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Abstract

Background: A common challenge to the study of several infectious diseases consists in combining limited cross-sectional
survey data, collected with a more sensitive detection method, with a more extensive (but biased) syndromic sentinel
surveillance data, collected with a less sensitive method. Our article describes a novel modeling framework that overcomes
this challenge, resulting in enhanced understanding of malaria in the Western Brazilian Amazon.

Methodology/Principal Findings: A cohort of 486 individuals was monitored using four cross-sectional surveys, where all
participants were sampled regardless of symptoms (aggressive-active case detection), resulting in 1,383 microscopy and
1,400 polymerase chain reaction tests. Data on the same individuals were also obtained from the local surveillance facility
(i.e., passive and active case detection), totaling 1,694 microscopy tests. Our model accommodates these multiple pathogen
and case detection methods. This model is shown to outperform logistic regression in terms of interpretability of its
parameters, ability to recover the true parameter values, and predictive performance. We reveal that the main infection
determinant was the extent of forest, particularly during the rainy season and in close proximity to water bodies, and
participation on forest activities. We find that time residing in Acrelandia (as a proxy for past malaria exposure) decreases
infection risk but surprisingly increases the likelihood of reporting symptoms once infected, possibly because non-naı̈ve
settlers are only susceptible to more virulent Plasmodium strains. We suggest that the search for asymptomatic carriers
should focus on those at greater risk of being infected but lower risk of reporting symptoms once infected.

Conclusions/Significance: The modeling framework presented here combines cross-sectional survey data and syndromic
sentinel surveillance data to shed light on several aspects of malaria that are critical for public health policy. This framework
can be adapted to enhance inference on infectious diseases whenever asymptomatic carriers are important and multiple
datasets are available.
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Introduction

Extensive syndromic sentinel surveillance data are often

routinely collected by public health agencies. However, estimates

of disease prevalence based on these data are known to be biased

because only symptomatic individuals are sampled [1,2]. Further-

more, because of the sentinel surveillance network extent, cheaper

and less sensitive diagnostic methods are typically employed.

Researchers also collect data to study infectious disease risk factors

and asymptomatic pathogen carriers, but using cross-sectional

surveys and more expensive and sensitive diagnostic methods.

These data, however, are often geographically and temporally

limited and thus are not as abundant as sentinel surveillance data.

Robust inference on disease prevalence and risk factors would

ideally combine these datasets because they clearly complement

each other; unfortunately, standard statistical tools are not well

suited for this task. We describe here a novel statistical model that

coherently combines these disparate datasets, allowing for

enhanced inference on infectious diseases.

Our study focuses on malaria. Malaria is responsible for ,3%

of the total global disease burden [3], affecting approximately half

of the world’s population [4] and significantly hindering economic

and social development of tropical countries [5]. Despite its public

health relevance and recent increased attention to malaria

research and control [6], malaria risk factors remain difficult to

evaluate, due both to the idiosyncrasies of how data are collected

(as detailed below) and the fact that not all infected individuals are

symptomatic. Our approach addresses these challenges, providing

sharper inference on Plasmodium infection risk factors, factors

determining symptom status given infection, and overall infection

and disease prevalence. We first describe the statistical model, then

we compare its performance against standard logistic regression

using simulated and real data, and finally we apply it to a large

malaria dataset collected in the Western Brazilian Amazon.
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In Brasil, malaria cases are concentrated in the Amazon region

[7], resulting in substantial morbidity [8,9]. Similar to other

countries (e.g., India, [10]), the malaria surveillance data from the

Brazilian government consist of microscopy results from predom-

inantly symptomatic individuals, sampled through active and

passive case detection (ACD and PCD, respectively). ACD data

are obtained by health agents during home visits to symptomatic

individuals whereas PCD data come from health facilities, visited

by individuals who believe they have malaria [11]. Inherent biases

in both datasets make it difficult to determine overall malaria

prevalence and the factors that influence it [1,12]. Aggressive

active case detection (AACD) has been proposed as an alternative

surveillance technique, consisting of cross-sectional surveys where

all individuals are sampled, regardless of symptom status [11].

AACD data can be used to estimate infection prevalence and its

determinants and the size of the reservoir represented by

asymptomatic Plasmodium carriers [12–14]. Drawbacks of AACD

include high costs and the often low acceptability from the

population [12,14], which often limits AACD data to a short time-

frame and a small geographical area. As a consequence, AACD

data might not be as well suited as ACD/PCD data in determining

the effect of covariates that change substantially in time and/or

space (e.g., precipitation and presence of wetlands).

Imperfect Plasmodium detection is a concern for all surveillance

methods. The Brazilian Health Ministry primarily makes use of

microscopy of thick blood smears, because it is relatively

inexpensive and straight-forward [15]. However, microscopy has

limited ability to detect the pathogen when parasitemia is low [16–

18]. In research settings, Polymerase Chain Reaction (PCR) has

been extensively used as the standard against which the sensitivity

and specificity of other detection methods (e.g., microscopy and

rapid diagnostic tests) are evaluated. Unfortunately, PCR data is

often not available due to costs and expertise required for the

procedure [19,20].

How does one integrate the less biased but more limited dataset

(e.g., data from AACD) with a more extensive, time continuous

and biased dataset (e.g., data from ACD/PCD)? Furthermore,

how can the more sensitive but limited PCR dataset be used jointly

with the less sensitive but more extensive microscopy dataset?

Logistic regression is the most common statistical tool used to

analyze individual-level disease data. However, logistic regression

does not correct for the biases in the ACD/PCD dataset, even if

dummy covariates are added to represent differences in how

individuals were sampled (e.g., AACD, ACD, and PCD). It also

does not accommodate detection error rates for the different

Plasmodium detection methods. In recognition of these problems,

analysis might focus on the most sensitive pathogen detection

method (i.e., PCR) and less biased case detection method (i.e.,

AACD), with the drawback of ignoring considerable information

contained in the rest of the data.

Logistic regression also does not allow for important conditional

relationships that determine malaria risk. Malaria researchers

typically assume perfect detection and choose to model either the

probability of being diseased (i.e., p S~1,I~1ð Þ) or the probability

of being infected (i.e., p I~1ð Þ), where S and I stand for symptom

and infection status. These probabilities are related and models can

be developed to combine them in a statistically and biologically

coherent way. Our model factors p Diseaseð Þ~p S~1,I~1ð Þ as

p S~1jI~1ð Þp I~1ð Þ, allowing us to separately evaluate infection

risk factors (i.e., p I~1ð Þ) from risk factors of symptoms given

infection (i.e., p S~1jI~1ð Þ). This approach can provide inference

on factors that influence the joint distribution of symptom and

infection statuses. For example, we can coherently estimate the

prevalence of asymptomatic carriers, namely p S~0,I~1ð Þ, and

the factors that influence it. The limitations of standard statistical

tools prompted us to create a customized method to analyze our

data.

Here, we illustrate how inference on malaria risk factors and

infection/disease prevalence can be improved using a hierarchical

framework based on the joint distribution of symptom and

infections statuses and by properly accommodating the different

pathogen and case detection methods. First, we detail the model.

Then, we compare the performance of this method to that of

typical logistic regressions using simulated and real data. Finally,

we apply this model on a large malaria dataset collected in the

Western Brazilian Amazon and discuss the implication of our

findings.

Methods

Ethics Statement
The study protocol was approved by the Ethical Review Board

of the Institute of Biomedical Sciences of the University of São

Paulo, Brazil (318/2002 and 538/2004) and we obtained written

informed consent from each adult participant and from the parent

or legal guardian of every minor.

Data
Data were collected in a rural settlement area, in a region

known as Ramal Granada (Acrelandia, Acre, Brasil), on 486

individuals that agreed to participate in the study. AACD data

come from four cross-sectional surveys (March/April 2004,

September/October 2004, February/March 2005, and Octo-

ber/November 2006) in which all study participants that were

present at the time of the survey were sampled, regardless of their

symptomatic status. This dataset contained a total of 1383

microscopy and 1400 PCR malaria tests. Further details on the

area, data collection, and characteristics of this cohort can be

found elsewhere [11,21,22]. We gathered ACD/PCD data by

searching the malaria records at the local health facility. All

malaria records between 2004 and 2007 from the AACD study

participants were entered in a database, resulting in a total of 1694

microscopy tests, with approximately 94% of the individuals

feeling symptomatic when tested.

Model Description
We start by describing some basic conditional probabilities for

our model and their associated assumptions. We then proceed to

detail the likelihood associated with each potential outcome. We

conclude this section with a description of how we fit the model.

Plasmodium detection. We consider data from two

Plasmodium detection methods, namely microscopy and

polymerase chain reaction (PCR). Let Dm
i,t~1 stand for a

positive Plasmodium detection using microscopy for individual i at

time t. Let Ii,t~1 and Si,t~1 stand for being infected and having

malaria symptoms, respectively. Note that Ii,t is a latent variable

because we never directly observe it. Using these definitions, let p Dm
i,t~

�
1jSi,t~1,Ii,t~1Þ~a1 and p Dm

i,t~1jSi,t~0,Ii,t~1
� �

~a0 be the

microscopy sensitivity given that Si,t~1 and Si,t~0, respectively.

We allow sensitivity to depend on symptom status because it has

been shown that low-grade infections (i.e., low density of parasites in

the blood) are associated with asymptomatic cases and failure to

detect them with microscopy [16–18,23]. Furthermore, let

p Dm
i,t~0jIi,t~0

� �
~1 be the microscopy specificity. We set the

specificity of the microscopy to one because it is virtually impossible

for an experienced microscopist to identify malaria pathogens on a

blood sample from an uninfected patient, regardless of the
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symptomatic status of the patient (Ferreira, personal

communication; [17]).

In relation to PCR, let D
pcr
i,t ~1 stand for a positive Plasmodium

detection using PCR for individual i at time t. Let the PCR

sensitivity and specificity be denoted by p D
pcr
i,t ~1jIi,t~1

� �
~d and

p D
pcr
i,t ~0jIi,t~0

� �
~p, respectively. Errors in amplification or

contamination of the sample can produce both false-positives and

false-negatives [17]. From prior knowledge, we know that the

sensitivity of PCR is greater than that of microscopy and that

microscopy sensitivity is probably greater when the individual is

symptomatic than when not symptomatic (i.e., dwa1wa0) [20].

Finally, we assume that PCR sensitivity and specificity are not

influenced by microscopy detection and symptomatic status of the

individual, given infection status. The assumption of conditional

independence between PCR and microscopy results seems reasonable

because detections are based on fundamentally different biological

processes [24,25]. We adopted uniform priors for the sensitivity and

specificity of PCR, where the limits were based on earlier reports on

PCR error rates [26,27]. More specifically, the joint prior adopted for

these detection parameters was a uniform distribution in the set

d,a1,a0ð Þ : 0va0va1vd, max 0:7,a1ð Þvdv1f g.
Infection risk. We are primarily interested in the probability

that individual i at time t is infected with Plasmodium (i.e., p Ii,t~1ð Þ)
and the associated risk factors. We assume that this probability is

given by

p Ii,t~1ð Þ~ 1

1ze
{ Xi,tbzQizqh i½ �

� �

where Xi,t is the design vector and b is the vector with the

corresponding parameters. The design vector Xi,t contains

potential risk factors. For our case study using data from the

Western Brazilian Amazon, these covariates were gender,

educational level, age, time in Acrelandia (as a proxy for past

exposure to malaria), if participates on extractivism activities, if

hunts or fishes, if works as chain sawyer, if shares the house with

somebody that had a positive malaria diagnosis in the past 30

days, surface water area, forest area, deforestation rate,

precipitation, and a drought index. These covariates are detailed

in Appendix S1. Individual and household-level random effects

are denoted by Qi and qh i½ �, respectively, where h[i] indexes the

household where the ith person resides. These random effects

were modeled as Qi~N 0,s2
ind

� �
and qh i½ �~N 0,s2

h

� �
, where s2

ind

and s2
h are the individual and household-level random effect

variances, respectively.

Symptomatic status. We assume that the probability of

being symptomatic given that the person is infected is given by

p Si,t~1jIi,t~1ð Þ~ 1

1ze{Yi,tc

where c is a vector of parameters to be estimated and Yi,t is the

design vector. We assume that the covariates most likely to

influence this probability are variables related to the individual’s

immune system and not variables related to present exposure to

vectors. Thus, for our Western Brazilian Amazon case study, the

covariates in Yi,t were age, gender, and time in Acrelandia (as a

proxy for past malaria exposure). Finally, we assumed that the

probability of having symptoms despite not being infected

p Si,t~1jIi,t~0ð Þ was a constant parameter to be estimated.

Likelihood. The definitions above are the basis for the

hierarchical model that we built (depicted in Fig. 1), borrowing

some ideas from Clark & Hersh [28]. These definitions and model

structure allow us to describe the likelihoods of all the possible

outcomes in AACD (Table S1). For the ACD and PCD datasets,

we start by noting that p I jACDð Þwp Ið Þ and p I jPCDð Þwp Ið Þ,
because ACD and PCD focuses mostly on symptomatic

individuals. Therefore, we can assume that knowing whether the

person was sampled in ACD or PCD does not bring any additional

information about the risk of being infected if we condition on

symptomatic status. More formally, we assume that

p I jS,ACDð Þ~p I jSð Þ and p I jS,PCDð Þ~p I jSð Þ. Based on these

assumptions, it can be shown that the likelihood for each outcome

will be similar to those for AACD with the exception that it will

have a correction term of the form
p ACDjSð Þ
p ACDð Þ or

p PCDjSð Þ
p PCDð Þ .

Here, p ACDjSð Þ and p PCDjSð Þ are the conditional probability

that an individual with symptom status S is sampled through ACD

or PCD, respectively, and p ACDð Þ and p PCDð Þ are the

corresponding marginal probabilities. The likelihood of all the

possible outcomes in ACD and PCD is shown in Table S2. The

detailed derivation of these likelihoods is given in Appendix S2.

An important assumption in our analysis of the ACD/PCD

dataset is that malaria tests (and the symptomatic status at the time

of the test) more than one week apart from each other were

considered to be independent. There were some cases where

symptomatic individuals would choose to be tested multiple times

within a short period of time (,7 days), probably expecting a

positive result or the symptoms to ameliorate. To avoid making

several assumptions regarding the temporal dependencies of

symptoms and test results from these multiple tests, we chose to

retain just the first test and the associated symptomatic status

whenever we detected multiple tests within this short time-frame.
Full model. Let h be all the parameters we will estimate and

let yACD,yPCD and yAACD be the different datasets, where

subscripts denote how individuals were sampled. Assuming

conditional independence given the parameters h, the full model

can be written as

p hjyACD,yPCD,yAACDð Þ!p yACD,yPCD,yAACDjhð Þp hð Þ

!p yACDjhð Þp yPCDjhð Þp yAACDjhð Þp hð Þ

Figure 1. Graphical representation of the proposed model,
illustrating some of the modeled conditional relationships.
doi:10.1371/journal.pone.0027462.g001
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where p hjyACD,yPCD,yAACDð Þ is the posterior distribution of the

parameters to be estimated, p ykjhð Þ is the likelihood of dataset k

(Table S1 and Table S2) and p hð Þ are the priors. All the estimated

parameters h are listed and described in Table 1, together with

their associated priors.

This model was fitted using a Gibbs sampler. Most parameters

were updated using a Metropolis sampling step and the few

parameters that were updated via a Gibbs sampling step have their

full conditional distributions described in Appendix S3. In total,

150,000 iterations were run and the initial 20,000 iterations were

discarded as burn-in. Convergence was assessed using trace-plots

of the parameters.

Model Performance
We compare the proposed model with standard logistic

regressions, both with and without individual and household level

random effects. Let D~1 be a positive Plasmodium detection, either

from microscopy, PCR or both. The response variable for these

logistic regressions were proxies for a) disease: a person having

symptoms and a positive detection (i.e., D~1,S~1); and b)

infection: a person having a positive detection (i.e., D~1)

(Table 2). To mimic how researchers would typically use these

multiple datasets (yACD,yPCD and yAACD), we merged the three

datasets into a single one and added two dummy covariates in the

logistic regressions to allow for differences between datasets.

These different statistical methodologies were compared using

both simulated and real data. Simulated data were used to

compare the different methods in relation to how well they

retrieved the true parameters influencing infection probability. To

evaluate the importance of combining these multiple datasets, we

further compared how inference from the proposed model would

change if fitted only to the PCR dataset versus all datasets. Details

of how the simulated data were generated are given in Appendix

S4, Table S3, and in Table S4. We also compared how well each

model predicted the real data, using a 10-fold cross validation.

This validation exercise consisted in fitting these models to 90% of

Table 1. List of all the estimated parameters and the associated priors.

Parameter Description Prior

a1 Microscopy sensitivity given S = 1
uniform in the set

f a0,a1,dð Þ : 0va0va1vd,

max 0:7,a1ð Þvdv1g

a0 Microscopy sensitivity given S = 0

d PCR sensitivity

p PCR specificity Unif(0.97,1)

b Covariates of infection risk factors Unif(210,10)

Qi Individual level random effects N 0,s2
ind

� �
qh½i� Household level random effects N 0,s2

h

� �
sind Standard deviation of the individual-level random effects Unif(0,100)

sh Standard deviation of the household-level random effects Unif(0,100)

c Covariates of risk factors of symptoms given infection Unif(210,10)

p S~1jI~0ð Þ Probability of symptoms given no infection Unif(0,1)

p S~1jI~0ð Þ Probability of being sampled through PCD given no symptoms
uniform in the set

f p PCDjS~0ð Þ,p ACDjS~0ð Þð Þ :

p ACDjS~0ð Þzp PCDjS~0ð Þv1g

p ACDjS~0ð Þ Probability of being sampled through ACD given no symptoms

p PCDjS~0ð Þ Probability of being sampled through PCD given symptoms
uniform in the set

f p PCDjS~1ð Þ,p ACDjS~1ð Þð Þ :

p ACDjS~1ð Þzp PCDjS~1ð Þv1g

p PCDjS~1ð Þ Probability of being sampled through ACD given symptoms

doi:10.1371/journal.pone.0027462.t001

Table 2. Description of all the modeling approaches employed in the simulation and validation exercises.

Models Outcome Description Random effects

1 D~1,S~1ð Þ, D~1,S~0ð Þ, D~0,S~1ð Þ, D~0,S~0ð Þ proposed model Yes

2{ Disease D~1,S~1ð Þ logistic regression No

3{ Infection D~1ð Þ logistic regression No

4{{ Disease D~1,S~1ð Þ logistic regression Yes

5{{ Infection D~1ð Þ logistic regression Yes

No covariate Disease D~1,S~1ð Þ Infection D~1ð Þ Uses the proportion of D~1,S~1ð Þ and D~1ð Þ in the training
dataset to predict outcomes for the validation dataset

No

{these models were fit using the ‘glm’ function in R.
{{these models were fit using the ‘lmer’ function in R.
doi:10.1371/journal.pone.0027462.t002
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the real data and comparing their predictions for the remaining

10%. This was done ten times with different portions of the data

retained for validation at each time. Each method predicted which

individuals had a positive test result (D~1) and which individuals

had a positive test result and were symptomatic (D~1,S~1). We

summarized this information as a) the proportion of individuals

correctly predicted as D~1 or D~0; and b) the proportion of

individuals correctly predicted as D~1,S~1 or not D~1,S~1.

For this validation exercise, we also evaluated the predictive ability

of the chosen covariates by adding the prediction results from a

model that simply used the proportion of individuals with D~1
(or D~1,S~1) in the training dataset. All statistical procedures

and graphics were performed in R [29].

Results

Model performance
Our results using simulated data reveal that the 95% confidence

intervals from the logistic regressions, both with and without

random effects, were typically narrower than the 95% credible

intervals from the proposed model (Fig. 2), often missing the true

regression parameters, even when these effects were large. In

contrast to these results, the 95% credible interval generated by

the proposed model fitted to all datasets always included the true

regression parameters. One parameter of particular importance is

the intercept as it reveals the infection prevalence for individuals

with mean covariate values. Our results show that all logistic

regressions grossly overestimated this parameter. The simulated

data also revealed that fitting the proposed model to all datasets

(microscopy and PCR results from the ACD, PCD, and AACD

datasets) resulted in sharper inference, both in terms of smaller

bias and uncertainty, when compared to results from the proposed

model fitted just to PCR results (black circle vs. black triangle,

Fig. 2). This improved inference arises not only because of the

larger sample size but also because the ACD and PCD datasets are

more time continuous, resulting in greater variability for several

covariates.

An important concern related to the proposed model is that it

might be over-fitting the data, given that it includes almost twice as

many parameters as the logistic regressions (30 vs. 17, respectively,

Figure 2. Comparison of models using simulated data. The true values of the infection risk factor parameters are depicted in horizontal black
dashed lines. Logistic regression models with disease (models 2 and 4) and infection (models 3 and 5) as response variables are depicted in red and
blue, respectively. Models with and without random effects are depicted with continuous and dashed vertical lines, respectively. Models 2–5 were
fitted to all datasets. Model 1 was fitted twice, once for just the PCR dataset (black triangle) and once for all datasets (black circle). Details of these
models are given in Table 2.
doi:10.1371/journal.pone.0027462.g002
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after excluding random effects and their variances), potentially

resulting in poor out-of-sample predictive ability. However, our

validation results using the real data show that the proposed model

had a similar or better predictive ability when compared to the

logistic regression model with random effects (Fig. 3). Interestingly,

even the model without any covariates had a good predictive

ability, sometimes yielding equivalent or better predictions than

the logistic models, with or without random effects. In contrast, the

proposed model always yielded better predictions than the model

without any covariates. Furthermore, the proposed model is

capable of generating all predictions depicted in Fig. 3 whereas

distinct logistic regressions were fit to predict these different

outcomes.

Findings from the Western Brazilian Amazon region
We estimated that the infection prevalence for the cohort we

studied was approximately 0.13 (95% credible interval (CI) 0.10–

0.16). Malaria prevalence was considerably lower (0.04, 95% CI

0.03–0.06) because not all individuals exhibit symptoms. From the

pool of infected individuals, more than half will typically be

asymptomatic (0.63, 95% CI 0.53–0.72) but the overall prevalence

of asymptomatic carriers is low (0.08, 95% CI 0.06–0.12). We can

compare these model-based estimates with estimates calculated

directly from the data, if we assume that all individuals with a

positive (or negative) detection result are infected (or not infected).

Similar, but not identical, results were obtained using only PCR

data (Fig. 4). On the other hand, considerably different summary

statistics were obtained using microscopy, either from AACD or

from the PCD/ACD datasets. These differences arise because

microscopy is known to have limited ability to detect individuals

with low parasitemia, which tend to be asymptomatic individuals,

and because the PCD/ACD datasets include predominantly

symptomatic individuals. One option would be to analyze just

the PCR dataset collected with the AACD method, ignoring

malaria risk information from the other datasets. However, as we

showed with the simulated data and as suggested elsewhere [30],

Figure 3. Comparison of models by out-of-sample prediction. These figures show the proportion of individuals correctly classified by each
model. Numbers on the left refer to the different validation datasets. Logistic regression models with disease (models 2 and 4) and infection (models
3 and 5) as response variables are depicted in red and blue, respectively. Models with and without random effects are depicted with continuous and
dashed lines, respectively. Details of these models are given in Table 2.
doi:10.1371/journal.pone.0027462.g003

Figure 4. Comparison of summary statistics calculated directly from the data and generated by the proposed model. The summary
statistics are infection (i.e., p I~1ð Þ) and malaria prevalence (i.e., p I~1,S~1ð Þ), proportion of asymptomatic individuals among the pool of infected
individuals (i.e., p S~0jI~1ð Þ) and overall proportion of asymptomatic carriers in the population (i.e., p S~0,I~1ð Þ). Estimates from the proposed
model are depicted in black. Estimates calculated directly from the data are depicted in red (PCR data), green (microscopy results from AACD), and
blue (microscopy results from ACD and PCD). Vertical lines depict 95% credible intervals for model 1 and approximate 95% confidence intervals for

the other estimates, calculated as p̂p+2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂p 1{p̂pð Þ

n

r
.

doi:10.1371/journal.pone.0027462.g004
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inference can be greatly improved when all datasets are jointly

used if the model is able to adequately accommodate the inherent

differences among datasets. Thus, we exploit the information on

infection/disease prevalence and malaria risk factors from all

datasets.

The clearest infection risk factor was forest extent surrounding

the subject’s house (Table 3, Fig. 5; the marginal posterior

distributions for all the estimated parameters are provided in

Figure S1 and Figure S2). The effect of forest extent was further

exacerbated by proximity to larger water bodies, particularly

during the wet season. Furthermore, men (probably as a result of

spending more time in the forest than women) and those

participating in forest related activities (e.g., extractivism, hunting

or fishing) were more likely to be infected (Table 3, Fig. 5). These

risk factors consistently suggest that these degraded forests are

prime breeding habitat for the vector. On the other hand, annual

deforestation rates and working as a chain sawyer were not

important risk factors. We hypothesize that the extensive use of fire

for land clearing during the dry season might be responsible for

this pattern. We also expected increased infection risk if the person

co-inhabited a house with somebody diagnosed with malaria

within the past 30 days but this was not the case, probably because

infectious individuals might be diagnosed after (instead of before)

the focal person is tested for malaria. Unfortunately, these past and

future dependencies cannot currently be included in the model.

There is some evidence that time living in Acrelandia, as a

proxy for past malaria exposure, reduces the risk of being infected

(Table 3, Fig. 5). This result suggests that non-naı̈ve settlers

acquire parasitological immunity and/or considerable knowledge

on how to reduce one’s exposure to infection. However, our results

also suggest that this same factor increases the probability of

feeling symptoms once infected (Table 3). One possible explana-

tion is that non-naı̈ve settlers are only susceptible to the more

virulent Plasmodium strains.

Asymptomatic Plasmodium carriers pose a considerable public

health challenge. Our results suggest ways to strategically identify

Table 3. Summary statistics for the estimated parameters.

Class Parameter Percentile

2.50% 50% 97.50%

Infection risk factors (odds-ratio) Intercept 0.076 0.120 0.187

Gender 0.430 0.657 0.986

Age 0.878 1.096 1.345

Education 0.841 1.008 1.215

Time in Acrelandia 0.596 0.763 0.956

Chain Sawyer 0.009 0.363 3.235

Extractivism 1.057 1.782 2.994

Hunting/Fishing 1.140 1.647 2.386

Co-inhabits Dm = 1 0.559 0.917 1.490

Co-inhabits Dpcr = 1 0.403 0.824 1.691

Water area 0.667 0.800 0.957

Forest area 1.430 1.923 2.569

Annual defor. 0.719 0.909 1.139

Monthly precip. 0.810 0.975 1.175

Drought index 0.770 0.932 1.145

Precip. x forest 1.004 1.183 1.405

Drought x forest 0.803 0.958 1.155

Water x forest 1.048 1.404 1.899

Symptoms given infection risk factors (odds-ratio) Intercept 0.411 0.641 1.076

Age 0.645 0.884 1.240

Gender 0.451 0.859 1.704

Time in Acrelandia 1.043 1.481 2.268

Other parameters (probabilities) Mic. sensit.|S = 0 0.053 0.101 0.175

Mic. sensit.|S = 1 0.249 0.293 0.348

PCR Sensitivity 0.708 0.796 0.901

PCR Specificity 0.970 0.974 0.990

p(S = 1|I = 0) 0.015 0.023 0.034

p(ACD|S = 1) 0.075 0.380 0.770

p(ACD|S = 0) 0.000 0.002 0.005

p(PCD|S = 1) 0.084 0.391 0.775

p(PCD|S = 0) 0.000 0.001 0.002

doi:10.1371/journal.pone.0027462.t003
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these carriers. While sampling all individuals regardless of

symptoms (as in AACD) might be useful, a more efficient strategy

would be to sample individuals at high risk of infection but low

probability of feeling symptoms given infection. In other words, we

maximize p S~0,I~1ð Þ~p S~0jI~1ð Þp I~1ð Þ by maximizing

the individual components p S~0jI~1ð Þ and p I~1ð Þ. For

instance, if we estimate the probability of being an asymptomatic

Plasmodium carrier as a function of time in Acrelandia and forest

extent, it becomes clear that we should preferentially sample

individuals that are new to the area (thus with high p S~0jI~1ð Þ)
on highly forested areas with abundant surface water (thus with

high p I~1ð Þ) (Fig. 6).

The estimated parameters can be jointly used to make coherent

predictions, relying on information from all datasets. For example,

a predicted infection risk surface can be created using information

on surface water and forest area (infection prevalence map in

Fig. 7). These results can be extrapolated to a larger geographical

region using remote sensing imagery, revealing substantial spatial

heterogeneity in infection prevalence attributable to the river that

crosses the upper part of the region and the large forest blocks

away from the roads (extrapolated infection prevalence map in

Fig. 7). These maps also highlight the striking differences in

infection prevalence due to precipitation, a result greatly

corroborated by recent entomological surveys conducted at the

same site [31]. Besides infection risk surfaces, asymptomatic

carrier risk and malaria burden surfaces can also be created, using

household information on how long people have been living in

Acrelandia (asymptomatic carrier and malaria prevalence maps in

Fig. 7). Despite similarities, the asymptomatic carrier prevalence

surface indicates that these carriers are more likely to be found in

the northern part of our study area whereas infected symptomatic

individuals can also be found in the central region of our study

area.

As expected, we find strong influence of priors on the estimation

of the PCR error rates (Fig. S2), suggesting that there was not

enough information on our dataset to estimate all these parameters

jointly. Microscopy sensitivity, on the other hand, was well

estimated to be approximately 0.3 and 0.1, almost a three-fold

difference for symptomatic and asymptomatic individuals, respec-

tively (Table 3). Nevertheless, even for symptomatic individuals,

Figure 5. Probability of infection p I~~1ð Þ as a function of the most important covariates. The probability of infection was calculated with
the other covariates fixed at their mean value. CI stands for credible interval. Lower right panel shows the independent effect of being a woman
(‘Women’), being a man (‘Men’), participating on extractivism activities (‘Extract.’), and participating on hunting or fishing activities (‘Hunt/Fish’). The
summed effect of being a man, partipating on extractivism and hunting/fishing activities is also shown (‘M,E,HF’).
doi:10.1371/journal.pone.0027462.g005
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sensitivity of microscopy was relatively low. Several quantities can

be derived from these error rate estimates. For example, sampling

predominantly symptomatic individuals (as is usually done in ACD/

PCD) is sensible given that the probability of being infected

p I~1ð Þ~0:13 increases dramatically if the person is symptomatic

p I~1jS~1ð Þ~0:63. However, the challenge of using microscopy

as the only method to monitor infection and disease prevalence is

evident if we compare our knowledge of infection probability for

symptomatic individuals before and after obtaining a negative

microscopy result (p I~1jS~1ð Þ~0:63 and p I~1jS~1,ð
Dm~0Þ~0:55, respectively), indicating very little gain of informa-

tion when microscopy yields a negative result. This finding suggests

that close monitoring of individuals that are symptomatic but that

have recently obtained a negative microscopy result might be

warranted. On the other hand, a positive microscopy detection is

very informative since p I~1jDm~1ð Þ~1. PCR results, regardless

if positive or negative, were also informative since p I~1ð Þ~0:13
but p I~1jDpcr~1ð Þ~0:76 and p I~1jDpcr~0ð Þ~0:03.

Discussion

Large spatial-scale patterns regarding malaria typically involves

syndromic surveillance data (e.g., [32,33]), despite limited

microscopy sensitivity and the biased nature of these data. On

the other hand, more reliable infection and disease prevalence

estimates are often spatially and temporally restricted, relying

almost exclusively on PCR data [13,22,34–36]. The proposed

model uses information from both datasets to improve the

estimates of infection and disease prevalence at our research site,

which is then extrapolated to a larger area. Alternatively, we can

infer large spatial-scale patterns of Plasmodium infection prevalence

using the syndromic surveillance data after adjusting for the

inherent biases in this dataset. This adjustment is only possible

with the parameters estimated here and is part of our ongoing

research.

Our results identify the important role of forests and forest related

activities in Plasmodium infection risk, particularly during the rainy

season and in close proximity to large water bodies (Fig. 5).

Unfortunately, the data do not contain more information regarding

these forests (e.g., level of forest degradation) and thus we cannot

determine which characteristic of these forests are important

infection risk factors. These results corroborate the findings of

others that proximity to the forest enhances infection risk [22,31,37–

39] but we do not find support for the idea that deforestation activity

per se [33] or the lack of forest [40,41] significantly increase infection

risk. Our results also suggest that one of the factors most amenable

to public policy is the participation in forest related activities (e.g.,

extractivism, hunting and fishing activities). Hunting and fishing

activities are particularly popular, with nearly two thirds of the

individuals in our cohort reporting that they engage in these

activities. Educational campaigns might be effective in raising

awareness about how participation in these activities affects one’s

health and the health of their family and community, particularly

for those individuals more likely to exhibit symptoms given infection

(i.e., non-naı̈ve settlers).

Figure 6. Probability of sampling an asymptomatic Plasmodium carrier (i.e., p S~~0,I~~1ð Þ). The probability of sampling an asymptomatic
Plasmodium carrier is shown as a function of time in Acrelandia and proportion of forest area in places with abundant surface water.
doi:10.1371/journal.pone.0027462.g006
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Malaria immunity is typically portrayed as a phenomenon that

depends on age (as a proxy for past malaria exposure), with severe

malaria being relatively common for young children, and older

cohorts having progressively less cases of severe malaria and

proportionally more cases of mild malaria and asymptomatic

infection [23,42]. This descriptions refers to people exposed to

malaria since birth in holoendemic countries, but it is much more

complex (and less well understood) in areas with lower levels of

exposure and where mild malaria predominates [23]. In these

latter settings, previous studies have suggested that past exposure

to malaria can decrease clinical malaria risk in rural settlers [22]

and provide both anti-parasite and anti-disease immunity in

traditional riverine populations [13,34]. Our results suggest that

anti-parasite immunity arises even in rural settlers. However,

unlike previous studies, we find evidence that it also increases the

probability of feeling symptoms once infected. We hypothesize

that more experienced settlers are susceptible only to more virulent

Plasmodium strains. Further studies are clearly needed to determine

if this hypothesis is correct.

Joint models or analyzes, like ours, are models that simulta-

neously make inference on multiple outcomes (e.g., detection and

symptom status), even allowing one outcome to influence the others

(e.g., symptom status affecting detection). These models have

recently become very popular in the medical statistics literature

because more information and interpretability can be gained when

compared to performing separate analysis of the different outcomes

(e.g., [43,44]). Another active research area in statistics focuses on

the use of multiple pathogen detection methods to determine overall

disease prevalence and sensitivity/specificity of these detection

methods [24,45–49]. A recent malaria-specific example can be

found in Speybroeck et al. [50]. Our model builds on both of these

trends by evaluating the risk factors of infection and symptoms given

infection using data from multiple case and pathogen detection

methods. Our results using simulated and real data revealed that the

proposed model yields better inference on risk factors and disease/

infection prevalence without over-fitting the data. To our

knowledge, most of the epidemiological research regarding malaria

has focused on infection risk factors. However, unlike standard

Figure 7. Spatial distribution of infection, asymptomatic carrier, and malaria prevalences. From left to right, maps depict interpolated
surfaces of predicted infection prevalence (i.e., p I~1ð Þ), asymptomatic carrier prevalence (i.e., p S~0,I~1ð Þ)), and malaria prevalence (i.e.,
p S~1,I~1ð Þ), all for the studied area, and an extrapolated surface of infection prevalence. Upper and lower maps are the prevalence surfaces for the
rainy and dry seasons, respectively. Interpolation was done using an inverse distance weighted algorithm.
doi:10.1371/journal.pone.0027462.g007
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logistic regression, the proposed model allows coherent inference on

several other important parameters, such as detection error rates

and risk factors associated with symptoms given infection. The latter

is critical to advance our understanding of malaria burden and

asymptomatic carriers. A direct result of this coherent inference is

the identification of the need for better monitoring strategies

regarding symptomatic individuals with negative microscopy results

and how to sample more effectively potential asymptomatic

Plasmodium carriers (Fig. 6). Finally, predicted surfaces of infection

risk, asymptomatic carrier risk, and malaria burden allow for

optimal spatial allocation of resources and malaria control activities.

One of the critical assumptions in our analysis was that data

from ACD/PCD only differ from the AACD data by the

unusually high proportion of symptomatic individuals. Although

this is clearly a key factor, other characteristics of the individuals

sampled in ACD/PCD might also be important, such as the

distance of their house to the health facility. Also, our model

clearly depends on having individual level data on both positive

and negative microscopy tests. Unfortunately, individual level data

from negative microscopy tests are typically discarded, both by the

Brazilian Ministry of Health and malaria researchers, hampering

future analysis of these rich datasets.

We modeled symptomatic status as a binary variable despite the

fact that there is considerable variation in the type and intensity of

symptoms one may exhibit [11]. Future work might allow for

multinomial or continuous symptomatic status. Evidently, this

would only be productive if this symptomatic status score was

collected routinely in AACD and ACD/PCD. Another variable

not included in the model is parasitemia. Precise and accurate

estimates of this variable can be challenging to obtain [51].

Although new quantitative PCR methods can potentially over-

come this problem, dramatic fluctuations in parasite density occur

in the same individual within a short time period [18]. Therefore,

the inclusion of parasitemia into an analysis like ours remains an

important challenge. Furthermore, there is no way to distinguish

new Plasmodium infections from recrudescence and relapses, even

using modern genotyping technology, given that an individual

might be initially infected by multiple strains and/or re-infected by

the same common strain [52,53]. Thus, what we have called

infection risk factors actually refers to the risk factors of having a

relapse, a recrudescence, and/or a new infection. Finally, because

P. vivax and P. falciparum are particularly prevalent in the region, it

would be interesting to evaluate if the probability of feeling

symptoms given infection or the infection risk factors differ among

these species. This remains an important research topic.

Using malaria in the Western Brazilian Amazon as a case study,

we have shown that the modeling framework presented here can

exploit information from multiple datasets to shed light on several

aspects of an infectious disease (e.g., infection risk factors, risk

factors associated with symptoms given infection, detection error

rates) that are critical for its monitoring and control (e.g.,

indicating how to efficiently search for asymptomatic carriers

and which symptomatic individuals should be closely monitored).

While standard logistic regressions are undoubtedly important

tools, these statistical models are not well suited to integrate

multiple datasets. We believe that the Bayesian modeling

framework described here fundamentally enhances our ability to

overcome this challenge, being broadly applicable to other settings

and diseases whenever asymptomatic carriers are an important

public health concern and multiple datasets are available.
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