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Abstract

The human body is a complex organism, the gross mechanical properties of which are

enabled by an interconnected musculoskeletal network controlled by the nervous system.

The nature of musculoskeletal interconnection facilitates stability, voluntary movement, and

robustness to injury. However, a fundamental understanding of this network and its control

by neural systems has remained elusive. Here we address this gap in knowledge by utilizing

medical databases and mathematical modeling to reveal the organizational structure, pre-

dicted function, and neural control of the musculoskeletal system. We constructed a highly

simplified whole-body musculoskeletal network in which single muscles connect to multiple

bones via both origin and insertion points. We demonstrated that, using this simplified

model, a muscle’s role in this network could offer a theoretical prediction of the susceptibility

of surrounding components to secondary injury. Finally, we illustrated that sets of muscles

cluster into network communities that mimic the organization of control modules in primary

motor cortex. This novel formalism for describing interactions between the muscular and

skeletal systems serves as a foundation to develop and test therapeutic responses to injury,

inspiring future advances in clinical treatments.

Author summary

While network science is frequently used to characterize networks from genomics, prote-

omics, and connectomics, its utility in understanding biomechanics, orthopedics, and

physical therapy has remained largely unexplored. Indeed, current clinical practice and

knowledge regarding the musculoskeletal system largely focuses on single areas of the

body, single muscles, or single injuries and therefore remains agnostic to mesoscale or

global features of the body’s architecture that may have critical implications for injury and
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recovery. We addressed this gap by representing the musculoskeletal system as a graph or

network, in which we considered bones and the muscular connections between them. By

modeling muscles as springs and bones as point masses, we developed a perturbative

approach to interrogate the function of this network. Employing this model, we calculated

the network level effects of perturbing individual muscles. Using this formalism, we are

able to draw new parallels between this system and the primary motor cortex that controls

it, and illustrate clinical connections between network structure and muscular injury.

Introduction

The interconnected nature of the human body has long been the subject of both scientific

inquiry and superstitious beliefs. From the ancient humors linking heart, liver, spleen, and

brain with courage, calm, and hope [1] to the modern appreciation of the gut–brain connec-

tion [2], humans tend to search for interconnections between disparate parts of the body to

explain complex phenomena. Yet, a tension remains between this basic conceptualization of

the human body and the reductionism implicit in modern science [3]. An understanding of

the entire system is often relegated to a futuristic world, while individual experiments fine-

tune our understanding of minute component parts.

The human musculoskeletal system is no exception to this dichotomy. While medical prac-

tice focuses in hand, foot, or ankle, clinicians know that injuries to a single part of the muscu-

loskeletal system necessarily impinge on the workings of other (even remotely distant) parts

[4]. An injury to an ankle can alter gait patterns, leading to chronic back pain; an injury to a

shoulder can alter posture, causing radiating neck discomfort. Understanding the fundamental

relationships between focal structure and potential distant interactions requires a holistic

approach.

Here, we detail such an approach. Our conceptual framework is motivated by recent theo-

retical advances in network science [5], which is an emerging discipline built from an ordered

amalgamation of mathematics (specifically, graph theory [6]) and physics (specifically, statisti-

cal mechanics [7]), computer science, statistics [8], and systems engineering. The approach

simplifies complex systems by delineating their components and mapping the pattern of inter-

actions between those components [9]. This representation appears particularly appropriate

for the study of the human musculoskeletal system, which is composed of bones and the mus-

cles that link them. In this study, we used this approach to assess the structure, function, and

control of the musculoskeletal system.

The use of network science to understand the musculoskeletal system has increased in

recent years [10]. However, the framework has largely been employed to investigate the prop-

erties of local muscle or bone networks. For example, the local structure of the skull has been

examined to investigate how bones can be categorized [11]. Additionally, studies of the topol-

ogy of the musculoskeletal spine network have been conducted to evaluate stresses and strains

across bones [12]. A few studies do exist that address the entire musculoskeletal system,

although they do not use the mathematical tools that we employed here [13,14]. The current

study differs from previous work in its assessment of the entire musculoskeletal system com-

bined with the mathematical tools of network science.

Within this broader context, we focused on the challenge of rehabilitation following injury

to either skeletal muscle or cerebral cortex. Direct injury to a muscle or associated tendon or

ligament affects other muscles via compensatory mechanisms of the body [15]. Similarly, loss

of use of a particular muscle or muscle group from direct cortical insult can result in
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compensatory use of alternate muscles [16,17]. How the interconnections of the musculoskele-

tal system are structured and how they function directly constrains how injury to a certain

muscle will affect the musculoskeletal system as a whole. Understanding these interconnec-

tions could provide much needed insight into which muscles are most at risk for secondary

injury due to compensatory changes resulting from focal injury, thereby informing more com-

prehensive approaches to rehabilitation. Additionally, an understanding of how the cortex

maps onto not only single muscles but also groups of topologically close muscles could inform

future empirical studies of the relationships between focal injuries (including stroke) to motor

cortex and risk for secondary injury.

Materials and methods

Network construction

Using the Hosford Muscle tables [18], we constructed a musculoskeletal hypergraph by rep-

resenting 173 bones (several of these are actually ligaments and tendons) as nodes and 270

muscles as hyperedges linking those nodes (muscle origin and insertion points are listed in

S9 Table). This hypergraph can also be interpreted as a bipartite network, with muscles as

one group and bones as the second group (Fig 1a). The 173 × 270 incidence matrix C of

the musculoskeletal network is thus defined as Cij = 1 if vi 2 ej and 0 otherwise, where

V = {v1, � � �, v173} is the set of nodes (bones) and E = {e1, � � �, e270} is the set of hyperedges

(muscles). This hypergraph representation of the body eliminates much of the complexity

from the musculoskeletal system, encoding only which muscles attach to which bones. All

analysis was applied to only one half (left or right) of the body, because each cerebral hemi-

sphere controls only the contralateral side of the body. Therefore, we further simplified our

model by assuming left–right symmetry; in any figures in which both halves of the body are

shown, the second half is present purely for visual intuition.

The bone-centric graph A and muscle-centric graph B (Fig 1b) are simply the one-mode

projections of C. The projection onto bones is A = CTC, and the projection onto muscles is

B = CCT. Then, the diagonal elements were set equal to zero, leaving us with a weighted adja-

cency matrix [5]. We obtained estimated anatomical locations for the center of mass of each

muscle (and bone) by examining anatomy texts [19] and estimating x-, y-, and z-coordinates

for mapping to a graphical representation of a human body (Fig 1c).

Calculation of impact score

To measure the potential functional role of each muscle in the network, we used a classical per-

turbative approach. To maximize simplicity and the potential for fundamental intuitions, we

modeled the musculoskeletal system as a system of point masses (bones) and springs (mus-

cles). We stretched a muscle-spring and observed the impact of this perturbation on the loca-

tions of all other muscles. Physically, to perturb a muscle, we displaced all bones connected to

that muscle by the same amount and in the same direction, stretching the muscle, and we held

these bones fixed at their new location. This process is also mathematically equivalent to sim-

ply altering the spring constant attributed to the particular muscle-spring. The system was

then allowed to reach equilibrium. We fixed bones at the midline and around the periphery in

space to prevent the system from drifting. To quantify the impact of perturbing this single

muscle-spring, we defined the movement of the ith node as follows:

mi
d2~r i
dt2
¼
X

j6¼i2V

½SijAij
~l ijðxij � k~l ijkÞ� � b

d~ri
dt
;
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Fig 1. Schematic of data representations and computational methods. (a) The musculoskeletal network was first

converted to a bipartite matrix, where 1/0 indicates a present/absent muscle±bone connection. (b) Communities of

topologically related muscles are identified by (1) transforming the hypergraph to a muscle±muscle graph, in which

each entry encodes the number of common bones of each muscle pair, and (2) subsequently, muscles were broken into

communities, in which constituent members connected more densely to other members within their community than

to members in other communities. (c) To facilitate perturbations, the musculoskeletal network was physically

embedded, such that bones (nodes) are initially placed at their correct anatomical positions. (d) To understand the

impact of single muscles on the interconnected system, all nodes linked by a selected hyperedge were perturbed in a

fourth spatial dimension.

https://doi.org/10.1371/journal.pbio.2002811.g001
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where lij is the displacement between nodes i and j, xij is the unperturbed distance between

nodes i and j, m is the mass of the node (which we have set equal to unity for all nodes in the

network), β = 1 is a damping coefficient, ri is the position of the ith node, A is the weighted

adjacency matrix of the bone-centric graph, and Sij represents the sum of all spring strengths

of the muscles that nodes i and j are both connected to. To normalize muscles’ restoring force

on nodes, we let the spring strength of a muscle q/ 1/(k − 1). Here, we have set all bones to

have equal weight and all muscles to have equal spring constant, which is a simplification of

the actual physical anatomy. For a discussion of how to account for additional physical proper-

ties, such as bone weight and muscle strength, and supplementary results using these proper-

ties, see S5 Text. Moreover, sample trajectories that provide an intuition for the dynamics of

our model have been included in the Supporting information (S8 Fig).

To measure the potential functional role of each muscle in the network, we stretched a mus-

cle hyperedge and measured the impact of the perturbation on the rest of the network. Rather

than perturbing the network in some arbitrary three-dimensional direction, we extended the

scope of our simulation into a fourth dimension. When perturbing a muscle, we displaced all

of the nodes (bones) contained in that muscle hyperedge by a constant vector in the fourth

dimension and held them with this displacement (Fig 1d). The perturbation then rippled

through the network of springs in response. We sequentially stretched each muscle hyperedge

and defined the impact score of this perturbation to be the total distance moved by all nodes in

the musculoskeletal network from their original positions. The displacement value is the

summed displacement over all time points, from perturbation onset to an appropriate cutoff

for equilibration time. Here, we solved for the equilibrium of the system by allowing dynamics

to equalize over a sufficient period of time. Note that the equilibrium can also be solved for

using a steady-state, nondynamic approach; we chose to use dynamics in this instance to more

broadly support future applications.

Impact score deviation

For each muscle, we calculated an index that quantifies how much the impact score of that

muscle deviates from expected, given its hyperedge degree; we call this index “impact devia-

tion”. We begin by constructing a null model that dictates the expected impact under a set of

statistical assumptions. In the current study, we used several different null models with differ-

ing sets of assumptions, which we detail in later sections. Impact deviation was computed as

follows: we calculated the mean, standard deviation, and 95% confidence intervals (CIs) for

each of the null hypergraph degree categories from an ensemble of 100 null hypergraphs. The

distance from a given muscle to the mean ± 95% CI (whichever is closest) was calculated and

divided by the standard deviation of that null hypergraph degree distribution. In this way, we

calculated deviation from the expected value, in standard deviations (similar to a z-score).

Table 1 contains the muscles that lie outside the 95% CI of deviation ratios, relative to their

hyperedge degree. Muscles can be naturally grouped according to the homunculus, a coarse

one-dimensional representation of how the control areas of muscles group onto the motor

cortex. For a given homunculus group, we calculated the deviation ratio as the number of mus-

cles with positive deviation divided by the total number of muscles in the group (Table 2).

Community detection

To understand both the function and control of the musculoskeletal system, we were inter-

ested in defining groups of densely interconnected muscles using a data-driven approach. We

performed a type of community detection by maximizing a modularity quality function

Structure, function, and control of the human musculoskeletal network
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introduced by Newman [20]:

Q ¼
X

ij

Bij � gPijdðgi; gjÞ;

where Pij is the expected weight of an edge in the Newman-Girvan null model, node i is

assigned to community gi, node j is assigned to community gj, and δ is the Kronecker delta

function. By maximizing Q, we obtained a partition of nodes (muscles) into communities such

that nodes within the same community were more densely interconnected than expected in a

network null model (Fig 1b, right).

Here, we also used a resolution parameter to tune the size and number of communities

detected such that the number of communities detected matched the number of groups within

the homunculus, for straightforward comparison. Specifically, we used a resolution parameter

of γ = 4.3 to divide the muscle-centric matrix into 22 communities (see S8 Table). We began

by redefining the original muscle-centric matrix B following Jutla et al. [21]; we let k = Si Bi,j,

Table 1. Muscles with greater and lesser impact than expected in a hypergraph null model. The muscles on the left side have less impact than expected, given their

hyperedge degree: their impacts are more than 1.96 standard deviations below the mean, indicating that they lie outside the 95% confidence interval of the distribution.

The muscles on the right side have more impact than expected given their hyperedge degree: their impacts are more than 1.96 standard deviations above the mean, ordered

from most to least extreme. This table shows the muscles that had the greatest positive and greatest negative difference in impact, relative to degree-matched controls.

Rank order Less impact than expected More impact than expected

Number Hyperedge Muscle name Hyperedge Muscle name

1 137 Orbicularis oculi 20 Brachialis

2 145 Buccinator 22 Anconeus

3 148 Medial pterygoid 18 Coracobrachialis

4 12 Teres minor

5 11 Infraspinatus

6 14 Subscapularis

7 13 Teres major

8 10 Supraspinatus

8 16 Pectoralis major

9 32 Extensor carpi radialus longus

11 161 Piriformis

10 31 Brachioradialis

https://doi.org/10.1371/journal.pbio.2002811.t001

Table 2. Homunculus categories whose member muscles either all have more impact than expected or all have less impact than expected, compared to null hyper-

graphs. Categories on the left are composed entirely of muscles with less impact than expected, compared to degree-matched controls. Categories on the right are com-

posed entirely of muscles with more impact than expected, compared to degree-matched controls.

Rank order Less impact than expected More impact than expected

Number Hyperedge Muscle name Hyperedge Muscle name

1 16 Brow 3 Knee

2 17 Eye muscles 4 Hip

3 18 Face muscles 6 Shoulder

4 19 Lip muscles 7 Elbow

5 8 Wrist

6 9 Hand

7 10 Little finger

8 21 Tongue

https://doi.org/10.1371/journal.pbio.2002811.t002
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and then we applied a locally greedy, Louvain-like modularity maximization algorithm to the

adjusted matrix B0 ¼ B � g kTkP
j
kj

[22].

The above method of community detection is nondeterministic [23]. That is, the same solu-

tion will not be reached on each individual run of the algorithm. Therefore, one must ensure

that the community assignments used are a good representation of the network and not just a

local maximum of the landscape. We therefore maximized the modularity quality function 100

times, obtaining 100 different community assignments. From this set of solutions, we identified

a robust representative consensus community structure [24]. S1 Fig illustrates how the detected

communities change as a function of the resolution parameter for the muscle-centric network.

Network null models

We use rewired graphs as a null model against which to compare the empirical data. Specifi-

cally, we constructed a null hypergraph by rewiring muscles that are assigned the same cate-

gory (Table 3, defined below) uniformly at random. In this way, muscles of the little finger will

only be rewired within the little finger, and similarly for muscles in other categories. Impor-

tantly, this method also preserves the degree of each muscle as well as the degree distribution

of the entire hypergraph.

Categories were assigned to muscles such that the overall topology of the musculoskeletal

system was grossly preserved, and changes were spatially localized. Specifically, we partitioned

the muscles into communities of roughly size 3, such that each muscle was grouped with the

two muscles that are most topologically related. We then permuted only within these small

Table 3. Homunculus categories and their associated identification numbers.

Category ID Category name

1 Toes

2 Ankle

3 Knee

4 Hip

5 Trunk

6 Shoulder

7 Elbow

8 Wrist

9 Hand

10 Little finger

11 Ring finger

12 Middle finger

13 Index finger

14 Thumb

15 Neck

16 Brow

17 Eyelid and eyeball

18 Face

19 Lips

20 Jaw

21 Tongue

22 Swallowing

https://doi.org/10.1371/journal.pbio.2002811.t003
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groups. This is a data-driven way of altering connections only within very small groups of

related muscles.

To partition muscles into communities, we took a greedy approach to modularity maximi-

zation, similar to prior work [25]. Specifically, we maximized the modularity of the system,

such that the change in modularity to move node n from community c0 to community c is

given by

dQnc ¼ Hnc � Hnc0 þ B0nn � Vcc0

Here, H is the node-to-module degree matrix, B0 is the adjusted muscle-centric matrix, and V

is a penalty term to ensure communities will be small and of roughly equal size. Specifically,

Hnc ¼
XN

i¼1

B0nmdcjm
;

where N is the total number of nodes in the system, cj is an indicator variable encoding the

community assignment of node j, and δ is the Kronecker delta function. Furthermore,

Vcc0 ¼
XN

j¼1

dcjc0
�

N
K

 !2

;

where K indicates the total number of communities. This term penalizes determining a set of

communities that are highly unequal in size.

Multidimensional scaling

To conduct multidimensional scaling (MDS) on the muscle-centric network, the weighted

muscle-centric adjacency matrix was simplified to a binary matrix (all nonzero elements set

equal to 1). From this data, a distance matrix D was constructed, the elements Dij of which are

equal to the length of the shortest path between muscles i and j, or are equal to 0 if no path

exists. MDS is then applied to this distance matrix to yield its first principal component using

the MATLAB function, cmdscale.m. To construct the binary matrix, a threshold of 0 was set,

and all values above that threshold were converted to 1. However, to make analysis robust to

this choice, we explored a range of threshold values to verify that results are invariant with

respect to threshold. The upper bound of the threshold range was established by determining

the maximal value that would maintain a fully connected matrix; otherwise, the distance

matrix D would have entries of infinite weight. In our case, this value was 0.0556 × max(B0).

Within this range of thresholds (i.e., for all thresholds resulting in fully connected matrices),

results were qualitatively consistent. As a supplementary analysis, we also employed a method

of constructing a distance matrix from a weighted adjacency matrix in order to preclude

thresholding (S5 Fig), and we again observed qualitatively consistent results.

Muscle injury data

We calculated the correlation between impact score and muscle injury recovery times. Injury

recovery times were collected from the sports medicine literature and included injury to the

triceps brachii and shoulder muscles [26]; thumb muscles [27]; latissimus dorsi and teres

major [28]; biceps brachii [29]; ankle muscles [30]; neck muscles [31]; jaw muscles [32]; hip

muscles [33]; eye/eyelid muscles [34]; and muscles of the knee [35], elbow [36], and wrist/

hand [37]. The recovery times and associated citations, listed in Table 4, are average recovery

times gathered from population studies. If the literature reported a range of different severity

levels and associated recovery times for a particular injury, the least severe level was selected. If

Structure, function, and control of the human musculoskeletal network
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the injury was reported for a group of muscles rather than a single muscle, the impact score

deviation for that group was averaged together. Data points for muscle groups were weighted

according to the number of muscles in that group for the purpose of the linear fit. The fit was

produced using the MATLAB function, fitlm.m, with option “Robust” set to “on.” Robust

regression is a method of regression designed to be less sensitive to outliers within the data, in

which outliers are down-weighted in the regression model.

Somatotopic representation area data

We calculated the correlation between impact score deviation and the area of somatotopic

representation devoted to a particular muscle group. The areas of representation were col-

lected from two separate sources [38,39]. The volumes and associated citations are listed in

Table 5. In both studies, subjects were asked to articulate a joint repetitively, and the volumes

of the areas of primary motor cortex that underwent the greatest change in BOLD signal were

recorded. We then calculated the correlation coefficient between cortical volumes and the

mean impact of all muscles associated with that joint, as determined by the Hosford Muscle

tables. We found a significant linear correlation between the two measures by using the

MATLAB function, fitlm.m, with option “Robust” set to “on.”

Table 5. Primary motor cortex somatotopic representation volume sizes and sources.

Muscle Volume (mm3) Reference

Thumb 1,390 Indovina (2000)

Index 1,000 Indovina (2000)

Middle 650 Indovina (2000)

Hand 5,566 Alkadhi (2002)

Fingers 2,972 Alkadhi (2002)

Wrist 4,409 Alkadhi (2002)

Elbow 2,267 Alkadhi (2002)

https://doi.org/10.1371/journal.pbio.2002811.t005

Table 4. Muscle injury recovery data.

Muscle Weeks of recovery Source

Triceps brachii 4 Bateman (1962)

Thumb muscles 4 Rettig (2004)

Latissimus dorsi 12 Nagda (2011)

Biceps brachii 12 Zafra (2009)

Ankle 2 McCollum (2012)

Neck 0.14 Torg (1982)

Jaw 0 Beachy (2004)

Shoulder 2 Bateman (1962)

Teres major 12 Nagda (2011)

Hip 12 Niemuth (2005)

Eye/eyelid 1.4 Leivo (2015)

Knee 8 Ekstrand (1982)

Elbow 8 Fleisig (2012)

Wrist/hand 1.4 Logan (2004)

https://doi.org/10.1371/journal.pbio.2002811.t004
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Results

Structure of the human musculoskeletal network

To examine the structural interconnections of the human musculoskeletal system, we used a

hypergraph approach. Drawing from recent advances in network science [5], we examined the

musculoskeletal system as a network in which bones (network nodes) are connected to one

another by muscles (network hyperedges). A hyperedge is an object that connects multiple

nodes; muscles link multiple bones via origin and insertion points. The degree, k, of a hyper-

edge is equal to the number of nodes it connects; thus, the degree of a muscle is the number of

bones it contacts. For instance, the trapezius is a high-degree hyperedge that links 25 bones

throughout the shoulder blade and spine; conversely, the adductor pollicis is a low-degree

hyperedge that links 7 bones in the hand (Fig 2a and 2b). A collection of hyperedges (muscles)

that share nodes (bones) is referred to as a hypergraph: a graph H = (V, E) with N nodes and

M hyperedges, where V = {v1,���, vN} is the set of nodes and E = {e1,���, eM} is the set of

hyperedges.

The representation of the human musculoskeletal system as a hypergraph facilitates a quan-

titative assessment of its structure (Fig 2c). We observed that the distribution of hyperedge

Fig 2. Hypergraph structure. (a) Left: Anatomical drawing highlighting the trapezius. Right: Transformation of the

trapezius into a hyperedge (red; degree k = 25), linking 25 nodes (bones) across the head, shoulder, and spine. (b)

Adductor pollicis muscle linking 7 bones in the hand. (c) Spatial projection of the hyperedge degree distribution onto

the human body. High-degree hyperedges are most heavily concentrated at the core. (d) The musculoskeletal network

displayed as a bipartite matrix (1 = connected, 0 otherwise). (e) The hyperedge degree distribution for the

musculoskeletal hypergraph, which is significantly different than that expected in a random hypergraph. Data available
for (e) at DOI:10.5281/zenodo.1069104.

https://doi.org/10.1371/journal.pbio.2002811.g002
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degree is heavy-tailed: most muscles link 2 bones, and a few muscles link many bones (Fig 2d

and 2e). The skew of the degree distribution differs significantly from that of random networks

(two-sample Kolmogorov-Smirnov test, KS = 0.37, p< 0.0001, see Materials and methods)

[5], indicating the presence of muscles of unexpectedly low and high degree (Fig 2e).

Function of the human musculoskeletal network

To probe the functional role of muscles within the musculoskeletal network, we employed a

simplified model of the musculoskeletal system and probed whether the model could generate

useful clinical correlates. We implemented a physical model in which bones form the core scaf-

folding of the body, while muscles fasten this structure together. Each node (bone) is repre-

sented as a mass, whose spatial location and movement are physically constrained by the

hyperedges (muscles) to which it is connected. Specifically, bones are points located at their

center of mass, derived from anatomy texts [19], and muscles are springs (damped harmonic

oscillators) connecting these points [40,41]; for a hyperedge of degree k, we created k(k − 1)/2

springs linking the k nodes. That is, for a muscle connecting k bones, we placed springs such

that each of the k muscles had a direct spring connection to each of the other k − 1 bones.

Next, we perturbed each of 270 muscles in the body and calculated their impact score on

the network (see Materials and methods and Fig 1c and 1d). As a muscle is physically dis-

placed, it causes a rippling displacement of other muscles throughout the network. The impact

score of a muscle is the mean displacement of all bones (and indirectly, muscles) resulting

from its initial displacement. We observed a significant positive correlation between muscle

degree and impact score (F(1,268) = 23.3, R2 = 0.45, p< 0.00001; Fig 3a), suggesting that

hyperedge structure dictates the functional role of muscles in the musculoskeletal network.

Muscles with a larger number of insertion and origin points have a greater impact on the mus-

culoskeletal system when perturbed than muscles with few insertion and origin points [42].

We can gain further insights into the results of these analyses by explicitly studying the relation

between impact score and statistical measures of the network’s topology. In S11 Fig, we show

that the network function as measured by the impact score was significantly correlated with

Fig 3. Probing musculoskeletal function. (a) The impact score plotted as a function of the hyperedge degree for a null

hypergraph model and the observed musculoskeletal hypergraph. (b) Impact score deviation correlates with muscle

recovery time following injury to muscles or muscle groups (F(1,12) = 37.3, R2 = 0.757, p< 0.0001). Shaded areas

indicate 95% confidence intervals, and data points are scaled according to the number of muscles included. The plot is

numbered as follows, corresponding to Table 4: triceps (1), thumb (2), latissimus dorsi (3), biceps brachii (4), ankle (5),

neck (6), jaw (7), shoulder (8), teres major (9), hip (10), eye muscles (11), knee (12), elbow (13), wrist/hand (14). Data
available at DOI:10.5281/zenodo.1069104.

https://doi.org/10.1371/journal.pbio.2002811.g003
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the average shortest path length. While the network statistics are static in nature, their func-

tional interpretation is provided by the perturbative simulations of system dynamics.

To guide interpretation, it is critical to note that the impact score, while significantly corre-

lated with muscle degree, is not perfectly predicted by it (Fig 3a). Instead, the local network

structure surrounding a muscle also plays an important role in its functional impact and ability

to recover. To better quantify the effect of this local network structure, we asked whether mus-

cles existed that had significantly higher or significantly lower impact scores than expected in a

null network. We defined a positive (negative) impact score deviation that measures the degree

to which muscles are more (less) impactful than expected in a network null model (see Materi-

als and methods). This calculation resulted in a metric that expresses the impact of a particular

muscle, relative to muscles of identical hyperedge degree in the null model. In other words,

this metric accounts for the complexity of a particular muscle (Table 1).

Is this mathematical model clinically relevant? Does the body respond differently to injuries

to muscles with higher impact score than to muscles with lower impact score? To answer this

question, we assessed the potential relationship between muscle impact and recovery time fol-

lowing injury. Specifically, we gathered data on athletic sports injuries and the time between

the initial injury and return to sport. Critically, we observed that recovery times were strongly

correlated with impact score deviations of the individual muscle or muscle group injured

(F(1,12) = 37.3, R2 = 0.757, p< 0.0001; Fig 3b), suggesting that our mathematical model offers

a useful clinical biomarker for the network’s response to damage. We note that it is important

to consider the fact that recovery might be slower in a person who is requiring maximal effort

in a performance sport, compared to an individual who is seeking only to function in day-to-

day life. In order to generalize our findings to the entire population, we therefore also exam-

ined recovery time data collected from nonathletes, and we present these complementary

results in the Supporting information (S6 Text).

Finally, to provide intuition regarding how focal injury can produce distant effects poten-

tially slowing recovery, we calculated the impact of the ankle muscles and determined which

other muscles were most impacted. That is, for each individual ankle muscle, we calculated the

impact on each of the remaining 264 non-ankle muscles and then averaged this over all ankle

muscles. Out of the 264 non-ankle muscles, the single muscle that is most impacted by the per-

turbation of ankle muscles is the biceps femoris of the hip, and the second most impacted is

the vastus lateralis of the knee. Additionally, the muscle most impacted by perturbation to hip

muscles is the soleus.

Control of the human musculoskeletal network

What is the relationship between the functional impact of a muscle on the body and the neural

architecture that affects control? Here, we interrogate the relationship between the musculo-

skeletal system and the primary motor cortex. We examined the cerebral cortical representa-

tion map area devoted to muscles with low versus high impact by drawing on the anatomy of

the motor strip represented in the motor homunculus [43] (Fig 4a), a coarse one-dimensional

representation of the body in the brain [44]. We observed that homunculus areas differentially

control muscles with positive versus negative impact deviation scores (Table 2). Moreover, we

found that homunculus areas controlling only positively (negatively) deviating muscles tend to

be located medially (laterally) on the motor strip, suggesting the presence of a topological orga-

nization of a muscle’s expected impact in neural tissue. To probe this pattern more deeply, for

each homunculus area, we calculated a deviation ratio as the percent of muscles that positively

deviated from the expected impact score (i.e., a value of 1 for brow, eye, face and a value of 0

for knee, hip, shoulder; see Table 2). We found that the deviation ratio was significantly
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correlated with the topological location on the motor strip (F(1,19) = 21.3, R2 = 0.52,

p< 0.001; Fig 4b).

As a stricter test of this relationship between a muscle’s impact on the network and neural

architecture, we collated data for the physical volumes of functional MRI-based activation on

the motor strip that are devoted to individual movements (e.g., finger flexion or eye blinks).

Activation volumes are defined as voxels that become activated (defined by blood-oxygen-

level-dependent signal) during movement [38,39]. Critically, we found that the functional acti-

vation volume independently predicts the impact score deviation of muscles (Fig 4c, F(1,5) =

14.4, p = 0.012, R2 = 0.743), consistent with the intuition that the brain would devote more real

estate in gray matter to the control of muscles that are more impactful than expected in a null

model. Again, impact deviation is a metric that accounts for the hyperedge degree of a particu-

lar muscle and is relative to the impact of muscles with identical hyperedge degree in the null

model. Thus, the impact deviation measures the local network topology beyond simply the

immediate connections of the muscle in question.

As a final test of this relationship, we asked whether the neural control strategy embodied

by the motor strip is optimally mapped to muscle groups. We constructed a muscle-centric

graph by connecting two muscles if they touch on the same bone (Fig 1c, left). We observed

the presence of groups of muscles that were densely interconnected with one another, sharing

Fig 4. Probing musculoskeletal control. (a) The primary motor cortex homunculus as constructed by Penfield. (b)

Deviation ratio correlates significantly with homuncular topology (F(1,19) = 21.3, R2 = 0.52, p< 0.001), decreasing

from medial (area 0) to lateral (area 22). (c) Impact score deviation significantly correlates with motor strip activation

volume (F(1,5) = 14.4, R2 = 0.743, p = 0.012). Data points are sized according to the number of muscles required for the

particular movement. The plot is numbered as follows, corresponding to Table 5: thumb (1), index finger (2), middle

finger (3), hand (4), all fingers (5), wrist (6), elbow (7). (d) Correlation between the spatial ordering of Penfield’s

homunculus categories and the linear muscle coordinate from a multidimensional scaling analysis (F(1,268) = 316,

R2 = 0.54, p< 0.0001). Data available at DOI:10.5281/zenodo.1069104.

https://doi.org/10.1371/journal.pbio.2002811.g004
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common bones. We extracted these groups using a clustering technique designed for networks

[45,46], which provides a data-driven partition of muscles into communities (Fig 1b, right).

To compare the community structure present in the muscle network to the architecture of the

neural control system, we considered each of the 22 categories in the motor homunculus [18]

as a distinct neural community and compared these brain-based community assignments with

the community assignments obtained from a data-driven partition of the muscle network.

Using the Rand coefficient [47], we found that the community assignments from both homun-

culus and muscle network were statistically similar (zRand > 10), indicating a correspondence

between the modular organization of the musculoskeletal system and the structure of the

homunculus. For example, the triceps brachii and the biceps brachii belong to the same

homuncular category, and we found that they also belong to the same topological muscle net-

work community.

Next, because the homunculus has a linear topological organization, we asked whether the

order of communities within the homunculus (Table 3) was similar to a data-driven ordering

of the muscle groups in the body, as determined by MDS [48]. From the muscle-centric net-

work (Fig 1b), we derived a distance matrix that encodes the smallest number of bones that

must be traversed to travel from one muscle to another. An MDS of this distance matrix

revealed a one-dimensional linear coordinate for each muscle, such that topologically close

muscles were close together and topologically distant muscles were far apart. We observed that

each muscle’s linear coordinate is significantly correlated with its homunculus category (Fig

4d, F(1,268) = 316, p< 0.0001, R2 = 0.54), indicating an efficient mapping between the neural

representation of the muscle system and the network topology of the muscle system in the

body.

Our results from Fig 4d demonstrate a correspondence between the topology of the

homunculus and a data-driven ordering of muscles obtained by considering the topological

distances between them. This result could be interpreted in one of two ways: one reasonable

hypothesis is that because most connections in the musculoskeletal network are short range,

the finding is primarily driven by short-range connections. A second reasonable hypothesis is

that while short-range connections are the most prevalent, long-range connections form

important intramodular links that help determine the organization of the network. To arbi-

trate between these two hypotheses, we considered two variations of our MDS experiment:

one including only connections shorter than the mean connection length and the other includ-

ing only connections longer than the mean connection length. We found that the data-driven

ordering derived from only short and only long connections both led to significant correla-

tions with the homuncular topology (F(1,268) = 24.9, R2 = 0.085, p< 0.0001 and F(1,268) = 5,

R2 = 0.018, p = 0.026, respectively). Notably, including both long and short connections leads

to a stronger correlation with homuncular topology than considering either independently,

suggesting a dependence on connections of all lengths. It would be interesting in the future to

test the degree to which this network-to-network map is altered in individuals with motor defi-

cits or changes following stroke.

Discussion

Structure of the human musculoskeletal network

By representing the complex interconnectivity of the musculoskeletal system as a network of

bones (represented by nodes) and muscles (represented by hyperedges), we gained valuable

insight into the organization of the human body. The study of anatomical networks using simi-

lar methods is becoming more common in the fields of evolutionary and developmental biol-

ogy [10]. However, the approach has generally been applied only to individual parts of the
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body—including the arm [49], the head [11], and the spine [12]—thereby offering insights

into how that part of the organism evolved [50,51]. Moreover, even when full body muscula-

ture [13] and the neuromusculoskeletal [14] system more generally have been modeled, some

quantitative claims can remain elusive, in large part due to the lack of a mathematical language

in which to discuss the complexity of the interconnection patterns. In this study, we offer an

explicit and parsimonious representation of the complete musculoskeletal system as a graph of

nodes and edges, and this representation allowed us to precisely characterize the network in its

entirety.

When modeling a system as a network, it is important to begin the ensuing investigation by

characterizing a few key architectural properties. One particularly fundamental measure of a

network’s structure is its degree distribution [52], which describes the heterogeneity of a

node’s connectivity to its neighbors in a manner that can provide insight into how the system

formed [7]. We observed that the degree distribution of the musculoskeletal system is signifi-

cantly different from that expected in a null graph (Fig 2e), displaying fewer high-degree nodes

and an overabundance of low-degree nodes. The discrepancy between real and null model

graphs is consistent with the fact that the human musculoskeletal system develops in the con-

text of physical and functional constraints that together drive its decidedly nonrandom archi-

tecture [53]. The degree distribution of this network displays a peak at approximately degree

two, that is then followed by a relatively heavy tail of high-degree nodes. The latter feature is

commonly observed in many types of real-world networks [54], whose hubs may be costly to

develop, maintain, and use [55,56] but play critical roles in system robustness, enabling swift

responses [55], buffering environmental variation [57], and facilitating survival and reproduc-

tion [58]. The former feature—the distribution’s peak—is consistent with the intuition that

most muscles within the musculoskeletal system connect with only two bones, primarily for

the function of simple flexion or extension at a joint. By contrast, there are only a few muscles

that require a high degree to support highly complex movements, such as maintaining the

alignment and angle of the spinal column by managing the movement of many bones simulta-

neously. These expected findings provide important validation of the model as well as offer a

useful visualization of the musculoskeletal system.

The musculoskeletal network is characterized by a particularly interesting property that dis-

tinguishes it from several other real-world networks: the fact that it is embedded into three-

dimensional space [59]. This property is not observed in semantic networks [60] or the World

Wide Web [61], which encode relationships between words, concepts, or documents in some

abstract (and very likely non-euclidean) geometry. In contrast, the musculoskeletal system

composes a volume, with nodes having specific coordinates and edges representing physically

extended tissues. To better understand the physical nature of the musculoskeletal network, we

examined the anatomical locations of muscles with varying degrees (Fig 2c). We observed that

muscle hubs occur predominantly in the torso, providing dense structural interconnectivity

that can stabilize the body’s core and prevent injury [62]. Specifically, high-degree muscles

cluster about the body’s midline, close to the spine, and around the pelvic and shoulder girdle,

consistent with the notion that both agility and stability of these areas requires an ensemble of

muscles with differing geometries and tissue properties [63]. Indeed, muscles at these locations

must support not only flexion and extension but also abduction, adduction, and both internal

and external rotation.

It is important to note that significant variation exists within the musculoskeletal system

across individuals, and not all anatomical atlases agree on the most representative set of inser-

tion and origin points. The results presented here reflect how the musculoskeletal system was

presented in the text from which it was constructed [19] and therefore provide only one possi-

ble network representation of the musculoskeletal system. To assess the reliability of our

Structure, function, and control of the human musculoskeletal network

PLOS Biology | https://doi.org/10.1371/journal.pbio.2002811 January 18, 2018 15 / 27

https://doi.org/10.1371/journal.pbio.2002811


results across reasonable variation of the musculoskeletal configuration, we created a second

musculoskeletal network from an alternate atlas [64]. Using this second atlas, we observed

consistent results, and we report these complementary analyses in S3 Text.

It is also important to note that we mapped the first atlas [19] into a musculoskeletal graph

composed of both bony and non-bony nodes. This choice equates the structural roles of bones

and certain tendons and ligaments, which is admittedly a simplification of the biology. One

justification for this simplification is that non-bony structures frequently serve as critical

attachment points of muscles (i.e., the plantar fascia of the foot). Thus, it is reasonable to sepa-

rate the musculoskeletal network into the two categories of muscles and structures that serve

as muscular attachment points, as we did here. Nonetheless, this second category is quite het-

erogeneous in composition, and in future work, one could also consider constructing a multi-

layer graph, with a separate layer accounting for each type of muscular attachment structure.

To confirm that our findings and interpretations are not significantly altered by the presence

of non-bony muscular attachment points, we removed such points in an alternative atlas and

observe that our main findings still hold (see S3 Text).

Function of the human musculoskeletal network

To better understand the functional role of a single muscle within the interconnected muscu-

loskeletal system, we implemented a physics-based model of the network’s impulse response

properties by encoding the bones as point masses and the muscles as springs [65]. Signifi-

cantly, this highly simplified model of the musculoskeletal system is able to identify important

functional features. While muscles of high degree also tended to have a large impact on the

network’s response (Fig 3a), there were several notable deviations from this trend (Table 1).

The muscle noted to have the least impact relative to that expected is the orbicularis oculi,

the muscle used for controlling movement of the eyelid. This muscle is small and relatively iso-

lated in the body, originating and inserting on bones of the skull. The face muscles in general

form a tight and isolated community, with few connections reaching outside that community.

These factors likely contribute to the low impact of this muscle, and an analogous argument

could be made for the remaining two muscles with less impact than expected, which are also

muscles of the face.

The muscles with more impact than expected are more numerous but almost entirely

located in the upper limb or upper limb girdle. The extensor carpi radialis longus, anconeus,

brachioradialis, and brachialis muscles are all intrinsic arm muscles, the latter three acting at

the elbow. All of these muscles may have higher impact than expected in a null model because

they can either directly or indirectly affect the movement of the many bones of the wrist and

hand. The observed high impact of these muscles could be a result of the fact that they control

the movement of a limb, and at the end of the limb are many bones whose movement depends

directly on these muscles. The remainder of the high-impact muscles, with the exception of the

piriformis, all attach the upper limb to the axial skeleton. These muscles are the coracobrachia-

lis, infraspinatus, supraspinatus, subscapularis, teres minor, teres major, and pectoralis major

muscles. These muscles, like the previous four, have the property that they control the move-

ment of an entire limb, which likely contributes to their impact. Unlike the previous group,

these muscles also connect to the axial skeleton, which may also add to their impact. Many of

these muscles originate on bones of the shoulder girdle and have the potential to affect all

other shoulder girdle muscles, and potentially all bones connected to those muscles. This same

dynamic likely exists in the lower limb, which is reflected by the presence of the piriformis

muscle of the pelvic girdle. An in-depth discussion of how local network structure and muscle

configuration may interact with impact deviation is presented in S7 Text. In addition to our
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work presented in the Supporting information, further insight may be gained into the proper-

ties of these outliers by performing experiments to closely examine the bones that are impacted

most by each of these muscles.

While the network representation of a system can provide basic physical intuitions due to

its parsimony and simplicity, it also remains agnostic to many details of the system’s architec-

ture and function. It is a perennial question whether these first-principles models of complex

systems can provide accurate predictions of real-world outcomes. We addressed this question

by studying the relationship between the impact score of a muscle and the amount of time it

takes for a person to recover from an injury. We quantified time of recovery by summing (i)

the time to recover from the primary disability of the initial muscle injury and (ii) the time to

recover from any secondary disabilities resulting from altered usage of other muscles in the

network, due to the initial muscle injury [66]. We found that the deviation from the expected

impact score in a null network correlated significantly with time of recovery (Fig 3b), support-

ing the notion that focal injury can have extended impacts on the body due to the inherently

interconnected nature of the musculoskeletal system.

Indeed, muscular changes in one part of the body are known to affect other muscle groups.

For example, strengthening hip muscles can lead to improved knee function following knee

replacement [67]. Alteration of muscular function in the ankle following sprains can cause

altered hip muscle function [68,69], a result replicated by our model (which found the biceps

femoris and vastus lateralis were most impacted by ankle injury), and injury to limb muscles

can lead to secondary injury of the diaphragm [70]. Our model offers a mathematically princi-

pled way in which to predict which muscles are more likely to have such a secondary impact

on the larger musculoskeletal system and which muscles are at risk for secondary injury, given

primary injury at a specific muscle site. It would be interesting in the future to test whether

these predictions could inform beneficial adjustments to clinical interventions by explicitly

taking the risk of secondary injury to particular muscles into account. Previously, prevention

of secondary muscle injury has been largely relegated to cryotherapy [71,72] and has yet to be

motivated by such a mechanistic model. Finally, an important question to ask is how this mus-

culoskeletal configuration is evolutionarily advantageous and how evolutionary pressures may

have optimized muscle impacts. Intuitively, one might expect that evolutionary pressures drive

muscle impact down, perhaps by increasing muscular redundancy. A thorough investigation

of the evolutionary advantages of the musculoskeletal network topology would be an interest-

ing topic for future work.

Control of the human musculoskeletal system

Given the complexity of the musculoskeletal network and its critical role in human survival, it

is natural to ask questions about how that network is controlled by the human brain. Indeed,

the study of motor control has a long and illustrious history [73], which has provided impor-

tant insights into how the brain is able to successfully and precisely make voluntary move-

ments despite challenges such as redundancies, noise [74], delays in sensory feedback [75],

environmental uncertainty [76], neuromuscular nonlinearity [77], and nonstationarity [78].

Here, we took a distinct yet complementary approach and asked how the topology of the mus-

culoskeletal network may be mapped onto the topology of the motor strip within the cortex.

We began by noting that the impact deviation of a muscle is positively correlated with the size

of the cortical volume devoted to its control (Fig 4c). One interpretation of this relationship

is that those muscles with greater impact than expected in a null model by their immediate

connections tend to control more complex movements and therefore necessitate a larger num-

ber of neurons to manage those movements [79]. A second interpretation builds on an
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evolutionary argument that muscles with more impact need a greater redundancy in their con-

trol systems [80], and this redundancy takes the form of a greater cortical area.

Local cortical volumes aside [81], one might also wish to understand to what degree the

larger-scale organization of the musculoskeletal network reflects the organization of the motor

strip that controls it. Building on the recent application of community detection techniques to

the study of skull anatomy [11,82,83], we reported the modular organization of the muscle net-

work: groups of muscles in which the muscles in one group are more likely to connect to one

another than to muscles in other groups. More intriguingly, we observed that muscle commu-

nities closely mimic the known muscle grouping of the motor strip (Fig 1b, right): muscles

that tend to connect to the same bones as each other also tend to be controlled by the same

portion of the motor strip. Furthermore, a natural linear ordering of muscle communities—

such that communities are placed close to one another on a line if they share network connec-

tions—mimics the order of control in the motor strip (Fig 4d). These results extend important

prior work suggesting that the one-dimensional organization of the motor strip is related to

both the structural and functional organization of the musculoskeletal network [84,85]. In fact,

the results more specifically offer a network-level definition for optimal network control: the

consistency of the linear map from musculoskeletal communities to motor strip communities.

Finally, we interrogated the physical locations of the cortical control of impactful muscles.

We observed that muscles with more impact than expected given a null graph tend to be con-

trolled by medial points on the motor strip, while muscles with less impact than expected tend

to be controlled by lateral points on the motor strip (Fig 4b). This spatial specificity indicates

that the organization of the motor strip is constrained by the physical layout of the body as

well as aspects of how muscles function. Previous studies have examined a general temporal

correspondence between cortical activity and muscle activity during movement [86], but little

is known about topological correspondence.

Methodological considerations

The construction of a hypergraph from the human musculoskeletal system requires assump-

tions and simplifications that impact the flexibility of the current model. Most prominent is

the reduction of the system into two categories: muscles and bones. These categories hold no

additional information and therefore do not account for features of a muscle’s or bone’s inter-

nal architecture. This simplification introduces several limitations to the perturbative model,

including the capability of modeling the functional architecture of complex muscles, or those

with the ability to independently contract a subset of fibers. For example, the two-headed

biceps brachii has an origin both on the scapula and supraglenoid tubercle, and it is possible to

contract the fibers of one head separately from the fibers of the other head. Future work could

extend our modeling framework to represent this complex functional architecture. Further-

more, nonmuscular soft tissue structures essential to the musculoskeletal system cannot be

explicitly accounted for. These structures, including tendons and ligaments, can either be (1)

encoded as bones, as in the main text network, or (2) excluded from the network, as in the sup-

plement; neither option is completely anatomically accurate.

In the case of bones, the model is unable to account for bone–bone interactions (joints).

The majority of muscles act at joints, and the exclusion of joints obfuscates the specific func-

tion of muscles. That is, the model accounts for the fact that muscles move bones but not how

they move or in what direction. In the perturbative simulation, the lack of joint constraints

allows bones to be placed at unnatural angles relative to adjacent bones. In addition, bones are

modeled as point masses, which in the perturbative simulation may allow bones to undergo

trajectories involving the passage through space that, in reality, is occupied by another bone.
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Future work could extend our modeling framework to account for these additional biophysical

constraints.

Insights generated by this model are a result of the input data. As individual variation exists

within the musculoskeletal system, it similarly exists in muscle impacts. We have made an

effort to use two input datasets to justify our main findings, but these findings may not be gen-

eralizable to all healthy musculoskeletal configurations. Specifically, the degree of a muscle,

subject to individual variation, is likely to affect the impact of that muscle. Exactly how norma-

tive individual variation in muscle degree is related to variation in predicted muscle impact is

an important question that, nevertheless, is outside of the scope of the current study.

Lastly, the human musculoskeletal system is a complex and densely interconnected net-

work. Neither muscles nor bones function as independent entities. As such, it is difficult to

parse the function of a single muscle from effects due to surrounding muscles. Nonindepen-

dence of muscles can be partially eliminated by appropriate null model selection, and our

results hold under a variety of choices. Nonetheless, the notion that muscles—and impact fac-

tors—are not truly independent should be considered when interpreting these results.

Conclusion

In summary, here we developed a novel network-based representation of the musculoskeletal

system, constructed a mathematical modeling framework to predict recovery, and validated

that prediction with data acquired from athletic injuries. Moreover, we directly linked the net-

work structure of the musculoskeletal system to the organization of cortical architecture, sug-

gesting an evolutionary pressure for optimal network control of the body. We compared the

structure, function, and control of the human musculoskeletal system to a null system in

which small groups of closely related muscles are rewired with each other. Our results suggest

that the structure, function, and control of the musculoskeletal system are emergent from the

highly detailed, small-scale organization, and when this small-scale organization is destroyed,

so are the emergent features. Our work directly motivates future studies to test whether faster

recovery may be attained by not only focusing rehabilitation on the primary muscle injured

but also directing efforts towards muscles that the primary muscle impacts. Furthermore, our

work supports the development of a predictive framework to determine the extent of musculo-

skeletal repercussions from insults to the primary motor cortex. An important step in the net-

work science of clinical medicine [87], our results inform the attenuation of secondary injury

and the hastening of recovery.

Supporting information

S1 Text. Alternative null models. This text file details construction of the alternative null

models.

(DOCX)

S2 Text. Resolution of community detection. This file provides a description of the choice of

community detection resolution parameter.

(DOCX)

S3 Text. Alternative musculoskeletal network. This file provides a description of the alterna-

tive musculoskeletal network.

(DOCX)

S4 Text. Bone dynamics resulting from muscle perturbation.

(DOCX)
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S5 Text. Accounting for bone weights and muscle strengths.

(DOCX)

S6 Text. Nonathlete muscle recovery analysis.

(DOCX)

S7 Text. Local network structure and impact deviation.

(DOCX)

S1 Table. Muscles with greater and lesser impact than expected in randomly rewired

hypergraphs. This null model required randomly rewiring muscles within the hypergraph,

preserving degree. The muscles on the left side have less impact than expected, given their

hyperedge degree: their impacts are more than 1.96 standard deviations below the mean, indi-

cating that they lie outside the 95% CI of the distribution. The muscles on the right side have

more impact than expected, given their hyperedge degree: their impacts are more than 1.96

standard deviations above the mean, ordered from most to least extreme. This table shows the

muscles that had the greatest positive and greatest negative difference in impact, relative to

degree-matched controls.

(XLSX)

S2 Table. Homunculus categories, the member muscles of which either all have more

impact than expected or all have less impact than expected, compared to randomly rewired

hypergraphs. This null model required randomly rewiring muscles within the hypergraph,

preserving degree. Categories on the left are composed entirely of muscles with less impact

than expected, compared to degree-matched controls. Categories on the right are composed

entirely of muscles with more impact than expected, compared to degree-matched controls.

(XLSX)

S3 Table. Muscles with greater and lesser impact than expected in hypergraphs randomly

rewired within their homunculus category. This null model required randomly rewiring

muscles within their homunculus category, preserving degree. The muscles on the left side

have less impact than expected, given their hyperedge degree: their impacts are more than 1.96

standard deviations below the mean, indicating that they lie outside the 95% CI of the distribu-

tion. The muscles on the right side have more impact than expected, given their hyperedge

degree: their impacts are more than 1.96 standard deviations above the mean, ordered from

most to least extreme. This table shows the muscles that had the greatest positive and greatest

negative difference in impact, relative to degree-matched controls.

(XLSX)

S4 Table. Homunculus categories, member muscles of which either all have more impact

than expected or all have less impact than expected, compared to hypergraphs randomly

rewired within their homunculus category. This null model required randomly rewiring

muscles within their homunculus category, preserving degree. Categories on the left are com-

posed entirely of muscles with less impact than expected, compared to degree-matched con-

trols. Categories on the right are composed entirely of muscles with more impact than

expected, compared to degree-matched controls.

(XLSX)

S5 Table. Muscles with greater and lesser impact than expected in a random hypergraph.

This null model required randomly assigning muscle–bone connections, only preserving overall

degree and not individual muscle degree. The muscles on the left side have less impact than

expected, given their hyperedge degree: their impacts are more than 1.96 standard deviations
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below the mean, indicating that they lie outside the 95% CI of the distribution. The muscles on

the right side have more impact than expected, given their hyperedge degree: their impacts are

more than 1.96 standard deviations above the mean and are ordered from most to least extreme.

(XLSX)

S6 Table. Volumes of muscles of the leg sub-network. Here, we include the muscle name

(column 1), the muscle volume (in cm3; column 2), and the reference from which the estimate

was taken.

(XLSX)

S7 Table. Masses of the bones of the leg sub-network. Here, we include the bone name (col-

umn 1), the bone mass (in g; column 2), and the reference from which the estimate was taken.

(XLSX)

S8 Table. The assigned homunculus categories and data-driven community assignments of

muscles. Also available at DOI:10.5281/zenodo.1069104.

(XLSX)

S9 Table. The hypergraph of muscles and bones from the Hosford Muscle tables [18], used

in the main text. Also available at DOI:10.5281/zenodo.1069104.

(XLSX)

S10 Table. The hypergraph of muscles and bones from Grant’s atlas [64], used in the sup-

plementary text. Also available at DOI:10.5281/zenodo.1069104.

(XLSX)

S1 Fig. Community detection with differing resolution parameters. This figure illustrates

how the selection of the resolution parameter during community detection will change the

number and size of communities detected. As the resolution parameter is increased, the size of

individual communities decreases, while the number of communities increases. (a-d) Commu-

nity detection for the muscle-centric network, using γ values of 1, 2, 8, and 16, respectively.

The final community structure for each γ is a consensus partition of 100 individual runs of the

community detection algorithm.

(EPS)

S2 Fig. Community detection with differing resolution parameters. This figure illustrates

stability around the chosen tuning parameter of γ = 4.3. Here, we explore partitions generated

from nearby resolution parameters γ = 4.2 and γ = 4.4. Visually, the three partitions appear to

have similar structure. The two nearby partitions are also mathematically similar, with z-score

of the Rand coefficient [47] zRand(γ = 4.2, γ = 4.3) = 105, zRand(γ = 4.3, γ = 4.4) = 110, and

zRand(γ = 4.2, γ = 4.4) = 105. The final community structure for each γ is a consensus partition

of 100 individual runs of the community detection algorithm.

(EPS)

S3 Fig. Visual comparison of null models. This figure illustrates the differences in the null

bipartite graphs. (A) The original unpermuted muscle–bone bipartite graph. (B) The random

null bipartite graph. (C) The randomly rewired bipartite graph. (D) The in-community ran-

domly rewired bipartite graph used in the main text, which permutes topology locally while

preserving global topology.

(EPS)

S4 Fig. Main results as a function of the null model. Here, we show results using a random

hypergraph model or a rewired (permuted) hypergraph model that does not maintain local
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connections. (A) The impact score plotted as a function of the hyperedge degree for random

hypergraphs and the observed musculoskeletal hypergraph. (B) The impact score plotted as a

function of the hyperedge degree for permuted hypergraphs and the observed musculoskeletal

hypergraph. (C) Deviation ratio correlates significantly with homuncular category (F(1,19) =

6.67, p = 0.018, R2 = 0.26), decreasing from medial (area 0) to lateral (area 22) using a random

hypergraph null model. (D) Deviation ratio correlates significantly with homuncular category

(F(1,19) = 6.86, p = 0.017, R2 = 0.26), decreasing from medial (area 0) to lateral (area 22) using

a permuted hypergraph null model. (E) Impact score deviation significantly correlates with

motor strip activation area (F(1,5) = 13.4, p = 0.014, R2 = 0.72) using a random hypergraph

null model. Data points are sized according to the number of muscles required for the particu-

lar movement. (F) Impact score deviation significantly correlates with motor strip activation

area (F(1,5) = 13.7, p = 0.022, R2 = 0.73) using a permuted hypergraph null model. Data points

are sized according to the number of muscles required for the particular movement. (G)

Impact score deviation correlates with muscle recovery time following injury to muscles or

muscle groups (F(1,11) = 64.5, p = 6.3 × 10−6, R2 = 0.85), using a random hypergraph null

model. Data points are scaled according to the number of muscles included. (H) Impact score

deviation correlates with muscle recovery time following injury to muscles or muscle groups

(F(1,11) = 70.5, p< 0.0001, R2 = 0.86), more so than expected in a permutation-based hyper-

graph null model. Data points are scaled according to the number of muscles included. Data

available at DOI:10.5281/zenodo.1069104.

(EPS)

S5 Fig. Network topology and the homunculus. Linear muscle coordinates determined using

multidimensional scaling without thresholding via a weighted distance matrix (calculated

using distance_wei.m included in the Brain Connectivity Toolbox, https://sites.google.com/

site/bctnet/). Without thresholding, a significant correlation also exists between linear muscle

coordinate and homunculus area (F(1,268) = 303, p< 0.0001, R2 = 0.53). Data available at

DOI:10.5281/zenodo.1069104.

(EPS)

S6 Fig. Probing musculoskeletal function for an alternate network. (a) The impact score

plotted as a function of the hyperedge degree for a null hypergraph model and the observed

musculoskeletal hypergraph. (b) Impact score deviation correlates with muscle recovery time

following injury to muscles or muscle groups (F(1,12) = 40.2, p< 0.0001, R2 = 0.77). Shaded

areas indicate 95% CIs, and data points are scaled according to the number of muscles

included. Data available at DOI:10.5281/zenodo.1069104.

(PNG)

S7 Fig. Probing musculoskeletal control for an alternate network. (a) Deviation ratio is sig-

nificantly correlated with homuncular topology (F(1,18) = 8.88, R2 = 0.33, p = 0.0080), decreas-

ing from medial (area 0) to lateral (area 22) regions. (b) Impact score deviation is significantly

correlated with motor strip activation area (F(1,5) = 23.4, R2 = 0.82, p = 0.005). Data points are

sized according to the number of muscles required for the particular movement. Data available

at DOI:10.5281/zenodo.1069104.

(PNG)

S8 Fig. Dynamics of biceps brachii perturbation. This figure shows the movement of the

clavicle, as well as a bone of the finger and toe, in response to the perturbation of the biceps

brachii. Data available at DOI:10.5281/zenodo.1069104.

(PNG)
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S9 Fig. Comparing models with and without bone weights and muscle strengths. The

impact of the leg muscles was calculated with and without the addition of anatomical values

for bone weight and muscle volume. These impacts were found to be significantly correlated

with one another (F(1,25) = 6.83, R2 = 0.0214, p = 0.015), suggesting that at least in some por-

tions of the body, our simplified network representation provides a reasonable approximation

for more biophysically accurate network representations. Data available at DOI:10.5281/

zenodo.1069104.

(PNG)

S10 Fig. Probing musculoskeletal function for nonathletes. Recovery times were gathered

for injuries to various muscles of nonathletes. We observed a significant correlation between

muscle recovery time and impact deviation (F(1,14) = 5.02, R2 = 0.264, p = 0.041). Data avail-

able at DOI:10.5281/zenodo.1069104.

(PNG)

S11 Fig. Correspondence of network topology and system function. Network topology, spe-

cifically average shortest path length, is significantly negatively correlated with the impact

score estimated from the perturbative simulations of system dynamics (F(1,268) = 65.1,

R2 = −0.4422, p< 0.0001). Data available at DOI:10.5281/zenodo.1069104.

(PNG)

S12 Fig. Relation between musculoskeletal variation and muscular impact across two mus-

culoskeletal networks. Here, we compare the percent change in impact score and degree for

each muscle between the musculoskeletal network reported in the main text and that reported

in the supplementary text. We observe that the impact score of muscles is more affected by

larger changes in degree than by smaller changes in degree (F(1,268) = 5.76, R = 0.1450,

p = 0.017). Data available at DOI:10.5281/zenodo.1069104.

(PNG)

S13 Fig. Alternative perturbative approach. To establish a measure of impact per muscle

hyperedge, objects were displaced into a fourth spatial dimension to avoid making arbitrary

choices within three dimensions. An alternative approach would be to perturb each muscle in

each of three orthogonal directions, calculating impact each time and calculating the vector

sum of these three results. To answer the question of how these two approaches compare, we

performed this experiment on the muscle-bone bipartite matrix to create two 270 × 1 vectors,

one encoding the impact scores via displacement in the fourth dimension, and one encoding

the vector sum of the three orthogonal displacements. The two vectors were significantly cor-

related with each other (F(1,268) = 1590, R2 = 0.856, p< 0.0001).

(PNG)
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