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Abstract

The devastating impact of the Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-

CoV-2) pandemic almost halted the global economy and is responsible for 6 million deaths

with infection rates of over 524 million. With significant reservations, initially, the SARS-

CoV-2 virus was suspected to be infected by and closely related to Bats. However, over the

periods of learning and critical development of experimental evidence, it is found to have

some similarities with several gene clusters and virus proteins identified in animal-human

transmission. Despite this substantial evidence and learnings, there is limited exploration

regarding the SARS-CoV-2 genome to putative microRNAs (miRNAs) in the virus life cycle.

In this context, this paper presents a detection method of SARS-CoV-2 precursor-miRNAs

(pre-miRNAs) that helps to identify a quick detection of specific ribonucleic acid (RNAs).

The approach employs an artificial neural network and proposes a model that estimated

accuracy of 98.24%. The sampling technique includes a random selection of highly unbal-

anced datasets for reducing class imbalance following the application of matriculation artifi-

cial neural network that includes accuracy curve, loss curve, and confusion matrix. The

classical approach to machine learning is then compared with the model and its perfor-

mance. The proposed approach would be beneficial in identifying the target regions of RNA

and better recognising of SARS-CoV-2 genome sequence to design oligonucleotide-based

drugs against the genetic structure of the virus.

1 Introduction

In late 2019, few patients were affected in pneumonia with a nescient symptoms known as

respiratory syndrome coronavirus 2 (SARS-CoV-2) and later named as coronavirus disease

2019 (COVID-19). There is still in debate exactly where it grown up, but Epidemiological evi-

dence shown that the virous spread from Wuhan, Hubei province from local sea food market.

It is also confirmed the gene sequence was identified from Bats. According to World Health

Organization (WHO), the virus was rapidly spread in worldwide over 6 million deaths and
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still growing continuously. The special attention of this virus was to spread very fast, adapt rap-

idly and affected with the infection of the major symptoms in fever, cough, muscle pain, and

diarrhea. The similar symptoms can also be seen in mice, dogs, cats, camels, pigs, chickens,

and bats [1].

SARS-Cov-2 are an encapsulated and carrying a positive sense of single-stranded RNA

genome that belongs to subfamily Coronavirdiae. However, Micro ribonucleic acid (miRNAs)

were initially identified in 1993 which controlls the timing of nematode Caenorhabditis ele-

gans (Lee, Feinbaum and Ambros, 1993). Micro ribonucleic acid are literally quite small with

an average 22 nucleotides in length available in plants, animals and some viruses including

HSV, HIV-1, Dengue, Influenza, and SARS-COV-2 involved in biological processes [2].

According to the literature [3–7], micro ribonucleic acid exploration is crucial due to

around 30 percentage of human genes are regulated by micro ribonucleic acid, influencing

diverse biological processes including development, proliferation, cell differentiation, and

metabolism across the various cell types.

Considering the various conditions to investigate how micro ribonucleic acid regulated

under various conditions to comprehend the gene expression and disease phenotypes. The

miRNAs can be produced by the most deoxyribonucleic acid (DNA) viruses, but miRNA

expression is controversial in the case of RNA viruses because of their cytoplasmic replication

and insufficient knowledge of the nuclear miRNA complex structure [8]. Therefore the exact

mechanism of viral and cellular miRNAs are not adequately realised in viral infections. How-

ever, miRNAs have recently emerged as antiviral regulators of viral genes triggered by a coro-

navirus [9]. Gene silencing, miRNAs indeed can play a crucial role controlling the expression

of transcription factors [10]. Therefore, using miRNAs to defeat COVID-19 can be

groundbreaking.

MicroRNAs are consequent from pri-miRNAs more than 1000 nt in length and pri-miR-

NAs comprises a hairpin structure that realises from 60–120 nt [11]. The structural properties

of these hairpins are characterised by pri-miRNAs thriving from the other RNA stem loop

similar to the structures establish in the nucleus. In addition, the hairpin is cut off from the

pri-miRNA to comprise the predecessor of miRNA (pre-miRNA) [12].

In order to detect miRNAs, it is important to distinguish pre-miRNAs from other hairpin-

like sequences [13]. In order to the consideration of miRNA biogenesis and small interfering

RNA design, the pre-miRNA prediction has lately become an exciting relevant area in miRNA

research [14].

According to the literature [15], SARS-CoV-2 pre-miRNA identification desires the neces-

sary equipment and real life oriented physical environment setup which resembles very expen-

sive as laborious and burdensome. Instead, Machine learning (ML) can be an alternative

approach in the way to lead in the research specifically in miRNA biology, and focusing on

biomarkers for potential diseases [16].

The major issue with using machine learning to detect pre-miRNAs is that the number of

well-known pre-miRNAs is typically few in comparison to the hundreds of thousands of can-

didate sequences in a genome, making this a high-class imbalanced classification challenge

[17]. H. sapiens genome is an example that has 1710 well-known pre-miRNAs but over 400

million hairpin-like sequences resulting in a 1:28128 imbalance [18]. ML algorithms are gener-

ally representing with balanced data sets but in a supervised classifier, imbalanced data tend to

produce a model biased towards the majority class, with low performance in the minority one

yielding false positives [19]. Many computational approaches, including homologous search,

comparative genomics, and machine learning, have been developed in recent decades to locate

pre-miRNAs and to overcome the imbalanced miRNA (positive) and non-miRNA (negative)

samples problems [20]. Specifically, some machine learning-based computational approaches
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such as DIANA-microT [21], TargetScan [22], TargetScanS [23], miRanda [24], mirSVR [25],

RNA22 [26] and RNAhybird [27] have introduced a significant progress improving the perfor-

mance of ML based pre-miRNA detection.

Performance is the main research gap in SARS-CoV-2 pre-miRNA identification. Other

relevant limitations include artificial negative class. In this research, the RUNN-COV (Ran-

dom Under sampling with Neural Network for COVID detection) models are presented. The

proposed model performance was established, and their significant comparison, limitation

and major challenges are introduced along with other existing methods. It is anticipated that

this model will contribute to the fight against COVID-19 by improving its detection and subse-

quent study of the biological functions of SARS-CoV-2 pre-miRNAs, leading to effective and

robust treatments.

One of the major contributions of our research lies in data visualization through explor-

atory data analysis and substantial research to understand the high-class imbalance problem

and through investigation and experimentation finding the best technique which in our case is

random undersampling to solve this tenacious problem thus decreasing the likelihood of over-

fitting and increasing classifier performance in the process. While the main contribution lies

in fine-tuning the model performance, but associated experimentation’s of exploratory data

analysis specifically t-distributed stochastic neighbor embedding (t-SNE) were investigated

thoroughly to understand the data loss patterns as well as separation pattern between negative

and positive data points which ultimately aided us in identifying a more robust, decision

boundary that generated better model performance. All these exploratory data analysis mecha-

nisms, aided us in selecting the best parameters and algorithms, which when fed into our own

model produced a substantially superior performance outperforming several limitations dis-

cussed above. The final contribution of our research is performance comparison, where we

compared our approach and results with existing literature and their performance that would

aid the researchers in understanding the latest state of research in this field and where to go

next.

To summarize, this paper presents a random undersampling technique that deals with the

high-class imbalance problem. In addition, several techniques including correlation matrix, t-

SNE are investigated for data loss visualization, data point visualization, and identifying hid-

den patterns. The RUNN-COV model has represented with an extraordinary result which

compared to the other existing techniques and possible recommendation of their limitations.

This paper also shows a performance comparison with other relevant machine learning mod-

els. Finally, the results were systematically evaluated using nine evaluation metrics.

The rest of the paper is organized as follows. Section 2 introduces the inspiration of the

SAR-CoV-2 pre-miRNA identification. Section 3 presents a survey of the literature for using

computational approaches in the COVID-19 and relevant miRNA context. Section 4 presents

a description of the SARS-CoV-2 dataset. Section 5 presents sampling strategy, clustering

analysis, and RUNN-COV model architecture. Section 6 presents a detailed evaluation strat-

egy, performance analysis, and statistical investigation. Finally, the paper concluded in Sec-

tion 7.

2 Motivation

SARS-CoV-2 has had a tremendous impact in the world, not just in terms of health care but

also in others including agriculture and food security, economic and financial, educational,

industrial, power and energy, oil market, employment, and environmental [28]. Therefore,

select the effective ways to diagnose the infection to control the spread of COVID-19 and gen-

erate a better treatment prospects are crucial.
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As mentioned above, MicroRNAs (miRNAs) are the most powerful regulators of gene

expression that play a role in practically all forms of gene regulation. Cellular miRNAs can be

applied as therapeutic options for COVID-19 [8] as well as many other viral infections, such as

Dengue [29], Influenza [30], Human Immunodeficiency Virus (HIV) [31], Herpes Simplex

Viruses [32], and Hepatitis C Virus [33]. Viruses are incapable of self-replication without the

machinery and metabolism of a host cell. Consequently, viruses employ various tactics, one of

them being the modification of host cell miRNA to their advantage [30]. A disorder in the

organism’s internal environment is generally accompanied by aberrant miRNA production or

secretion in the cells or blood, which has become the key indicator to recognize deadly diseases

like cancers [34], diabetes [35], cardiovascular diseases [36], and virus-caused diseases [37].

MicroRNAs can also interfere with the heart [38] and lung [39] disease caused by COVID-19.

Because of the discovery of this link, there may be a great benefit in targeting miRNA-interac-

tion genes to treat COVID-19. Also, nanobased miRNA vaccines can be utilized as nasal spray

or drops to activate the immune response in the respiratory tract, which is the common initial

location for SARS-CoV-2 viral entrance [8].

Unfortunately, currently there is one Food and Drug Administration (FDA) approved anti-

viral drug, Veklury (Remdesivir), for the treatment of COVID-19 under Emergency Use

Authorization (EUA) [40] along with treatments that are under research ranging from other

anti-viral drugs to plasma therapy, vaccines and antibody drugs. In the inadequacy of COVID-

19 treatments and vaccines, miRNA-based therapeutic approaches may be an intriguing

option for regulating the SARs-CoV-2 replication.

One possible avenue of attack is the design and synthesis of oligonucleotides against the

genetic structure of SARS-CoV-2 with the aim to impede its replication or to degrade its

genome [9], This is similar to the possibility of designing therapeutic oligonucleotides on the

basis of the human genome [41].

The proposed RUNN-COV model will assist to detect of SARs-CoV-2 and potentially

many other relevant RNAs as of interest. The findings demonstrate that contemporary

machine learning technologies can be used to assist in responding to public health emergencies

by helping to discover the characteristics of any viral agent and in devising novel therapeutic

approaches.

3 Related works

Being able to reliably test for SARS-CoV-2 is essential to stopping its spread. Several types of

tests exist to identify SARS-CoV-2, varying in how rapidly they give results, how sensitive they

are, and how often they can be performed [42]. The Nucleic Acid Amplification Test (NAAT)

is a high-sensitivity, high-specificity viral diagnostic test for SARS-CoV-2 [43] that can identify

more than one viral RNA gene and specify whether the infection is current or recent. Antigen

tests, which are low cost and are able to provide results rapidly, can find the presence of a spe-

cific viral antigen [44].

Among ML methods, support vector machine (SVM) was used to classify real human pre-

miRNAs from pseudo pre-miRNAs with 90% accuracy [13]. When feature extraction methods

were employed, the accuracy improved to 94.83% [45]. However, it is unclear whether the use

of pseudo pre-microRNAs approximates the real scenarios that will be faced by actual testing

equipment.

Human pre-miRNA classification was also attempted using deep learning, and contrasted

with other machine learning techniques such as naive Bayes classifiers, k-nearest neighbors

and random forest [46]. The under-sampling approach was used to overcome the class imbal-

ance problem, and the model outperformed traditional machine learning models.
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Plant miRNA detection has also been demonstrated, achieving 97.54% identification accu-

racy [47]. Human mirtrons and canonical miRNAs have been classified using convolutional

neural networks (CNN) and long short-term memory networks (LSTMN) with 94.3% accu-

racy and 92.5% F1 score [48]. Human miRNA classification for gene prediction was performed

with results of 90.02% sensitivity and 97.28% specificity [49]. The SVM-based porcine pre-

microRNAs prediction method was proposed by [50], achieving a prediction accuracy of

95.6%.

The majority pre-miRNAs detection models are SVM classifier-based [51, 52]. SVM was

used to detect animals and plant miRNAs and pre-miRNAs detection methods [53, 54]. Rice

pre-miRNAs detection was done using random forest, achieving prediction accuracy of

93.48% [55].

When performing machine learning, most algorithms require both positive and negative

examples. Databases of positive examples are readily available, but negative examples are

scarce, forcing researchers to employ tactics such as creating negative examples through vari-

ous means. This has various problems, among which is that there is no guarantee that an

example that has been generated to be negative is not actually an undiscovered positive exam-

ple [56].

This problem of class imbalance in SARS-CoV-2 pre-miRNA detection was demonstrated

using various algorithms such as one-class SVM (OC-SVM), deeSOM, and mirDNN [57]. The

imbalance ratio in the dataset was varied from 1:50 to 1:200, with decreasing performance as

imbalance ratio increased. At the best imbalance ratio of 1:50, OC-SVM, deeSOM, mirDNN

achieved F1 scores of 39%, 51% and 74% respectively. The focal loss function [58] was used to

handle class imbalance, where larger weights are given to the more difficult-to-classify exam-

ples so that the problem of imbalance is ameliorated. Albahri OS et al. [59] reviewed AI-driven

COVID-19 detection and classification using medical images. The research challenges and

critical gaps had highlighted by the authors. Albahri AS et al. [60] provided a systematic review

of AI-based data mining and machine learning algorithms for detecting and diagnosing

COVID-19. This study analyzed the nature of the application, algorithms evaluation methods,

and accuracy for COVID-19.

The RUNN-COV method presented in this work attempts to overcome the class imbalance

problem through undersampling rather than negative example generation or weight

adjustment.

4 Dataset

The dataset was used based upon pre-miRNA detection using machine learning techniques

(Bugnon et al., 2021). It was derived by applying various techniques the SARS-CoV-2 genome

from National Center for Biotechnology Information (NCBI) Reference Sequence

NC_045512.2, resulting in 569 pre-miRNA samples with 73 features. The dataset also included

999888 hairpin-like sequences from the human genome as the negative class. The dataset

detailed can be found in [61] where the positive samples are identified labeled as 1 and the neg-

ative samples indicated as 0.

Pearson correlation was applied to the features in the dataset. It was found that many of the

features are uncorrelated. Fig 1 shows the comparison between positive and negative samples.

The central mark in the box indicates the median value, the edges of the box are the lower

quartile and upper quartile values, and whiskers are goes to the minimum and maximum val-

ues. The outlier or single data point is depicted as the black dot. The sequence length, ensemble

frequency, dQ, triplets0, mfe, mfei1, mfei2, etc are features of the dataset.
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5 RUNN-COV model

5.1 Random undersampling

Random undersampling and oversampling are two techniques that are used to overcome the

problem of class imbalance. Random oversampling involves duplicating the examples in the

minority class, but this increases the likelihood of overfitting, decreases the classifier perfor-

mance, and increases the computational effort [62]. Random undersampling instead removes

examples randomly from the majority class, and was demonstrated experimentally to signifi-

cantly improve classification performance [63]. Therefore, random undersampling was

applied in this work to make the class ratio 1:1.

One concern with random undersampling is information loss when samples are removed.

To demonstrate the effect of random undersampling, heatmaps of correlation matrices of the

dataset before and after the procedure were taken. A random instance of from various runs of

the experiment is given in Fig 2, where it can be seen visually that the heatmaps remain virtu-

ally the same before and after the random undersampling procedure. The variation of color

depends on the intensity of the dataset feature. The correlation matrix before (top) and after

(bottom) random undersampling.

After preparing the data through random undersampling, a visual representation is

required to obtain a high-level understanding of the distribution of the positive and negative

classes. In fact, visual understanding of high-dimensional data is crucial in many areas, such as

the detailed analysis of single-cell datasets [64].

In this paper, t-distributed stochastic neighbor embedding (t-SNE), a nonlinear algorithm

[65] for high dimensional data exploring, data point visualization, and identifying hidden pat-

terns, was used to prepare a visual representation of the data as shown in Fig 3. The t-SNE was

chosen because it outperforms a wide range of nonparametric visualization approaches [66]. It

has become popular in the machine learning field because of its exceptional ability to generate

two-dimensional (2D) maps from data with thousands of dimensions. The t-SNE is extremely

flexible and can often identify structure where other dimensionality-reduction techniques can-

not [67].

Fig 1. Box plots illustrate the distribution of numerical data with the pre-miRNA label class.

https://doi.org/10.1371/journal.pone.0274538.g001

PLOS ONE COVID-19 detection techniques using machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0274538 September 15, 2022 6 / 21

https://doi.org/10.1371/journal.pone.0274538.g001
https://doi.org/10.1371/journal.pone.0274538


5.2 Neural network architecture

A neural network model was developed and applied to the data to determine if the positive

and negative classes could be accurately identified. The model has 18 layers consisting of dense

layers and batch normalization layers.

Fig 2. The heat map shows the patterns, similarities, associations, correlations and expression of pre-miRNA.

https://doi.org/10.1371/journal.pone.0274538.g002
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The rectified linear unit (ReLu) activation function was used in the dense layers, since it has

various benefits such as computational simplicity, sparsity and linear behavior [68].

The batch normalization layers reduce training time and generalization error, minimize the

over-fitting problem, increase stability, and smoothen the loss function [69]. The output layer

uses the sigmoid function for binary classification.

The complete architecture has 1,128,994 parameters, of which 1,127,042 are trainable and

1,952 are non-trainable. The Adam optimizer was used to update network weights [70]. Other

hyperparameter details include the use of the binary entropy loss function, 90 epochs, batch

size 20, and data shuffling. The details of the neural network layers are shown in Table 1. This

architecture was arrived at after extensive experimentation using different neural network

architectures until one was found that produced high performance in identifying the examples

of the dataset.

Fig 3. Overview of t-SNE-driven clustering analysis strategy. The landscape of the gene expression profiles represented high dimensional data in this

two-dimensional map. The t-SNE projection shows the separation between positive and negative data points. In addition, the results of the pre-miRNAs

cluster analysis are represented in two colors. The maroon dot indicates positive data point and the blue dot indicates the negation data point.

https://doi.org/10.1371/journal.pone.0274538.g003
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6 Results and discussion

6.1 Evaluation metrics

Various measures were chosen for evaluating RUNN-COV. The basic performance measures

that are derived from true positive (TP), true negative (TN), false positive (FP) and false nega-

tive (FN): accuracy scores, along with precision, recall and F1 score, are shown in Eqs 1–4.

Accuracy ¼
TPþ TN

TP þ TN þ FP þ FN
ð1Þ

Precision ¼
TP

TP þ FP
ð2Þ

Recall ¼
TP

TP þ FN
ð3Þ

F1 Score ¼ 2�
Precision� Recall
Precisionþ Recall

ð4Þ

Another more reliable derivative performance measure is the Matthews correlation coeffi-

cient (MCC), which only produces a high score if the prediction gained good results in TP,

FN, TN, and FP [71].

MCC ¼
ðTP � TNÞ � ðFP� FNÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FPÞðTPþ FNÞðTN þ FPÞðTN þ FNÞ

p ð5Þ

Table 1. Neural network structure.

Layer Number Layer Type Output Shape Parameters

1 Dense (None, 1024) 75776

2 Dense (None, 512) 524800

3 Batch normalization (None, 512) 2048

4 Dense (None, 512) 262656

5 Dense (None, 256) 131328

6 Batch normalization (None, 256) 1024

7 Dense (None, 256) 65792

8 Dense (None, 128) 32896

9 Batch normalization (None, 128) 512

10 Dense (None, 128) 16512

11 Dense (None, 64) 8256

12 Batch normalization (None, 64) 256

13 Dense (None, 64) 4160

14 Dense (None, 32) 2080

15 Dense (None, 16) 528

16 Batch normalization (None, 16) 64

17 Dense (None, 16) 272

18 Dense (None, 2) 34

https://doi.org/10.1371/journal.pone.0274538.t001
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The Cohen’s kappa (CK) is a robust statistic widely used to measure the algorithm perfor-

mance [71].

CK ¼
Accuracy � Pe

1 � Pe
ð6Þ

Hamming loss gives the fraction of all the labels that have been incorrectly identified.

HL ¼
1

m

Xm

i¼1

jyiDy1
i j

Q ð7Þ

F-Beta (beta = 1.0) is the weighted harmonic mean between recall and precision.

The dataset was split into 80% training data and 20% test data. Models were run with 90

epochs and the model scored well with the above performance metrics: accuracy 98.24%,

Cohen’s kappa score 96.49%, Matthews correlation coefficient 96.50%, hamming loss 0.0175,

precision 98%, recall 98%, f1-score 98%, area under the receiver operating characteristic (ROC

AUC) score 98.24%, F-beta(beta = 1) score 98.26%. The accuracy curve, loss curve and confu-

sion matrix are shown in Fig 4. The top left plot indicates the accuracy curve and the top-right

plot the loss curve. Each plot x-axis shows time or epoch and y-axis learning or loss. The learn-

ing curve has improve over time. The bottom center plot illustrates the confusion matrix to

Fig 4. Accuracy curve, loss curve, and confusion matrix.

https://doi.org/10.1371/journal.pone.0274538.g004
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observe the proposed model performance. The confusion matrix reflect the true positive rate

at the top left corner, the false-positive rate at the top right corner, the false-negative rate at the

bottom left corner, and the true-negative rate at the bottom right corner.

6.2 Comparison with other standard algorithms

The model’s performance was compared to the following popular machine learning

algorithms.

• Logistic Regression is a popular algorithm used to used to solve classification problems [73],

using gradient descent to reduce the cost. The logistic regression algorithm achieved 89.47%

detection accuracy.

• The k-nearest-neighbours (KNN) classifies based on similarity of examples. It can help

reduce the computational cost while maintaining classification accuracy [74]. The KNN clas-

sifier achieved 89.91% detection accuracy.

• Support Vector Machines (SVM) uses hyperplanes to separate classes [75]. The SVM classi-

fier achieved 89.47% detection accuracy.

• Random Forest provides accurate results most of the time without hyper-parameter tuning

[76]. The random forest creates several decision trees and merges them to get more accurate

results. The random forest classifier achieved best 91.66% detection accuracy.

By contrasting the confusion matrices (Figs 4 and 5) and from the performance metrics in

Table 2, it was found that RUNN-COV performs better than these standard machine learning

algorithms.

Table 2 shows that RUNN-COV achieved detection accuracy 98.24%, faring better than

logistic regression (89.47%), k-nearest neighbors (89.91%), support vector machines (89.47%),

and random forest (91.66%). This is visually represented in Fig 6.

6.3 Performance comparison with existing approaches

Table 3 shows the comparison of RUNN-COV against various approaches in literature.

Among them, the only one that used the same dataset achieved an accuracy of 51% [57] while

RUNN-COV achieves 98.26% accuracy. RUNN-COV also has comparable results to other

models that were run on different datasets.

6.4 Statistical analysis

We used the statistical investigation to compare performance and novelty against previous

studies. To compare the difference between the previous and proposed studies, we used a

paired samples t-test. The statistical paired t-test is appropriate to compare statistical signifi-

cance’s and differences [77]. To investigate performance used evaluation metrics including the

F1 score and precision score.

t ¼
�x � m
S=
p
N ð8Þ

In Eq 8, �x is a sample mean μ is the constant for the population mean, N is the number of

observations, and S=
p
N is the estimated standard error of the mean. We structured the fol-

lowing six null hypotheses:

x1H0: The deesom (1:50) Vs. RUNN-COV model performance have no significant difference.
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x2H0: The OC-SVM (1:50) Vs. RUNN-COV model performance have no significant

difference.

x3H0: The deesom (1:100) Vs. RUNN-COV model performance have no significant

difference.

x4H0: The OC-SVM (1:100) Vs. RUNN-COV model performance have no significant

difference.

Table 2. Performance comparison with traditional ML models.

Model MCC Cohen’s kappa Hamming Loss Precision Recall F1 score Accuracy ROC AUC

RUNN-COV 96.50% 96.49% 0.0175 97.41% 99.12% 98.26% 98.24% 98.24%

RF 83.33% 83.33% 0.0833 91.15% 91.96% 91.55% 91.66% 91.67%

LR 79.00% 78.95% 0.1052 87.93% 91.07% 89.47% 89.47% 89.50%

SVM 79.41% 78.97% 0.1052 85.48% 94.64% 89.83% 89.47% 89.56%

KNN 79.85% 79.82% 0.1008 88.69% 91.07% 89.86% 89.91% 89.93%

https://doi.org/10.1371/journal.pone.0274538.t002

Fig 5. The confusion matrix shows the accuracy of traditional machine learning algorithms. The correctly classified data is reflected along the

diagonal regions. The misclassified is reflected in the off-diagonal regions. Top-left plot logistic regression confusion matrix, top-right plot k-nearest-

neighbors confusion matrix, bottom-left plot support vector machines confusion matrix, and bottom-right plot random forest confusion matrix.

https://doi.org/10.1371/journal.pone.0274538.g005
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x5H0: The deesom (1:200) Vs. RUNN-COV model performance have no significant

difference.

x6H0: The OC-SVM (1:200) Vs. RUNN-COV model performance have no significant

difference.

Table 4 shows the paired t-test results at 0.05 significance level and justifies the significant

difference between the performance of previous studies and proposed studies. The paired t-

test results that the p-value is less than 0.05 hence all six hypotheses x1H0, x2H0, x3H0, x4H0,

x5H0, and x6H0 are rejected.

Fig 6. The radar chart illustrates the differences in performance metrics of KNN, RUNN-COV, logistic regression, random forest, and SVM

algorithms. In this visual analysis, the different vertices show where each algorithm performs well and where each performs poorly.

https://doi.org/10.1371/journal.pone.0274538.g006

Table 3. Performance comparison proposed model with relevant existing approaches.

Ref. Models MCC Precision Sensitivity/Recall F1 score Accuracy

[45] MicroRNA-NHPred 89.65% - - - 94.83%

[48] CNN-LSTM 88.00% - 94.80% 92.50% 94.30%

[48] SVM - - - - 90.00%

[47] PlantMirP2 - - 96.75% - 97.54%

[55] Plantmirp-rice: 87.10% - 87.91% - 93.48%

[46] DP-miRNA - - 97.30% - 96.80%

[54] PlantMiRNAPred - - 90.31% - 92.06%

[57] deeSOM - - - 51% -

[57] OC-SVM - - - 39% -

This paper RUNN-COV 96.50% 97.41% 99.12% 98.26% 98.24%

https://doi.org/10.1371/journal.pone.0274538.t003
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With p-value less than 0.05 for all tests, with 95% confidence our model can be viewed as

novel in nature and performs significantly better than existing approaches.

Table 5 displays our number of experiments, novelty, sampling strategy, variation of models

and layers, as well as performance. Table 6 shows the p-values are less than 0.05, which indi-

cates the significant difference between standard machine learning models against the pro-

posed model.

Table 4. RUNN-COV model against previous studies paired sample t-test (significance level of 0.05).

Model Pair p-value

deesom (1:50) Vs. RUNN-COV 0.026

OC-SVM (1:50) Vs. RUNN-COV 0.021

deesom (1:100) Vs. RUNN-COV 0.027

OC-SVM (1:100) Vs. RUNN-COV 0.030

deesom (1:200) Vs. RUNN-COV 0.034

OC-SVM (1:200) Vs. RUNN-COV 0.024

https://doi.org/10.1371/journal.pone.0274538.t004

Table 5. Number of experiments, sampling strategy, variation of models and layers, and performance against previous and proposed approaches.

Experiment Strategy (Dataset) Models F1 score

Exp1 Without undersampling RF 13.33%

Exp2 Without undersampling LR 20.14%

Exp3 Without undersampling SVM 05.21%

Exp4 Without undersampling KNN 08.47%

Exp5 Without undersampling Without Batch Normalization layers 47.17%

Exp6 Undersampling RF 91.55%

Exp7 Undersampling LR 89.47%

Exp8 Undersampling SVM 89.83%

Exp9 Undersampling KNN 89.86%

Exp10 Undersampling Without Batch Normalization layers 92.10%

Exp11 Undersampling With Dropout layers 92.10%

Exp12 Undersampling RUNN-COV 98.26%

Previous literature Ratio(1:50) deeSOM 51.00%

Previous literature Ratio(1:50) OC-SVM 39.00%

Previous literature Ratio(1:100) deeSOM 42.00%

Previous literature Ratio(1:100) OC-SVM 28.00%

Previous literature Ratio(1:200) deeSOM 36.00%

Previous literature Ratio(1:200) OC-SVM 20.00%

https://doi.org/10.1371/journal.pone.0274538.t005

Table 6. Paired sample t-test. (significance level of 0.05).

Model Pair p-value

RUNN-COV Vs. Exp7 0.00040

RUNN-COV Vs. Exp8 0.00044

RUNN-COV Vs. Exp9 0.00094

RUNN-COV Vs. Exp10 0.00042

https://doi.org/10.1371/journal.pone.0274538.t006
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6.5 Discussion

In this research work, we have extensively explored the detection method of SARS-CoV-2 pre-

cursor-miRNAs through Artificial Neural networks. The initial dataset through experimenta-

tion provided a moderate performance which through dataset investigation, we unearthed

existing class imbalance problem. Our research on solving high class imbalance problem, led

us to further investigate solution manuals regarding class imbalancce problems and opted for

random undersampling techniques. Similarly, As the dataset is noisy, it was handy for practi-

tioners to cluster the dataset for which t-SNE was employed. t-SNE uncovers inexact contigu-

ity in an basic high-dimensional complex, so clusters on the low-dimensional representation

of the high-dimensional space maximize the probability that bordering data points will not be

within the same cluster. Before employing t-SNE, we undertook the tradeoff that, t-SNE does

not preserve distances nor density but preserves some form of nearest neighbours. t-SNE gave

us 2D maps for the visualization of bias and variance from high-dimensional data. While the

difference is subtle, but it affects any distance based algorithms at its core which led us to select

distance-exclusionary algorithms that achieved extremely high- performance scores on various

measures, outperforming traditional machine learning models and the other existing work on

the same dataset. One might argue, why not use random oversampling instead of undersam-

pling. We have investigated these as well albeit not reported in the results. We have realized

that duplicating the instances in the minority class although solved class imbalance problem

but it increased the likelihood of overfitting, as instances were increased gradually. Eventually,

random oversampling contributed to a substantial decrease of classifier performance and

increased computational error manifold that led us to stick to undersampling techniques.

An interesting instance of our neural network structure is susbsequent utilization of batch

normalization. Although, using undersampling instead of oversampling minimized overfitting

problem, in our experimentation, we still received anomaly through overfitting which was ulti-

mately solved using batch normalization. Furthermore, this helped the network in reducing

training time, smoothing the loss function and increased overall stability by reducing the gen-

eralization error. While we proposed the 18-layer exhaustive neural network, we have experi-

mented the model with several variants of layers by including and excluding normalization

and dropout layer as well. However, in our investigation, while including these two we have

realized some interesting insights about neural networks in general. When using dropouts

during training, activations are scaled to maintain the average after the dropout shift. How-

ever, the difference is not preserved. Traversing a non-linear slice translates this dispersion

shift into an activation average shift, transitioning to the final linear projection slice. The final

prediction is trained to fit the training time stats, so if dropout is off, it will fail during valida-

tion. This behavior is not an issue for tasks where only relative scaling of the output is impor-

tant (such as softmax classification). In our case, if the output represents an absolute quantity,

this leads to poor inference time performance. This architecture was arrived at after extensive

experimentation using different neural network models.

The novelty of this research stands at experimentation of exploratory data analysis (EDA)

including correlation matrix and t-distributed stochastic neighbor embedding. Efficient

exploratory data analysis including data visual representation and data point analysis mecha-

nisms aided us in selecting the best hyperparameters and models. RUNN-COV (Random

Under sampling with Neural Network for COVID detection) models was presented based on

previous EDA. Our designed model has produced a substantially superior performance which

we have shown through experimentation. Statistical analysis was conducted against previous

studies to understand the objective statistical significance of our research work that concluded

our work is significant in nature.
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While Tables 2 and 3 shows our model outperforming the previous literature as well as tra-

ditional machine learning approaches, the neural network models always hankers for space

and time. The research can be continued further in evaluating this detection through more

explainable mechanisms, which would aid us in excluding or including layers, and hyperpara-

meters from architecture to make the model more robust and modular for daily usage. Semi-

supervised learning such as active learning, sub-modular optimization, reinforcement learning

can also be employed to attack the challenges again that were investigated in our research and

reported in subsequent discussion to advance this field of research. The performance measures

were also chosen to address the high class imbalance problem. We have observed that albeit

having a greater accuracy, the accuracy metrics itself is not a good measure of performance in

these highly imbalanced set of data. This lead us to experiment with precision and recall where

precision provided us with an insight on how good the model was at predicting a specific type

of target. Recall provides an insight on how many times the model detected a specific target.

Overall, experimentation with performance measures such as MCC, F1- score were also added

to the list for understanding the actual performance of our model.

7 Conclusion

COVID research necessitates an all-hands-on-deck strategy in order to eradicate the virus’s

impact on the planet in a manner that is environmentally responsible. Among the various

research domain specialists, computer scientists play a significant role in developing, analys-

ing, and deploying cutting-edge research to continue the decent battle. In this study, a strategy

is suggested that combines deep learning-based efficient pre-processing with neural network-

inspired classification structures to identify SARS-CoV-2 pre-miRNAs effectively, therefore

enhancing their performance. Our study demonstrates the effective processing and visualisa-

tion tools to generate insights, such as random undersampling, t-SNE, and correlation matrix,

which gave insightful information that eventually increased the current research performance.

The study examines various approaches to the class imbalance, adopted a random undersam-

pling approaches and visualised data with t-SNE to generate better performances. Later, it is

compared with existing approaches to classical Machine learning algorithms to provide an

understanding of the contribution throughout the study.

This study has presented the RUNN-COV model, a neural network model with dense layers

and batch normalisation layers for SARS-CoV-2 pre-miRNAs identification based on seventy-

three features that enable the rapid detection of COVID. The model is comprised of using ran-

dom undersampling techniques to the extremely imbalanced dataset in order to decrease class

imbalance, followed by the use of a precisely designed artificial neural network. With Mat-

thew’s correlation coefficient (MCC) score of 96.50 percent and an F1 score of 98.26 percent,

the model outperformed typical machine learning models and other current work on the same

dataset on a variety of other performance metrics. Additionally, the model performance is sim-

ilar to that of other models that have been performed on distinct datasets.

It is believed that RUNN-COV will aid in the sequencing of the SARS-CoV-2 genome and

the identification of target sites in an RNA in order to create oligonucleotide-based medicines

against the genetic structure of the virus. Comparing this study with previous research, a com-

prehensive statistical analysis was undertaken to determine the objective statistical significance

of the study.

Future work will include the development of a pre-miRNA detection technique based on

raw RNA sequence data and the application of RUNN-COV to additional organisms’ datasets.

Practitioners are also required to research to create more COVID-related data so that the issue

of class imbalance may be resolved from the outset. In addition, prospects for study may be
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identified in the interpretation of results using explainable artificial intelligence, since the phy-

sicians, nurses, and patients are the most probable layperson consumers and stakeholders.

The whole research work including data visualization, exploratory data analysis, COVID

detection task are available in github https://github.com/MdMahadiHasan1/SARS-CoV-

2-pre-miRNA for repeatability and seamless replication.
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