
useful for tracking a person’s movement along the X, Y, and Z directions, denoted as
Ax, Ay, Az, and Gx, Gy, Gz respectively. All the sensor data are normalized using L2 norm
to avoid uncertain movements of smartphones such as shifting of smartphones from left to
right or up to down positions. Furthermore, the gait cycle segmentation task is carried out
using the acceleration data along the X, Y, and Z directions. The paper adopts U-net [24] to
perform this task. All the gait cycles are randomly split into a gallery (train) and probe (test)
sequences. To obtain deep features from the multi-scale technique, samples are further
down-sampled into different time scales and processed through several convolutional
layers, which are treated as an independent feature set. A novelty of the proposed method
lies in the localization of the important feature map and assigning weights to the feature
vector for training and classification. To perform this task, a weight update subnetwork
(Ws) is designed to connect each CNN architecture. Later, all the locally weighted features
are fused to get dependence among them to utilize for overall gait variations. Eventually,
all the fused features are flattened and fed to the fully connected layer for classification.

Figure 1. Overview of the proposed framework.
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3.1. Proposed Approach

The objective of the paper is to estimate the importance of feature vectors with respect
to their label prediction and ignore other features that may misguide a classifier. In other
words, different weights can be assigned to the local feature vectors from different scales
by giving more weight to the representative features and less weight to others. In order to
accomplish this, a multi-scale signal is reconstructed from a single scale by down-sampling
and further processed through a stack of CNN structures to get deep features at different
time scales. The detailed design of the proposed model is shown in Figure 2.

Figure 2. Detailed design of the WMs–CNN–Local–Global model.

Multi-scale signal reconstruction: The inertial data acquired from the accelerometer
and gyroscope are simultaneously considered inputs. It can be expressed as
xt = [Ax, Ay, Az, Gx, Gy, Gz] at time step t along the X, Y, and Z-axis. Combining all
the time steps can be represented as a gait cycle X = [x1, x2, . . . , xN ], where N is the number
of steps to be considered in each gait cycle. Assume each gait cycle ’X’ is down-sampled at
a time scale ’τ’ is expressed below.

xτ
t =

1
τ

tτ

∑
k=(t−1)τ+1

Xk, 1 ≤ t ≤ N
τ

, (1)

where xτ
t is a down-sampled signal computed by taking an average of consecutive data

points t of the input signal Xk at time index k. The whole expression of the multi-scale
signal is denoted as xτ = {xτ

1 , . . . , xτ
t , . . . , xτ

N/τ}.
So far, the effectiveness of the convolutional neural network has been proven as a

good feature extractor in the field of motion data, image analysis, speech signal processing,
etc. [53]. Thus, we are motivated to incorporate CNN architecture into each scaled signal
to obtain significant features. Each scaled sub-sample xτ

t is fed to the four convolutional
layers of the CNN network, which is followed by a pooling layer. The output of the layer is
expressed as below.

xl,τ
t = ReLU(

M

∑
m=1

W l−1,t
m ∗ xl−1,τ

t+m−1 + bl
t), (2)

where xl,τ
t denotes the output layer, l ∈ (1, 2, 3, 4);* denotes the convolutional operator; M

is the kernel size; bl
t is the bias term at layer l; W is the weight of the lth feature map; ReLU

denotes an activation function; m and l denote the index of the kernel and convolutional
layer, respectively. Later, by applying a pooling layer, the output local feature is given as

f l,τ
t = max(xl−1,τ

t (n)), n ∈ [(j− 1)w, tw], (3)
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where f l,τ
t is the output of the maximum value among the (l − 1)th layer obtained from

samples xl−1,τ
t (n), n represents the nth output neurons at the jth position of local features,

and w is the width size of the pooling layer.
Weight update sub-network (Ws): The proposed sub-network aims to explore a novel

spatial adaptive weighting technique using the Fisher-based discrimination [54] among the
feature vectors with respect to their labels. The main idea is to map the classifier weights to
each feature vector to perform localized classification. Subsequently, weights are assigned
to each feature vector depending on its contribution to its label data. To accomplish this
task, a sub-network is inserted between the last CNN layer and a classifier. A global average
pooling layer and a soft-max layer are the part of the sub-network that finds localized
features for each class label. The architecture of the weight update sub-network (Ws) is
shown in Figure 3.

Figure 3. Architecture of a weight update sub-network (Ws) to achieve discriminative features.

Suppose in multi-scale signal analysis, Fτ,k represents the output feature map of CNN
for each scale of unit k after passing through a global average pooling layer (GAP), which
is specified as below.

Fτ,k =
1
h ∑

i
fi,k, (4)

where fi,k ∈ Rc, i = 1, 2, . . . , h is the local feature vectors at unit k. The localized classifica-
tion is performed using the dot product between the feature vectors and the weights of the
classifier, as described in (5).

f̂i = ∑
i

∑
k

wc
k fi, (5)

where f̂i ∈ RN is the localized classification score at class c , wc
k is the class-specific weight

vector assigned to local features, and ’i’ is the location of each feature. Subsequently,
weights are updated by projecting the localized classification scores from high-dimensional
space to low-dimensional space, based on their intra (within) and inter (between) classes
distributions.

Let the localized scores f̂i be projected from the N dimensional space to N′ dimensional
space for separating two different classes. Then, the weight λi is computed by considering
an N′ eigenvector corresponding to the maximum eigenvalue given below.
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ˆ∑w = ∑
i

∑̂
f∈ci

( f̂ −mi)( f̂ −mi)
′ (6)

ˆ∑b = (mi −m)(mi −m)′ (7)

λi = maxN′(eig( ˆ∑
−1

w
ˆ∑b)), (8)

where ∑̂w, ∑̂b are the within-class matrix and between-class matrix, which are computed
in (6) and (7), respectively. m̄i and m are the mean of the local and global class, respectively.

3.2. Fusion Network

All the locally weighted features from low-scaled gait variations to large-scaled vari-
ations are fused to obtain linear dependency among them. As it is a linear combination
of discriminative features from small gait sequences to large gait sequences, the resultant
feature set is named the global feature set. It is computed as follows.

F̂global = Wτ1 F̂τ1 + Wτ2 F̂τ2 + . . . + Wτs F̂τs, (9)

where the fusion weights Wτ1, Wτ2, . . . , Wτs are the adaptive parameters learned from the
training sets. Subsequently, the global feature F̂global is fed to a fully connected layer (FC)
and a softmax layer. The output expressions of both the layers are presented below:

F̂l
global = bl + F̂l−1

global · w
l (10)

o = So f tmax(F̂global ∗W0 + b0) (11)

3.3. Training and Classification

The training of the proposed model is performed in an end-to-end manner, learning
combined with multiple weight update sub-networks (Ws) and overall networks in a single
unified fashion using a backpropagation algorithm. To do so, Ws sub-networks are trained
independently from fewer scales to more scales to obtain local optimization under the
supervision of label-based gait sample patterns. The total classification loss of the local
features is observed below.

Llocal =
i=s

∑
i=1

αiLi(F̂i, y), (12)

where s represents the total number of sub-networks in the local module, αi is the weight
parameter of the each sub-network, and y is the label of gait patterns at different conditions.
Then, the overall training is computed at the final layer to obtain global optimization, and
the gradients are propagated backwards layer-by-layer to update the weights. The overall
loss of the proposed framework (WMsCNN-Local-Global) can be represented by

Loverall = αLLocal(Fi, y) + βLglobal(Fglobal , y), (13)

where α and β are both weight updated parameters. Each loss function is defined in terms
of cross-entropy loss.

The network is iteratively trained through several epochs to update the model using
the training set. Furthermore, the training set is split up into distinct batches B, and each
batch B has B segments. In each epoch, the training set is shuffled and computes a set
of output vectors O based on its loss function. Let each vector oi ∈ O be the estimated
prediction score for each label. ôi ∈ O is the actual score for label i. Then, the cross-entropy
loss-based classification problem can be formulated as below.

LB(o, ô) =
1
B

K

∑
i=1

ôilnoi + ((1− ôi)ln(1− oi)), (14)
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where LB the cross-entropy loss function used to update network’s internal parameters
through back-propagation [55]. When all the batches have been used to train the network,
one training epoch is completed; then, the process is repeated with a new epoch until it
meets a stopping condition as referred in Section 4.1. It is observed from (14) that a large
difference between oi and ôi results in a high value of entropy loss. Basically, the training
network adopted this concept for optimization.

4. Experimental Setup and Result Analysis

The experiment is conducted by integrating weight update sub-networks (Ws) into
various CNN architectures. All the experiments are implemented using the Keras API
and Caffe framework. The proposed network evaluates different challenging datasets
having covariate conditions and compares them with several state-of-the-art deep learning
approaches, such as CNN, LSTM, CNN+LSTM, IdNet, and Deepconv modules. A brief
description of the datasets is given in Table 1.

Table 1. Details of four challenging datasets.

Database
Name No. Number of

Subjects
Sampling

Rate Challenges

OU-ISIR #1
#2

745
408 100 Hz A large database with fewer samples on each subject and

each subject walks on a plain and sloppy surface

whuGAIT #1
#2

118
20 50 Hz

Gait-mob-ACC
#1
#2
#3

10
50
50

Variation of walking speed: normal and fast with seven different covariates:
either hand/both hand in pocket, either hand holding

book, and either hand with loadings

IDNet - 50 100 Hz Wear different shoe types and different clothes

4.1. Different Sensor-Based Gait Dataset

whuGAIT datasets [24]: Here, 118 subjects are taken into consideration in the data
collection, out of which 20 subjects have a large number of data, where each holds thou-
sands of samples. The rest of the subjects contain a smaller amount of data, each holding
hundreds of samples. Furthermore, each data sample contains a three-axis accelerometer
and gyroscope data. Here, all the data are sampled at 50 Hz. The dataset is organized into
eight subsets from Dataset #1 to Dataset #8. In this paper, Dataset #1 and Dataset #2 are
used for classification, while the rest, Dataset #5–#6 and #7–#8, used for gait authentication
and gait data extraction, respectively.

IdNet dataset [23]: It has 50 subjects and collects data from both a tri-axial gyroscope
and accelerometer embedded in a smartphone. The sampling rate of the sensor data is
100 Hz. These data include two such variations, such as people wearing different shoe
types and different clothes at a different time of gait data acquisition.

OU-ISIR dataset [21]: So far, it is the largest population dataset in terms of capturing
inertial-sensor-based gait data. Two types of devices such as 3IMUZ sensors and Motorola
ME860 are used to capture the sensor data. The first one captures both accelerometer and
gyroscope data, while the second one collects triaxial accelerometer data. Each sensor
works at 100 Hz. The experiments are performed on two different sets of users on the basis
of two different conditions. One experiment is conducted for evaluation in the presence of
a large set of the population around 744 subjects; another one is conducted on 408 subjects
in the presence of two different ground surfaces, i.e., sloppy surface and plain surface.

Gait-mob-ACC-dataset [22]: It is the most challenging dataset that incorporates eight
types of covariates along with speed variations. There are three sets of data such as Dataset
#1, Dataset #2, and Dataset #3, which are captured from an accelerometer and kinetic
sensor simultaneously. Here, inertial data from accelerometers are only included in the
experiments. Among the three datasets, Dataset #1 contains 10 subjects, and each subject
contain 100 samples. Out of 100 samples, half of the samples are collected from the fast
walk and another half are collected from the normal walk. Dataset #2 has 50 subjects, with
ten data samples for each subject. Dataset #3 has 50 subjects and 48 data samples from
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each subject. In particular, each subject requests to walk in eight different conditions, i.e.,
freestyle walking, hand in a pocket (left or right or both hands), holding a book either right
or left hand, carrying loads either right or left hand.

4.2. Network Architecture

The proposed network has been built in an end-to-end fashion such that a gait sample
is accepted from one end; then, it passes through sub-networks, which are tied together, and
produces its identity at the other end. Each sub-network is connected with CNN, having
four optimum numbers of convolutional layers in the order of a kernel regularization layer
(L2), a ReLU activated layer followed by a max-pooling layer of size 2, and a dropout layer.
Each layer has a filter attached, and the maximum depth is set as 32, 32, 64, and 128 in the
order of four layers. An Adam optimizer is compiled with a learning rate of 0.001. The
dropout layer is recognized to be the best option to reduce overfitting. Here, dropout is
set at a rate of 0.5 after convolutional layers and 0.8 after the fusion layer to force other
weights to neutralize. This leads to higher accuracy and a better understanding of the
data. The weights of the convolutional layers and fully connected layers are initialized
using the Kaiming initializer. The weighting factors α and β are manually tuned and set to
0.99 and 0.87, and a batch size of 32 is used for all experiments. The number of epochs for
training is 200. The early stopping condition is set if no improvement is taking place after
50 consecutive epochs. The detailed parameters of the proposed single scale CNN network
are given in Table 2. For multi-scale analysis, each input signal has a fixed dimension of
200 samples of length.

Table 2. Detailed parameters of the proposed single-scale CNN network.

Layer Name Input Kernel
Size

Number of
Kernels

Feature
Map

Number of
Parameters

Conv1_1 200× 1× 6 9× 1 32 192× 1× 32 1760
MaxPool1 192× 1× 32 2× 1 / 96× 1× 32
Conv2_1 96× 1× 32 5× 1 64 92× 1× 64 10,304
Conv2_2 92× 1× 64 5× 1 128 46× 1× 128 41,088

MaxPool2 46× 1× 128 2× 1 / 23× 1× 128
Conv3_1 23× 1× 128 3× 1 128 21× 1× 128 49,280

The experiments and the results are discussed on the following points:

1. Experiments on the effect of using the proposed weight update sub-network (Ws) into
various CNN architectures.

2. Performance of the proposed methods in handling gait data collected under different
covariate conditions.

3. Evaluation of the proposed method for identification and authentication.

4.3. Experiments on the Effect of Using the Proposed Weight Updated Sub-Networks (Ws) into
Various CNN Architectures

The proposed Ws layer is integrated into various CNN backbones such as AlexNet [56],
VGG14 [57], VGG16 [57], and ResNet50 [58], and we compare their performance for
handling sensor-based gait signals in multi-scale analysis. To do so, all the fully connected
layers are removed from each of the CNN backbones and replaced with Ws layers followed
by a fully connected softmax layer. For example, in AlexNet, the layers after conv5 have
been replaced with Ws. In both the architecture of VGG14 and VGG16, its single and
triple FCN layers are replaced with Ws, respectively. In ResNet, the proposed layer is
connected after the max-pooling layer to perform the task. From Table 3, it is observed
that by employing Ws, the identification rate improves to 1–3% in each model. This is
because each sub-network guides the extraction of more correlated features by focusing
on the semantically relevant class-specific samples and ignoring the uncorrelated patterns.
The performance of the proposed model is the best among all other models irrespective of
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different covariate conditions. Regarding the architectures, we find that ResNet50 performs
comparably to the proposed model. Meanwhile, both VGG-14 and VGG-16 have similar
performance in the identification rate, but VGG-16 shows a quite significant improvement
in identification rate of 0.5% to 1.5% on the Gait-mob-ACC dataset. Furthermore, we
observe that the performance of each model slowly declines as the size of sub-network s
varies from 4 to 5. The best performance is recorded at the ensemble of 4 sub-networks.

Table 3. Rank-1 and Rank-5 identification rates, and verification rate (VR) of different gait datasets
are reported by integrating 2/3/4/5 numbers of the Ws sub-network layers into various CNN
architectures at the presence of different time scales (τ). Bold font indicates the best performance.

sub-Networks (s)

whuGait IDnet OU-ISIR Gait-Mob-ACC

Rank1 Rank-5 VR Rank-1 Rank-5 VR Rank-1 Rank-5 VR Rank-1 Rank-5 VR
Id Id (FAR = 10−3) Id Id (FAR = 10−3) Id Id (FAR = 10−3) Id Id (FAR = 10−3)

2 (τ = 4, 5) AlexNet 78.69 82.94 0.79 81.98 83.99 0.79 55.89 61.82 0.43 75.88 80.75 0.74
VGG-14 83.66 86.43 0.83 86.24 90.91 0.86 57.76 61.83 0.44 75.94 79.04 0.74
VGG-16 84.56 87.06 0.83 86.31 91.65 0.87 57.88 62.95 0.44 76.32 79.99 0.75

ResNet-50 93.06 95.83 0.88 92.95 94.09 0.91 67.47 70.54 0.49 86.21 89.77 0.91

CWs-AlexNet 80.98 85.91 0.82 84.24 93.46 0.81 56.91 61.98 0.43 78.88 83.18 0.77
CWs-VGG14 85.87 90.05 0.85 88.06 93.32 0.88 60.78 64.21 0.46 83.19 88.06 0.79
CWs-VGG16 86.33 91.87 0.86 89.87 94.54 0.89 61.43 65.32 0.47 84.67 88.42 0.8

CWs-ResNet50 95.04 97.76 0.91 96.11 97.97 0.93 69.53 73.89 0.51 89.55 93.67 0.94
proposed 95.32 98.08 0.92 96.34 98.56 0.93 70.34 75.85 0.52 91.32 94.43 0.94

3 (τ = 3, 4, 5) AlexNet 89.01 92.64 0.81 88.87 92.57 0.84 59.56 61.84 0.45 80.01 83.65 0.87
VGG14 91.32 94.54 0.82 92.01 95.36 0.87 61.19 65.92 0.47 83.88 87.73 0.88
VGG16 91.78 95.81 0.83 92.42 95.75 0.88 61.76 64.20 0.46 84.88 88.78 0.89

ResNet50 93.54 97.47 0.88 96.24 97.96 0.94 68.54 72.86 0.51 89.65 93.64 0.92

CWs-AlexNet 90.54 93.04 0.83 90.76 94.35 0.85 61.82 65.47 0.47 83.71 85.45 0.90
CWs-VGG14 93.12 96.13 0.89 94.02 97.61 0.89 64.89 68.78 0.48 87.21 91.65 0.91
CWs-VGG16 93.03 96.43 0.89 94.24 97.86 0.90 65.56 69.35 0.49 88.45 93.67 0.93

CWs-ResNet50 96.32 98.53 0.93 98.24 100 0.96 72.86 76.59 0.53 94.01 98.15 0.96
Proposed 97.36 99.78 0.94 99.96 100 0.96 73.38 77.51 0.54 94.05 98.64 0.96

4 (τ = 2, 3, 4, 5) AlexNet 87.43 92.56 0.83 86.21 90.64 0.83 53.54 58.43 0.40 72.88 77.67 0.86
VGG14 87.43 91.01 0.84 88.12 92.89 0.86 60.19 64.84 0.46 80.32 84.43 0.88
VGG16 88.34 92.43 0.84 88.51 93.30 0.86 60.48 65.48 0.46 82.98 85.13 0.89

ResNet50 91.89 95.94 0.88 90.89 94.14 0.89 64.97 69.99 0.50 86.16 90.98 0.92

CWs-AlexNet 90.34 95.89 0.86 88.13 93.03 0.85 55.76 60.20 0.41 76.71 80.51 0.87
CWs-VGG14 91.03 95.96 0.86 90.07 95.46 0.87 64.98 68.78 0.48 84.23 88.89 0.92
CWs-VGG16 91.89 96.65 0.87 90.45 94.55 0.88 65.16 69.98 0.49 86.89 91.78 0.94

CWs-ResNet50 94.12 98.27 0.9 94.39 97.06 0.92 69.97 73.32 0.52 91.13 91.98 0.95
Proposed 97.01 99.75 0.94 99.93 100 0.96 73.56 78.84 0.55 94.88 99.14 0.97

5 (τ = 1, 2, 3, 4, 5) AlexNet 79.45 83.65 0.76 79.63 84.32 0.82 52.17 56.99 0.41 77.44 80.21 0.81
VGG14 81.69 84.32 0.78 86.33 90.56 0.82 53.11 57.42 0.4 79.64 82.43 0.83
VGG16 81.94 84.87 0.79 87.44 91.21 0.83 54.98 57.96 0.4 81.01 85.78 0.85

ResNet50 90.15 94.47 0.89 92.31 97.09 0.9 62.33 69.08 0.50 88.56 92.11 0.90

CWs-AlexNet 83.17 85.54 0.79 82.54 87.54 0.83 54.12 58.73 0.42 80.32 84.04 0.82
CWs-VGG14 89.12 91.35 0.85 89.32 93.76 0.87 61.41 64.56 0.45 84.36 87.55 0.89
CWs-VGG16 89.54 92.98 0.85 91.07 93.86 0.88 61.59 65.32 0.46 86.14 90.76 0.91

CWs-ResNet50 93.32 97.89 0.91 95.89 97.32 0.91 65.76 71.34 0.50 90.12 94.32 0.93
Proposed 96.38 98.64 0.93 98.76 99.32 0.94 72.16 76.18 0.53 93.89 98.56 0.96

4.4. Performance Evaluation of the Proposed Network under Different Covariate Conditions

The paper analyzes the performance of the proposed model on the most challenging
dataset, i.e., Gait-mob-ACC [22], which contains possible co-variate factors ties in our
daily life.

To evaluate the proposed model on the above covariate conditions, the Gait-mob-ACC
dataset is divided into five sub-datasets and named as Gait-normal, Gait-fast, Gait-mixed,
Gait-fast-Covar, and Gait-normal-Covar, each having an equal number of subjects. Some
experiments have been conducted with varying batch sizes, steps, and training samples to
obtain the highest performance of the proposed model. The comparative results are shown
in Figure 4a–c. It is observed from Figure 4a that the model obtains the best performance
on different covariates by varying the batch size B. Increasing B from 16 to 32, the accuracy
gradually improves from 94% to 94.6% in the normal walk, it improves around 0.45%
more in both fast and mixed walks, and it improves 0.36% more in covariate conditions.
However, when B reached more than 64, the accuracy is degraded to more than 0.07%.
This is because after a certain increase of batch size, the overlapping may take the place of
two gait cycles over two different persons, which shows erroneous results.
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Another important setting for improving the performance is considering the number
of walking cycles of a given model. The accuracy will increase with increasing the number
of steps. It is shown from Figure 4 that at normal walking speed, the accuracy increased
at a rate of 0.01–0.05%, whereas for fast walking, the rate of accuracy increase is about
0.1–0.3%. So, a higher step always gives better performance; however, higher steps for a
person also entail a longer acquisition time, which we would rather avoid. Therefore, we
restrict the number of steps Ns = 2 in all the experiments, as it provides a good trade-off
between accuracy and complexity across evaluations.

From Figure 4c, it is observed that the model obtains good recognition accuracy in all
five cases, e.g., over 0.95 in a normal gait speed, 0.92 during fast walking, and 0.90 during
mixed walking using 30% of training. Moreover, the model shows almost equal accuracy
under normal and fast pace.
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Figure 4. Performance evaluation of the proposed network in terms of accuracy on the five different
types of gait sequences, with the influence of varying (a) batch size B (b) number of steps Ns per gait
cycle, (c) amount of training data.

4.5. Identification and Authentication of Gait Based Bio-Metric System

The whole dataset is divided into two sub-datasets: a training and a test set. Both the
training and the testing sets are made disjoint from each other. The experiment shows its
performance in terms of identification and verification process. In the identification process,
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a identification rate (IR) has been used for rank-based classification. For the verification
process, receiver operating characteristics (ROC) curves are obtained by plotting pairs of
verification rates and false acceptance rates at various threshold values.

4.5.1. Experimental Results on Identification

All the datasets for gait identification are processed through a common experimental set
up. Here, each dataset is split into a training set considered as a gallery set, and the remaining
is used for testing as the probe set. The distance scores between the whole gallery set are
compared to each other to obtain the smallest score as IR. Table 4 demonstrates the Rank1 IR
as compared to the other state-of-the-art methods on different benchmark datasets.

Table 4. Comparison of state-of-the-art methods on different benchmark datasets in terms of Rank-1
identification rate.

Methods
whuGait
Dataset1

(118 Subjects)

whuGait
Dataset2

(20 Subjects)

IDNet
Dataset

(50 Subjects)

OU-ISIR
Dataset

(745 Subjects)

OU-ISIR
Dataset2

(408 Subjects)

Gait-Mob-ACC
Dataset3

(50 Subjects)

IdNet [23] 92.91% 96.78% 99.58% 44.29% 46.20% 74.75%
CNN [34] 92.89% 97.02% 99.71% 40.60% 47.14% 90.2%
LSTM [30] 91.88% 96.98% 99.46% 66.36% 65.32% 81.65%

DeepConv [35] 92.25% 96.80% 99.24% 37.33% 41.32% 86.23%
CNN+LSTM [24] 92.51% 96.82% 99.61% 34.28% 53.96% 89.22%

CNN f ix+LSTM [24] 92.94% 97.04% 99.64% - - -
CNN+LSTM f ix [24] 93.52% 97.33% 99.75% - - -

WMsCNN-Local 93.36% 98.28% 99.81% 65.74% 72.13% 90.49%
WMsCNN-Local-Global 95.75% 98.98% 99.96% 73.56% 76.42% 94.71%

For the whuGait dataset, Dataset #2 achieves better performance as compared to
Dataset #1 with an IR of more than 96%. This is because there are more samples per subject
in Dataset #2 than in Dataset #1. It is also observed that both standalone networks CNN and
LSTM perform approximately 0.3% better than parallely connected CNN and LSTM. One
possible reason is that the parallel network may face over-fitting problems. Furthermore,
it is noticeable that the performance of the CNN network is better than that of the LSTM
network. CNN f ix + LSTM and LSTM f ix +CNN are both complementary networks of each
other. Both are designed with parallel connection by fixing the parameter of one network
and updating the other network. These two networks achieve an IR of approximately 93%
and 92% on Dataset #1 and Dataset #2, respectively. The proposed network outperforms the
other two networks such as IdNet and DeepconvLSTM with IR values of more than 2.34%
and 2.05%, respectively. This is because the WMsCNN-Local model is a single-scale CNN
architecture attached with a CWs sub-network that gives a competitive performance for
its discriminative local feature analysis, whereas the multi-scale approach is incorporated
with the proposed network modeled as (WMsCNN-Local-Global), which gives the best
performance of around 99.96%.

In the IDNet dataset, all the collected gait samples are free style walking. Therefore,
the IR values of all networks are quite high. The proposed approach achieves 99.96% IR.

In the OU-ISIR dataset, the LSTM network achieves better performance than the
CNN + LSTM network in the presence of variation of gait sequences. For both Dataset #1
and #2, the proposed network obtains more than 73% IR. The result signifies that the proposed
network can effectively handle variations of gait sequences better than other approaches.

In the Gait-mob-ACC database, six different covariates are incorporated in Dataset #3.
It is the most challenging dataset, having speed variations from normal walk to fast walk.
The last column of the table gives a detailed comparison. Deepconv competes with the
proposed approach with a performance of less than 2%, but it achieves better results
than other approaches. Our multi-scale approach can effectively handle complex features
generated from covarite conditions such as both hands in the pocket, carrying loads, etc.



Sensors 2022, 22, 3968 12 of 15

4.5.2. Experiments on Authentication

The authentication task is performed by transforming the multi-class identification
problem into a binary classification problem, which is based on the hypothesis of either
positive acceptance or false acceptance. The authentication performance is evaluated by
the metric of the average receiver operating characteristic (ROC) curve. It is created by
plotting the true acceptance rate (TAR) against the false acceptance rate (FAR) at varying
threshold settings. In the ROC curve, the value of FAR is set as 0.001% as the standard FAR
for bio-metric authentication. The TAR and FAR are defined as

TAR =
True Positive

True Positive + False Positive
(15)

FAR =
False Positive

False Positive + True Negative
(16)

To evaluate the system performance, the model is incorporated into different types of
state-of-the-art methods. The experiments are conducted to examine the relative behavior
of the false accept rate and the verification rate under different covariate conditions using
(15) and (16). The ROC curves for the proposed method and the other state-of-the-art
methods are plotted in Figure 5. The model achieves a higher verification rate at very low
FARs. As we find from Figure 5b, the proposed network achieves limited improvement
on the OU-ISIR dataset, while it has a notable performance on the whuGait dataset, IdNet
datasets, and Gait-mob-ACC datasets as in Figure 5a,b,f respectively. In Figure 5d, the
proposed network produces a very competing performance with LSTM, but later, it achieves
equal performance with it when FAR is around 0.001. In response to the real environment,
the Gait-mob-ACC dataset is considered, having multiple covariates along with speed
variations from normal to fast. The performance of the proposed network is superior to
others. After that, CNN finds it better than the other three networks. It can be observed from
most figures that the multi-scale network uniformly outperforms overall networks, which
may simply indicate that the multi-scale features are more discriminative by describing the
detailed gait subdynamics. According to the above analysis of experimental results, we
conclude that the combination of discriminate local features and global features is more
suitable for the gait analysis on covariate conditions.
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Figure 5. A comparative ROC curves of state-of-the-art deep learning networks: IDnet, CNN, LSTM,
CNN+LSTM, and the proposed models. The performance of four benchmarks, each having different
sub-datasets as referred in Table 1, is shown in (a–f). (a,b) refer to whuGait Dataset #1 and Dataset
#2, respectively, (c) refers to the IdNet dataset, (d,e) refer to sub-dataset #1 and sub-dataset #2 of the
OU-ISIR dataset, respectively, and (f) refers to the Gait-mob-ACC dataset.



Sensors 2022, 22, 3968 13 of 15

5. Discussion

A major contribution of this work is the joint use of the discriminative local features
and global features to handle covariate factors and overall gait sequence variations, respec-
tively. From Table 4, it is observed that WMsCNN-Local achieves good recognition accuracy
using the benefits of Ws. However, combining all the local to global features further im-
proves the recognition accuracy both in the identification and authentication module. It is
reasonable that the global features only focus on overall gait cycle variations and ignore the
multiple pose variations due to the effect of several covariates. Similarly, only local features
ignore the overall variations. From the experimental results of Figure 5a–c, it is observed
that the performance of the CNN network is quite appreciable because the features of
CNN have more discriminable properties than the LSTM. Therefore, the proposed model
(WMsCNN-Local-Global) outperforms as it captures CNN data at different time scales and
combines them for a better representation of the feature sets. In addition, it is observed
that direct features of LSTM are not appropriate for discriminating complex features such
as gait, resulting in lowering the accuracy. Moreover, Table 4 shows the performance of
the single-scale proposed model (WMsCNN-Local) and the multi-scale proposed model
(WMsCNN-Local-Global), which gives the inference that the ensemble of sub-networks
improves the performance of a single network. However, Table 4 reveals that more than
4 sub-networks degrade the performance of the overall network. Furthermore, in the
evaluation of results, it is noticeable that some inconsistencies are found between the perfor-
mances of the identification and authentication model. The performance of authentication
is a little bit lower than the performance of identification. One possible reason for this is
over-fitting, since only one test is used in the authentication process.

6. Conclusions

In this paper, an improved deep learning network is designed for gait recognition
using smartphones. The novelty of the proposed approach lies in the feature extraction
technique, which is based on a multi-scale signal approach and it is incorporated with a
weight update feature sub-network to exploit significant local features. These sub-networks
of each CNN architecture assign more weights to become discriminative feature regions
for better classification. The significant of the local features from each scale are combined
using a fusion network to achieve global-based features. The experiment performs on
four benchmark datasets with different covariate conditions. The acquired results of the
proposed framework reach an accuracy of 99.96% and 73.56% in the normal gait and most
challenging gait database, respectively. The overall performance of the proposed model is
superior compared to other state-of-the-art networks.
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