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Posttranslational modification of proteins is a ubiquitous cellular mechanism for regulating protein function. Some of the most
heavily modified neuronal proteins are cytoskeletal proteins of long myelinated axons referred to as neurofilaments (NFs). NFs are
type IV intermediate filaments (IFs) that can be composed of four subunits, neurofilament heavy (NF-H), neurofilament medium
(NF-M), neurofilament light (NF-L), and α-internexin. Within wild type axons, NFs are responsible for mediating radial growth, a
process that determines axonal diameter. NFs are phosphorylated on highly conserved lysine-serine-proline (KSP) repeats located
along the C-termini of both NF-M and NF-H within myelinated axonal regions. Phosphorylation is thought to regulate aspects of
NF transport and function. However, a key pathological hallmark of several neurodegenerative diseases is ectopic accumulation
and phosphorylation of NFs. The goal of this review is to provide an overview of the posttranslational modifications that occur in
both normal and diseased axons. We review evidence that challenges the role of KSP phosphorylation as essential for radial growth
and suggests an alternative role for NF phosphorylation in myelinated axons. Furthermore, we demonstrate that regulation of NF
phosphorylation dynamics may be essential to avoiding NF accumulations.

1. Introduction

The established role of neurofilaments (NFs) is to increase
axonal diameter in myelinated fibers thereby increasing nerve
conduction velocity [1]. NFs are composed of an N-terminal
head, central rod, and C-terminal tail domain [2] (Figure 1).
NFs are posttranslationally modified in all three of these
functional domains [3–7]. NF phosphorylation, the most
frequent posttranslational modification (PTM) and focus of
our review, occurs primarily at conserved KSXXP motifs
(KSP) located on the C-terminal tail domain of neurofila-
ment heavy (NF-H) and medium (NF-M) [3–6]. However,
phosphorylation of “non-KSP” serine residues within NF-
M and neurofilament light (NF-L) amino terminal (N-
terminal) head domain has been observed [7]. Transgenic
[8] and gene-targeted [9] mouse lines expressing mutage-
nized NF phosphorylation sites have significantly advanced
our understanding of the role of NF phosphorylation.

For example, mice expressing a serine to aspartate mutation
at position 55 of NF-L, NF-LS55D, displayed accumulations
of phosphorylated NFs within cell bodies [8]. Furthermore,
mice expressing serine to alanine mutations within the 7
identified KSP motifs of NF-M, NF-MS→A, demonstrated an
unaltered distribution of axonal diameters [9].

Over the last 20 years, great strides have been taken
in the characterization of NF proteins, their function, and
their PTMs. In this review, we will attempt to describe
the experiments that have led to the current understanding
of the role of NF proteins and their PTMs in normal
and diseased axons. Furthermore, using other intermediate
filaments as a reference, we will detail a potential role for NF
phosphorylation. Moreover, we will address the importance
of investigating this putative role of NF phosphorylation
and its potential to explain abnormal NF accumulations in
neurodegenerative diseases.
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Figure 1: Representation of the functional domains of each NF subunit. The subdomains within each domain are identified along with
approximate location of all relevant amino acid positions.

2. Does KSP Phosphorylation Regulate
Axon Diameter?

Axonal diameter influences the rate of neuronal conduction
velocity with larger caliber axons conducting faster than
small caliber axons [10–12]. In myelinated axons, the
internode (myelinated) has a larger diameter than nodes of
Ranvier (unmyelinated). Axonal diameter is established by a
process referred to as radial axonal growth. Axonal NFs were
required for radial growth [13, 14]. NF phosphorylation and
radial growth were reduced in axons when compact myelin
failed to form [15]. Moreover, phosphorylation of NFs C-
termini was increased in myelinated axonal regions relative
to unmyelinated regions of the same axon [16, 17]. Taken
together, these data suggested that KSP repeat phosphoryla-
tion was required for establishing axonal diameter.

Deletion of NF-M [18, 19] resulted in a reduction in
radial growth that was similar to nerves without axonal
NFs [14], whereas deletion of NF-H [20–22] did not reduce
axonal diameter to a similar level as loss of NF-L [14] or
NF-M [18, 19]. Moreover, axonal diameter was reduced in
mice expressing C-terminally truncated NF-M (NF-MTailΔ)
or C-terminally truncated NF-M and NF-H (NF-(M/H)TailΔ)
[23] (Figures 2(a) and 2(b)). However, truncation of NF-
H (NF-HTailΔ) only reduced axonal diameter in young mice
[22]. Axonal diameters in older NF-HTailΔ mice were similar
to wild type [22]. These data suggested that NF-M and its
C-terminus were essential for radial growth and seemed to
support the NF KSP phosphorylation hypothesis of radial
growth.

A direct test of this hypothesis was performed by express-
ing a KSP phosphoincompetent variant of NF-M in mice.
Site-directed mutagenesis was utilized to mutate all KSP
serine residues to alanine preventing KSP phosphorylation
(NF-MS→A mice) without removing the entire C-terminus
of NF-M [9] (Figure 2(c)). Surprisingly, axonal diameter
was not altered in NF-MS→A mice suggesting that KSP
phosphorylation was not an essential component of radial
axonal growth [9] (Figure 2(c)). When taken together with
the results obtained from NF-MTailΔ mice, these results
suggested that the C-terminus of NF-M mediated radial

growth by a mechanism that did not require KSP phospho-
rylation. Therefore, the precise mechanism by which NF-M
C-terminus mediates radial growth has yet to be determined.

3. Proximal to Distal Appearance of
Phospho-Epitopes of NFs during
Axonal Transport

Although NF phosphorylation does not directly regulate
radial growth, evidence suggested a progressive appearance
of phosphoepitopes [7, 24, 25] as NFs are transported from
the neuronal cell bodies to the axons [26]. Radiolabeling
of NFs in retinal ganglion cells of mice suggested that
NFs were more heavily phosphorylated in distal axonal
regions [25]. Moreover, the appearance of phosphoepi-
topes on NF proteins occurred at distinct developmental
stages. NF-H phosphorylation resulted in the appearance
of a phosphoepitope that was recognized by the SMI-34
monoclonal antibody [27]. As NFs enter the optic nerve,
this epitope was readily visualized suggesting amino acid
phosphorylation that contributes to the SMI-34 epitope
occurred in neuronal cell bodies [28]. A phosphoepitope
recognized by SMI-31 on NF-H was detected only within
axons of the optic nerve subsequent to the SMI-34 epitope
[28], and the phosphoepitope recognized by RT97 antibodies
was detected last and was only evident in axons of optic
nerve [28]. Appearance of the RT97 epitope coincided with
local accumulation of NFs and initiation of radial growth
[28]. Taken together these results suggested that temporally
distinct phosphorylation events of NF proteins regulated NF
transport in optic nerve axons.

4. Multiple Causes of Aberrant
NF Accumulations

NF accumulations are hallmarks of neurodegenerative dis-
eases (NDDs). However, it is unclear how NDDs alter NF
dynamics resulting in the observed accumulations. Analysis
of NFs suggests several potential sites where disease-induced
alterations could result in NF accumulations. One such
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Figure 2: Representation of NF-H and NF-M mutants. (a) Incorporation of a C-terminal myc tag results in loss of 612 amino acids including
all KSP repeat motifs. (b) Incorporation of a C-terminal myc tag results in loss of 426 amino acids including 7 KSP repeat motifs. (c) Site-
directed mutagenesis was utilized to mutate all KSP serine residues to alanine thereby preventing KSP serine phosphorylation without
deletion of the remaining amino acids. The approximate location of each KSP repeat is identified.

mechanism is disrupted NF transport and altered local
accumulation caused by altered phosphorylation dynamics.

Mechanistically, phosphorylation may regulate NF trans-
port by altering NF association with molecular motors.
Phosphorylation of NF-H and NF-M altered NF associ-
ation with kinesin [29, 30] and dynein [26]. Decreased
NF-H association with the anterograde motor, kinesin,
coincided with the appearance of the C-terminal RT97
phopho-epitope [31] and correlated with increased NF-H
association with the retrograde motor, dynein [26]. Taken
together, these data suggest that increased C-terminal (KSP)
phosphorylation directed the overall flow of NF transport
towards neuronal cell bodies providing evidence for a role
of altered phosphorylation dynamics in the appearance of
phosphorylated NF accumulations within motor neuron cell
bodies.

Moreover, deletion of either NF-H [19–21] or NF-M
[32] increased the rate of NF transport in vivo supporting
a role for KSP phosphorylation in regulating NF transport.
Therefore, increased rates of NF transport may have resulted
from increased association of NFs with kinesin, if loss of
a single subunit results in a net loss of phosphorylation.
Interestingly, deletion of NF C-termini and all KSP repeats
did not alter NF transport rates [22, 33, 34]. Unaltered rates
of NF transport in mice expressing truncated NFs appeared
to contradict a primary role for NF phosphorylation in regu-
lating NF transport. However, truncation of a single subunit
resulted in compensatory phosphorylation of the remaining
subunit [22, 23]. Thus, phosphodependent regulation of NF
transport cannot be completely ruled out until transport is
measured in mice simultaneously expressing C-terminally
truncated NF-M and NF-H.

NF-L [35] and NF-M [7] were phosphorylated at
serine residues located throughout their amino termini,
especially serine55. Mimicking constitutive phosphorylation
by mutating serine residues to aspartate, such as NF-LS55D,
altered NF assembly and decreased NF transport [35].
Transgenic mice expressing low levels of NF-LS55D developed

NF accumulations within neuronal cell bodies in mice as
young as 4 weeks old [8]. Additionally, phosphorylation
of NF-M at protein kinase A sites within the N-terminus
inhibited C-terminal KSP phosphorylation of NF-M [7].
Thus, phosphorylation of NF-L and NF-M on serine residues
located within the N-terminus may be a mechanism to
delay NF assembly and phosphorylation thereby preventing
ectopic accumulation of NFs within neuronal cell bodies.

Altering NF subunit stoichiometry by overexpression
of NF-L [36, 37], NF-M [36], or NF-H [38] altered NF
phosphorylation dynamics. NF-L and NF-H overexpression
resulted in phosphorylated NF accumulations in motor
and sensory neuron cell bodies that were not observed in
control littermates [37, 38]. NF-M overexpression resulted
in decreased NF-H phosphorylation and increased NF-L
expression [36]. Furthermore, NF-L or NF-H overexpression
resulted in morphological abnormalities, cell body swelling,
and muscle atrophy that were similar to the pathologies
observed in amyotrophic lateral sclerosis (ALS) [39, 40].
Neuronal pathology was alleviated in NF-H transgenic mice
by simultaneous overexpression of NF-L [41] highlighting
the importance of regulating the relative stoichiometry
of the individual NF subunit proteins. Altered subunit
stoichiometry has been observed in NDDs. NF-L mRNA was
selectively decreased in Alzheimer’s disease (AD) [42]. NF-
L mRNA expression was also reduced in sporadic [43] and
superoxide dismutase 1-linked familial ALS [44]. Deletion of
NF-L in mice resulted in accumulation of NF-H and NF-M
in neuronal cell bodies [45]. If reductions in NF-L mRNA
expression lead to reduced NF-L protein, then, as observed
in genetically altered mice, altering NF subunit stoichiometry
may contribute to NF accumulations observed in both AD
and ALS.

A potential mechanism for regulating NF content within
the axon is degradation by the ubiquitin proteasome system
(UPS) [46–48]. Disruption of two components of the UPS,
tripartite motif protein 2 (Trim2GT) mice [46] and ubiquitin-
specific protease 14 (Usp14) (axJ mice) [49–51], resulted
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in phenotypic ataxia resulting from motor neuron dysfunc-
tion. Upon further examination, Trim2GT mice displayed
alterations associated with neurodegeneration [46]. One-
month-old Trim2GT mice contained axonal swellings and NF
accumulations in regions that overlapped calbindin D-28K
immunoreactivity suggesting that the axons originated from
Purkinje neurons [46]. By 5 months, Purkinje cell loss was
readily apparent. Trim2GT mice showed an 85% reduction in
the number of Purkinje cells relative to control mice [46].

AxJ mice demonstrated a selective loss of large caliber
axons within the fourth and fifth lumbar (L4-L5) motor
roots [49]. Furthermore, AxJ mice displayed severe neuro-
muscular junction (NMJ) defects such as swollen and poorly
arborized nerve terminals that demonstrated sprouting,
denervation, and disorganized postsynaptic AChRs [49].
Within the tibialis anterior (TA) muscle, axonal swellings
contained NF accumulations that were observed as early
as P7 [49]. Moreover, NMJ defects were accompanied by
defects in synaptic transmission. AxJ mice had a 1.5-fold
increase in miniature end-plate potential (mEPP) amplitude.
Additionally, mEPP frequency and vesicular quantal content
were both reduced by ∼40% suggesting synaptic vesicle
disorganization [49, 50].

Disruptions to both components of the UPS resulted in
axonal swellings containing phosphorylated NF accumula-
tions. Trim2 expression was almost exclusively limited to the
nervous system in Trim2GT mice [46]. Moreover, restoration
of neuronal Usp14 levels (Thy1-Usp transgene) in axJ mice
alleviated phenotypic ataxia [52] and NF accumulations
[49]. Therefore, altering the neuronal UPS resulted in NF
accumulations that were similar to those observed in mice
expressing NFs that mimic constitutive phosphorylation
within the N-terminal head domain, mice with altered NF
stoichiometry, and many human NDDs.

5. Is NF Phosphorylation a Mechanism
to Enhance Stability by Reducing
NF Degradation?

NFs are long-lived axonal proteins whose accumulation
within the axon is strictly regulated. Although evidence sug-
gests that NFs associate with molecular motors [26, 29, 30]
in a phosphodependent manner to reach their destination,
little is known about the mechanisms that prevent excessive
NF accumulation and regulate local NF turnover. The
appearance of NF accumulations in axons with UPS defects
suggests that the UPS has a critical role in the regulation of
NF turnover.

Ubiquitin epitopes have been identified on NF-M puri-
fied from spinal cord verifying that ubiquitination is indeed
NF PTM [48]. Furthermore, NF-L has been identified as a
target of the E3 enzyme, Trim2 [46], and NF-M has been
identified as a target of the E3 enzyme, carboxyl-terminus
of Hsc70 interacting protein (CHIP) [47]. Identification of
NF E3 enzymes supports the claim that NFs may undergo
ubiquitin-mediated degradation. However, the mechanisms
responsible for regulating NF ubiquitination have yet to be
determined. Trim2 and CHIP are classified as E3 ligases

[46, 47] which are proteins that catalyze the transfer of
ubiquitin to substrate proteins [53]. Both Trim2 [54] and
CHIP [55] targeted and ubiquitinated protein substrates in a
phosphodependent manner. The E3 ligase, c-Cbl, had a sim-
ilar phosphodependence for its interaction with epidermal
growth factor receptor (EGFR) and sprouty-2 (Spry2) [56].
Interestingly, increased phosphorylation of EGFR or Spry2
reduced c-Cbl substrate binding [56]. Although evidence
suggested that Trim2 and CHIP require substrate phospho-
rylation [54, 55], it is unknown if increased phosphorylation
would negatively regulate TRIM2 and CHIP affinity for NF
subunits similar to c-Cbl. However, evidence suggested that
NF stability is increased with increasing phosphorylation.
NF phosphorylation was increased in cells [57] and brain
slices [58] treated with the phosphatase inhibitor, okadaic
acid, resulting in increased NF levels [57, 58]. Furthermore,
treating purified NFs with alkaline phosphatase resulted in
dephosphorylated NFs that were degraded more rapidly by
the calcium dependent protease, calpain, when compared
to phosphorylated NFs [59]. Therefore, increased NF phos-
phorylation may be a mechanism for enhancing NF stability
by preventing NF turnover by UPS or protease-dependent
mechanisms.

Ubiquitination of the type I/II intermediate filaments,
keratins, may offer insight into the interaction between
NF phosphorylation and ubiquitination. Like NFs, keratins
contain a consensus sequence (69QSLLSPL75) that is phos-
phorylated. A proline to leucine mutation at position 74
of keratin 8, K8P74L, eliminated the phosphorylation of this
consensus site and increased K8 ubiquitination [60]. Simi-
larly, K8P74A/D mutations led to decreased phosphorylation
and increased K8 ubiquitination [60]. Conversely, a K8L71P

mutation increased K8 phosphorylation and decreased K8
ubiquitination [60]. Taken together these data suggest that
phosphorylation and ubiquitination of K8 are reciprocally
regulated [61, 62]. The similarity between NFs (type IV
intermediate filaments) and keratins (type I/II intermediate
filaments) suggests that NF KSP phosphorylation could
regulate subsequent PTMs in a manner similar to keratin
phosphomotifs.

6. NF Phosphorylation Is Increased
in Neurodegenerative Diseases

In many NDDs, accumulations of phosphorylated NFs are
hallmarks of pathology. Increased phosphorylation resulted
in increased NFs [57, 58] and decreased K8 ubiquitination
[60], whereas dephosphorylation of the most heavily phos-
phorylated NF subunit, NF-H, increased its turnover sixfold
[59]. Furthermore, NF-L [46] and NF-M [47] have recently
been identified as E3 ligase targets. Taken together, these
data suggest that ectopic phosphorylation of NFs results in
NF accumulations, which may lead to further phosphory-
lation subsequent to aggregate formation. Delineating the
mechanisms that regulate NF phosphorylation may prove
to be critical in regulating NF accumulations in NDDs. In
this section, we focus on three NDDs as models of NF
contribution to disease pathogenesis.



Journal of Amino Acids 5

P8R/Q/L Q333P

P22S/T
N98S

A149V
E397K

E90K
L334P

L269P

L94P

E140X

E210X

1

CMT2E-linked NF-L mutations

TailRod

542
Coil 1 Coil 2

Head

Mammalian

Majority 

10 20 30 40 50 60

P P P P PP P P PP

70

Mouse

Bovine

P PPR S

Orangutan

Rat

Human

Identity = 94%

ΔE528ΔC322-N326

STSY KRRY VETPRVHISSVRSGY STARSAY SSY SAPVSSSLSVRRSY SSSSGSLMPSLESSFS Y EPY X

STSY KRRY VETPRVHISSVRSGY STARSAY SSY SAPVSSSLSVRRSY SSSSGSLMPSLESSF GYDPY F NL

S S E Y STSY KRRY VETPRVHISSVRSGY STARSAY SSY SAPVSSSLSVRRSY SSSSGSLMPSLESF Y P Y SL

NL

STSY KRRY VETPRVHISSVRSGY STARSAY SSY SAPVSSSLSVRRSY SSSSGSLMPSLESSF S Y EPY H NL

STSY KRRY VETPRVHISSVRSGY STARSAY SSY SAPVSSSLSVRRSY SSSSGSLMPSLESSF S Y EPY F NL

STSY KRRY VETPRVHISSVRSGY STARSAY SSY SAPVSSSLSVRRSY SSSSGSLMPSLESSF S YE PY Y LN

Figure 3: Relative positions of CMT2E-linked NF-L mutations and NF-L head domain phosphorylation sites. (A) Identity and location
of all identified CMT2E-linked NF-L mutations. (B) Aligned protein sequences of human, bovine, orangutan, murine, and rat NF-L N-
terminal head domains. Identified serine phosphorylation sites within bovine NF-L are indicated along the consensus sequence. Shaded
boxes indicate conserved sequence variations, and empty boxes identify nonconserved sequence variations. An X in the consensus sequence
identifies amino acid positions that lack an overall consensus between the five species. Sequence homology is indicated by percent identity.
CMT2E-linked head domain mutations NF-LP8R and NF-LP22S are identified with an arrow with the corresponding amino acid substitution.
These two mutations are located adjacent to phosphorylation sites. Notice that all but one (ser69) bovine phosphorylation site is conserved
between species. Sequence accession numbers used to generate this figure are as follows: Human NP 006149, Bovine NP 776546, Orangutan
NP 001126494, Mouse NP 035040, and Rat NP 113971.

6.1. Amyotrophic Lateral Sclerosis (ALS). ALS is an adult-
onset NDD that selectively kills upper and lower motor
neurons. Despite common pathogenic features, there is
no identifiable genetic linkage in 90–95% of ALS cases
(sporadic ALS) while 5–10% of ALS occurrences result
from dominantly inherited genetic mutations (familial ALS)
[63]. Dominant missense mutations in the gene for the
cytoplasmic Cu/Zn superoxide dismutase 1 (SOD1) are
responsible for 20% of familial ALS cases [64]. Motor neuron
cell bodies contain NF accumulations in cases of sporadic
[39] and familial ALS [65].

Mice expressing SOD1-linked mutations resulted in
motor neuron pathology that included ectopic accumula-
tions of phosphorylated NFs within lumbar motor neuron
cell bodies [63]. Furthermore, SOD1-linked ALS mouse
models demonstrated impaired slow axonal transport of NFs
as the earliest indication of pathology [66]. In order to
identify the role of NFs in SOD1-linked ALS pathogenesis,
SOD1G85R/NF-L−/− mice were generated [45]. The absence
of assembled NFs in axons (NF-L−/−) alleviated the selective
motor neuron vulnerability and slowed SOD1G85R-mediated
toxicity. Furthermore, elimination of NF KSP motifs via

single or double truncation of NF-M and NF-H C-termini
delayed disease onset and extended survival of the SOD1G37R

transgenic mouse model [67]. Interestingly, delayed onset
and enhanced survival were additive with truncation of both
NF-M and NF-H C-termini enhancing survival better than
truncation of a single NF C-terminus [67]. Furthermore,
preventing NF KSP phosphorylation through C-terminal
truncation of NF-M and NF-H enhanced motor neuron
survival in SOD1G37R mice [67]. These results suggested that
the NF network, particularly NF-M and NF-H C-termini
and their phosphorylation, contributes to ALS pathogenesis.
However, the mechanism by which removal of axonal NFs
or preventing their C-terminal phosphorylation ameliorated
ALS pathology remains to be determined.

6.2. Charcot-Marie-Tooth (CMT). CMT is the most
commonly inherited peripheral neuropathy. Based upon
the specific genetic defect CMTs are grouped into four
main types, CMT1-4 with each type having several subtypes
[68, 69]. CMT2E has been linked to mutations throughout
the functional domains of NF-L [70] (Figure 3(A)).
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NF-L mutations are typically autosomal dominant
though two recessive forms have been identified [71, 72]
(Figure 3(A)). CMT2E recessive mutations introduce a
nonsense mutation resulting in loss of NF-L protein.

Two CMT2E-linked NF-L mutations are located at posi-
tions, Pro8 and Pro22. These mutations are located adjacent
to known bovine head domain phosphorylation sites, Ser2,
Ser12, Ser26, and Ser27(Figure 3(B)). Interestingly, Pro8 and
Pro22 along with all N-terminal serine residues are highly
conserved across mammals [73] (Figure 3(B)). The bovine
NF-L head domain contains thirteen phosphorylation sites
[73]. All but one of these sites (Ser69) have complete
sequence homology in NF-L from a variety of mammals [73]
(Figure 3(B)).

When expressed in cultured cells, the hNF-LP22S/T muta-
tion abolished NF-L head domain phosphorylation [74].
Additionally, mutation of a proline residue in keratin 8
prevented phosphorylation of a nearby serine residue [60].
Taken together, these data suggest that NF-LP8R and NF-LP22S

mutations may prevent N-terminal phosphorylation. As
previously discussed, expressing NF-L that mimics consti-
tutive phosphorylation of an N-terminal serine, NF-LS55D,
prevented NF assembly [75], and N-terminal phosphory-
lation of NF-M prevented C-terminal phosphorylation [7].
Based on the previously described role of NF phosphory-
lation, abolished N-terminal phosphorylation would result
in ectopic NF assembly and phosphorylation [7, 8, 75],
altered NF transport [21, 26, 30, 33, 35], and ectopic NF
accumulations [7, 8, 75]. Consistent with this prediction,
transgenic mice expressing the CMT-linked head domain
mutation, hNF-LP22S, displayed disrupted axonal transport
[76]. Furthermore, mutations within a conserved sequence
at the end of the rod domain, hNF-LE397K, also resulted in
ectopic NF phosphorylation as early as 1 month [77].

6.3. Spinal Muscular Atrophy (SMA). SMA is an autosomal
recessive disorder that is the leading genetic cause of infantile
death [78]. SMA is caused by a deficiency in survival motor
neuron (SMN) protein levels produced by the SMN1 gene
[79, 80], which is a ubiquitously expressed protein that has a
well-described role in RNA metabolism [81–85]. Deficiencies
in SMN protein levels lead to skeletal muscle paralysis [86].
The severity of SMA is dependent on the relative copy
number of the SMN2 gene which produces ∼15% functional
SMN that compensates for the loss of SMN1 [87, 88]. As a
result, SMA has a broad disease spectrum made up of SMA
type 0, I, II, III, and IV [89].

Within motor neurons, SMA patients [90] developed
phosphorylated NF accumulations within NMJs. Similar NF
accumulations were one of the earliest pathological alter-
ations observed in SMA mouse models [91–94]. The cause
and pathogenic properties of NF accumulations are poorly
understood in SMA. However, recent work demonstrated
that NF accumulations were likely a result of local NF
alterations [95]. Ectopic NF accumulations within motor
neuron cell bodies were not apparent early or late in disease
[91]. Moreover, the NF network was not altered in proximal
segments of motor axons of the fifth lumbar ventral root

[95], which is one of three lumbar segments that together
form the sciatic nerve. Interestingly, mice with alterations to
the UPS displayed phosphorylated NF accumulations [49]
strikingly similar to those observed in SMA models [90–
93]. Taken together, these results suggest that mechanisms
disrupting NF turnover within motor neurons may be
responsible for NF accumulations within NMJ of SMA
patients. One potential NF alteration that could lead to
reduced NF turnover and subsequent accumulation is altered
NF phosphorylation.

7. Conclusions

NFs are abundant cytoskeletal proteins that undergo various
PTMs. The most abundant PTM is phosphorylation of NF
subunit proteins within myelinated axons. Phosphorylation
of NFs was initially documented nearly 30 years ago
and thought to regulate radial growth within myelinated
axons. However, a series of recent analyses conducted on
genetically modified mice has provided evidence against
the role of NF phosphorylation in radial growth. Current
evidence suggests that NF phosphorylation is both spatially
and temporally regulated, which may be a mechanism to
regulate NF assembly and accumulation. The presence of
phosphorylated NFs in human NDDs suggests that altered
NF phosphorylation dynamics may contribute to aberrant
NF accumulation. Therefore, understanding the role of and
mechanisms regulating NF PTM may prove critical to our
understanding of the development and functioning of the
nervous system in both healthy and diseased neurons.
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