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Abstract: Cognitive fatigue is a psychological state characterised by feelings of tiredness and im-
paired cognitive functioning arising from high cognitive demands. This paper examines the recent
research progress on the assessment of cognitive fatigue and provides informed recommendations
for future research. Traditionally, cognitive fatigue is introspectively assessed through self-report or
objectively inferred from a decline in behavioural performance. However, more recently, researchers
have attempted to explore the biological underpinnings of cognitive fatigue to understand and
measure this phenomenon. In particular, there is evidence indicating that the imbalance between
sympathetic and parasympathetic nervous activity appears to be a physiological correlate of cognitive
fatigue. This imbalance has been indexed through various heart rate variability indices that have
also been proposed as putative biomarkers of cognitive fatigue. Moreover, in contrast to traditional
inferential methods, there is also a growing research interest in using data-driven approaches to
assessing cognitive fatigue. The ubiquity of wearables with the capability to collect large amounts of
physiological data appears to be a major facilitator in the growth of data-driven research in this area.
Preliminary findings indicate that such large datasets can be used to accurately predict cognitive
fatigue through various machine learning approaches. Overall, the potential of combining domain-
specific knowledge gained from biomarker research with machine learning approaches should be
further explored to build more robust predictive models of cognitive fatigue.

Keywords: cognitive fatigue; heart rate variability; biomarker; machine learning

1. Introduction

Cognitive fatigue is a psychological state characterised by the subjective feelings
of tiredness, insufficient energy, difficulty with concentration, and impaired ability to
think [1,2]. This psychological state arises from cognitive “overloading” due to extended
periods of sustained performance or cognitively demanding activities [1,3–7]. Attend-
ing meetings and report writing during work, as well as childcaring and meal prepping
while at home, are examples of such activities. It should be noted that cognitive fatigue is
not to be conflated with fatigue that arises from prolonged muscle activity (i.e., physical
fatigue), emotional exhaustion (i.e., chronic fatigue) [8], sleep deprivation [9], or bore-
dom [3]. Notably, cognitive fatigue has been demonstrated to have negative effects on
executive functions, such as working memory, judgement, and attention [10–13]. Not
surprisingly, cognitive fatigue increases the risk of accidents and errors in various mission-
critical situations [14,15]. Hence, the ability to accurately assess and monitor cognitive
fatigue levels during such situations is imperative in mitigating and minimising the risk
of undesirable negative outcomes from occurring. While various methods have been
developed to assess cognitive fatigue, these methods have their unique limitations and
associated research gaps.
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The present paper aims to examine the current research status on the assessment
of cognitive fatigue and provide suggestions for prospective researchers regarding the
measurement and analysis of cognitive fatigue, with emphasis on biomarker research and
machine learning approaches. To this end, we searched for relevant research over the last
three decades using various combinations of key terms, such as cognitive fatigue, mental
fatigue, self-report, cognitive task, biomarker, heart rate variability (HRV), and machine
learning via Onesearch and Google Scholar. Approximately 150 relevant published studies
and reviews were identified and qualitatively assessed.

The rest of the paper is organised as follows. First, we describe some traditional
psychological assessments of cognitive fatigue. Thereafter, biomarker-based measures
of cognitive fatigue are delineated. In particular, we evaluate the imbalance between
sympathetic and parasympathetic nervous activity as a potential physiological correlate
of cognitive fatigue, and how this can be indexed through HRV. Next, we present in
detail recent data-driven approaches in predicting cognitive fatigue through machine
learning. Last, we highlight some issues that should be considered when building models
of cognitive fatigue. In sum, there are potential benefits in combining knowledge gained
from biomarker research with data-driven approaches to build better predictive models of
cognitive fatigue.

2. Traditional Psychological Assessments of Cognitive Fatigue

Within the psychological literature, several subjective assessments of cognitive fatigue
have been developed and validated, such as the Mental Fatigue Scale [16], the Chalder
Fatigue Scale [17], and the Fatigue State Questionnaire [18]. These self-assessments of
cognitive fatigue are generally questionnaires that employ Likert scale ratings (e.g., “How
tired does your mind feel right now? 1. Not at all 2. A little 3. Moderately 4. Very 5. Ex-
tremely”) [18]. The scores are then calculated to provide a general index of cognitive fatigue.
Notably, such self-report methods presume that respondents have some level of insight or
introspection into their cognitive states [19]. Indeed, while useful in gaining introspective
knowledge of one’s psychological state, these self-report measures of cognitive fatigue
require individuals to be self-aware of their fatigue levels [20]. Unfortunately, individuals
often do not have an accurate judgment of their cognitive states [21]. Fatigued individuals
have inconsistent self-awareness of their decline in performance [22]. Furthermore, the
level of self-awareness of fatigue is moderated by varying working conditions [23]. People
may not be able to appreciate how fatigued they are until it is actually “too late”, which
can have devastating consequences in critical situations [24,25]. In addition, even brief
questionnaires require disruption of current activities to allow time for assessment [26,27]
and thus may not be suitable for use in situations that require continuous focus.

Alternatively, cognitive fatigue could also be objectively, but indirectly, inferred from
a decrease in cognitive and behavioural performance over time [11,13,28–30]. These perfor-
mance metrics, such as accuracy and reaction time, are typically measured in the context of
computerised versions of cognitive tasks, such as the Stroop task [31] or the Simon task [32].
Previous research has demonstrated that these performance measures are associated with
self-reported levels of cognitive fatigue [33,34]. For these performance measures to be
used as indices of cognitive fatigue, it is assumed that the decrease in performance is a
result of an individual’s impaired ability to maintain optimal task performance due to
cognitive “overloading” [11]. However, these objective measures are often task-dependent,
and thus the models based around these measures may have limited generalisability across
different situations in predicting cognitive fatigue. For instance, Liu and colleagues [35]
examining cognitive fatigue found that an increase in reaction time was observed only
during an arithmetic task, whereas an increase in error rate was observed only during a
switching task. Furthermore, in a low cognitive demanding task, such as a vigilance task,
the authors found that neither reaction time nor accuracy could be used to index cognitive
fatigue [35]. Interestingly, a recent study found that 16-min dual-tasks were more effective
at inducing cognitive fatigue as compared to a 90-min single-task [36]. The same study
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also found that participants in the dual-task conditions had lower accuracy as compared
to participants in the single-task condition [36]. Future research should examine whether
using multitasking measures provide more reliable assessments of cognitive fatigue as
compared to single-task measures. It is also important to note that these measures are only
able to detect cognitive fatigue after a considerable decline in behavioural performance,
which can often be detected too late in critical situations [37].

Despite their usefulness in furthering our theoretical understanding of cognitive
fatigue, it appears that both self-assessments and task performance have limitations, in
terms of subjectivity, disruptiveness, timeliness, and generalisability that are unsuitable
for application beyond research settings. Subjectivity, in this paper, refers to whether the
assessment is dependent on an individual’s self-evaluation and thus may be influenced
by biases, such as socially desirable responses and lack of introspection. Disruptiveness
refers to whether current activities must be stopped for a certain period of time for the
administration of the assessment (e.g., when examining the effects of cognitive fatigue
during driving, participants are required to stop driving for the assessment). Timeliness
refers to whether the assessment is made in real-time or if there is a lead time between
the point at which the assessment is made and the point at which the results are known.
Finally, generalisability refers to whether the assessment can be extended to another
individual, group, task, or situation. These four factors are important considerations
when evaluating the suitability of applying these assessments in various settings. For
instance, workplaces would prioritise subjectivity, disruptiveness, and timeliness over
generalisability. A summary of these assessments is described in Table 1.

Table 1. Traditional cognitive fatigue assessment examples.

Method Indicative
Reference Description Subjectivity Disruptiveness Timeliness Generalisability

Self-report

Mental Fatigue Scale [16]

15-items
7-point Likert

Assessment of affective,
cognitive, and sensory
symptoms of fatigue

� � × �

Chalder Fatigue Scale [17]

11-items
4-point Likert or Bimodal

Assessment of physical and
cognitive fatigue

� � × �

Fatigue State
Questionnaire [18]

4-items
5-point Likert

Assessment of physical and
cognitive fatigue

� � × �

Behavioural
Performance

Accuracy/Error Rates [35,38–40]
Various cognitive Tasks (e.g.,

Simon task, Stroop task,
Switch Task)

× × × ×

Reaction Time [33,35,38,39]
Various Cognitive Tasks (e.g.,

Simon task, Stroop task,
Arithmetic Task)

× × × ×
Reaction

Time—Intraindividual
Variability

[33,39] Various Cognitive Tasks (e.g.,
Simon task, Stroop task) × × × ×

Note. Subjectivity refers to whether the measure is dependent on one’s self-evaluation of his/her level of cognitive fatigue. Disruptiveness
refers to whether time is required to be set aside for assessment. Timeliness refers to whether the assessment of the current state of cognitive
fatigue can be made in real-time. Generalisability refers to whether the assessments are comparable in other settings, such as different
groups, population, task, or situation. Autonomic Nervous System Biomarkers of Cognitive Fatigue.

3. Autonomic Nervous System Biomarkers of Cognitive Fatigue

Over the last decade, there is a growing interest among researchers in identifying
potential biological markers of cognitive fatigue [41]. A biological marker, more commonly
referred to as biomarker, is defined as “a characteristic objectively measured and evaluated
as an indicator of normal biological processes, pathogenic processes, or pharmacologic
responses to a therapeutic intervention” [42] (p. 91). Indeed, there is an accumulation of
empirical evidence within the literature suggesting that the autonomic nervous system
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is a physiological correlate of cognitive fatigue [43–51]. The autonomic nervous system
as part of the peripheral nervous system consists of two components—sympathetic and
parasympathetic [52]. The functional significance of the sympathetic nervous system is to
prepare the body for physical demands by redirecting oxygen-rich blood to areas of the
body where needed, whereas the parasympathetic nervous system is responsible for saving
energy for future use as well as regulating bodily functions when the body is at rest [52].
Notably, the parasympathetic nervous system plays an inhibitory-disinhibitory role with
the sympathetic nervous system, facilitating the returning of the body to calm states
and mobilisation of energy, respectively [53]. Both the sympathetic and parasympathetic
nervous systems are regulated by the preganglionic sympathetic and parasympathetic
neurons in the central autonomic network [54]. These neurons are linked to the heart
through the stellate ganglion and vagus nerve [54]. It is the interaction between sympathetic
and parasympathetic neuronal outputs from the central autonomic network on the sino-
atrial node of the heart that produces the phenomenon of complex variation in time
intervals between heartbeats, which is more commonly known as HRV [55]. HRV is
defined as the variation in R-R time intervals on the heartbeat waveform (see Figure 1).
Each R-R time interval is measured as the time between each successive heartbeat, indicated
by the R-wave peaks on the electrocardiogram [56].
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Besides autonomic nervous regulation, the various components in the central auto-
nomic network are also responsible for facilitating cognitive functions that are key for
goal-oriented behaviour and behavioural adaptation [57,58]. Consistent with the overlap
in neural structures, previous research has demonstrated a relationship between vagal tone
and cognitive functioning, such as working memory and attention [59]. Extensive physio-
logical research has provided supporting evidence for the validity of indexing different
aspects of autonomic nervous activity through various HRV components (e.g., [60,61]).
These HRV components are derived from various types of analysis, such as time-domain,
frequency-domain, and non-linear analyses. Time-domain analysis, in particular, is a form
of linear analysis that examines HRV across a specific period of time, whereas frequency-
domain analysis (also another form of linear analysis) decomposes HRV signals into
various frequency bands [62]. Time-domain analysis is generally more suitable for long-
term recordings as it is less influenced by the instability of heart rate modulation, while
frequency-domain analysis is more commonly used on short-term recordings due to easier
physiological interpretation [61]. By contrast, non-linear analysis purports to quantify the
dynamic nature of HRV and thus provides a more accurate representation of the complex
interactions amongst various autonomic mechanisms underlying the cardiovascular sys-
tem [60,62,63]. However, some would argue that it is more difficult to interpret as well
as map fundamental autonomic mechanisms to non-linear components [64]. Overall, the
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different types of analysis purport to assess the linear and non-linear components of the
HRV. Some of the more common indices of HRV are presented in Table 2.

Table 2. Major Heart Rate Variability Indices.

Indices References Description Functional Significance

Sympathetic
Nervous System

Parasympathetic
Nervous System

Overall
Autonomic

Nervous System
Others

Time-Domain

AVNN [60] Average of all normalised
R–R intervals

Equivalent to heart
rate (inversed)

SDNN [61] Standard deviation of all
normalised R–R intervals � All cyclic components

RMSSD [65]

Root mean square of the
differences between each

successive normalised
R-R interval

� Respiratory activity

pNN50 [65]

Proportion of normalised R-R
intervals that are more than

50 ms from
preceding interval

� Respiratory activity

Frequency-Domain

Very-low-
frequency power [66–68]

Spectral power within the
very-low-frequency range of

0.003–0.04 Hz
�

Thermoregulation;
renin-angiotensin-

aldosterone activity

Low-
frequency power [65,69–72]

Spectral power within the
low-frequency range of

0.04–0.15 Hz
� � Baroreflex activity

High-
frequency power [65,70,71]

Spectral power within the
high-frequency range of

0.15 to 0.4 Hz
� Respiratory activity

Low-
frequency/High-
frequency power

[70,73] Ratio of low- to high-
frequency spectral power � � Sympathovagal balance

Total spectral power [61] Spectral power ≤ 0.4 Hz � All cyclic components
Non-Linear

SD1 [74–76]
Standard

deviation—Poincaré plot
(Perpendicular)

� Short term changes in
heart rate variability

SD2 [75–77]
Standard

deviation—Poincaré plot
(Parallel)

� � Long term changes in
heart rate variability

D2 [62,78] Correlation dimension Complexity of
the system

CVI [79] log10(longitudinal axis ×
transverse axis)—Lorenz plot �

CSI [79] longitudinal axis/transverse
axis—Lorenz plot �

Note. The ticks represent the putative components of the autonomic nervous system each heart rate variability index is thought to reflect.
CVI = Cardiac vagal index. CSI = Cardiac sympathetic index.

In particular, frequency-domain components have been extensively examined within
the cognitive fatigue literature. This is likely due to the easier physiological interpretation
of frequency-domain components and time constraints on experimental designs limiting
the collection of long-term recordings. For instance, previous research has demonstrated
lower high-frequency power after a 30-min 2-back task [48,49], 64-min Multi-attribute Task
Battery [44], 90-min vigilance task [45], and 2-h set-shifting task [50] and simple arithmetic
task [51]. A more recent study has also demonstrated the decrease in high-frequency power
after an 8-hour fatigue-inducing task, which consisted of multiple sets of advanced trail
making tests, kana pick-out tests, and mirror drawing tests [47]. Given that high-frequency
power has been hypothesised to reflect parasympathetic nervous activity [65,70,71], it
appears that decreased parasympathetic nervous activity is involved in cognitive fatigue.

However, previous research has also demonstrated higher low-frequency power after
the aforementioned 2-back task [49], Multi-attribute Task Battery [44], vigilance task [45],
shifting task [50], and simple arithmetic task [51]. A similar effect was also observed in a
4-hour driving task [43] and, albeit marginal, a 140-min visual tracking task [46]. Given
that low-frequency power is sensitive to both sympathetic and parasympathetic nervous
activity [65,69–72], these findings indicate that the sympathetic nervous activity is also
involved in cognitive fatigue.
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In contrast to low-frequency power, the ratio of low- to high-frequency power arguably
serves as a more precise indicator of the balance and interaction between the sympathetic
nervous system and parasympathetic nervous system [70,73]. An increase in the ratio of
low- to high-frequency power after the vigilance task [45], set-shifting task [50], simple
arithmetic task [51], and the 8-hour fatigue-inducing task [47] has also been found in
previous studies. While inconsistent and marginal, a similar effect has also been observed
in the 2-back task [48,49]. Furthermore, Tanaka and colleagues [49] also demonstrated that
greater sympathetic nervous activity was associated with greater levels of self-reported
fatigue, while lesser parasympathetic nervous activity was associated with greater lev-
els of fatigue. In addition, the predominance of the sympathetic nervous activity in the
overall autonomic nervous system was also positively associated with self-rated fatigue
levels [47,49]. Overall, the pattern of results suggests a sympathovagal imbalance with a
shift towards sympathetic predominance may be linked to cognitive fatigue in the general
population. The sympathovagal imbalance, or rather balance, can be broadly conceptu-
alised as the dynamic influence of the sympathetic and parasympathetic nervous activity
on one’s cardiac state [80]. Hence, it appears that there is empirical evidence satisfying
the biomarker evaluation criteria of association [81,82], indicating that sympathovagal
imbalance may be a putative physiological biomarker of cognitive fatigue.

4. Digital Biomarkers of Cognitive Fatigue through Wearables and Machine Learning

With the advent of affordable mobile phones and wearables, the large amount of data
collected from these devices can provide extensive information regarding the user [83–85],
including working professionals [86]. Consequentially, using data-driven approaches, such
as machine learning, to process these large datasets appear to be a promising avenue in pre-
dicting one’s current psychological states [87]. Machine learning is a field within artificial in-
telligence broadly defined as an algorithmic approach that detects patterns through automa-
tion and optimisation, with minimal user input, to make predictions or decisions [88,89].
In practice, machine learning allows researchers to build computational models from large
datasets that can learn, classify, predict, and improve through training [90–92].

When developing a machine learning model, a large dataset is typically divided
into three subcategories—training, validation, and test datasets [93]. The training dataset
is used for model fitting [93,94]. By contrast, the validation dataset is used to provide
prediction error estimates of the fitted models during model selection [93]. In addition, the
validation dataset is also used to make tuning adjustments to the parameters for further
optimisation of the model [94]. Last, the test dataset is used only once after the training
and validation phase to provide an unbiased assessment of the prediction error of the final
model [93,94]. Ideally, a given dataset would be split into these three subsets for building,
optimising, and evaluating a machine learning model.

Throughout the model building process, the models are evaluated with multiple
performance metrics [95–100] (refer to Table 3). Accuracy is one of the key performance
metrics of a robust machine learning model. In the context of a binary classification model,
accuracy is calculated by the proportion of correct predictions divided by the total number
of predictions. The correct predictions are the sum of true positive and true negative
predictions (see Table 4). By contrast in non-classification models, such as regression
models, accuracy can be calculated by mean absolute error, mean squared error, root mean
squared error, or coefficient of determination (R2).



Sensors 2021, 21, 3843 7 of 16

Table 3. Key Performance Metrics of Machine Learning Models.

Metrics Formula Description

Classification Model [95,99,100]

Accuracy True Positive+True Negative
All Cases

Overall ability of a model to make the
correct classification

Precision True Positive
True Positive+False Positive

Ability of a classification model to make
correct predictions within the positive class

Sensitivity (Recall) True Positive
True Positive+False Negative Ability to correctly identity positive labels

Specificity True Negative
True Negative+False Positive

Ability to correctly identity negative labels

F-score 2×Precision×Sensitivity
Precision+Sensitivity Harmonic mean of sensitivity and precision

Area Under the Curve (AUC) of the
Receiver Operating

Characteristic Curve

1
2 (Sensitivity + Speci f icity)

Ability of a model to avoid
misclassification

Non-classification models [96–98]

MAE 1
n

n
∑
i=1

|γi−^
γi|

Average of the absolute difference between
observed values and predicted values

MSE 1
n

n
∑
i=1

(γi−^
γi)

2 Average of the squared difference between
observed values and predicted values

RMSE
√

1
n

n
∑
i=1

(γi−^
γi)

2
Standard deviation of the difference

between observed values and
predicted values

CoD/R2 ∑n
i=1(

^
γi−¯

γ)
2

∑n
i=1(γi−¯

γ)
2

Proportion of variance in the outcome
variable explained by the predictor(s)

Note. MAE = Mean Absolute Error. MSE = Mean Squared Error. RMSE = Root Mean Squared Error.

Table 4. Confusion Matrix for Binary Classification Models.

Actual Classification
Positive Negative

Predicted Classification
Positive True Positive False Positive

Type I Error

Negative False Negative
Type II Error True Negative

Note. The confusion matrix represents the four possible outcomes of a binary classification model.

Indeed, there is a growing interest in research to identify data-driven biomarkers [83,101].
More recently termed as digital biomarkers, these data-driven indices have unique advan-
tages beyond traditional biomarkers, such as analysis at both the individual and population
level, longitudinal and continuous measures, and passive monitoring [83]. More impor-
tantly, the emergence and increasing prevalence of wearables with the capability to measure
physiological data allows for the further development of putative physiological-based
digital biomarkers [101]. These wearables are capable of collecting physiological data, such
as blood oxygen saturation, blood pressure, body temperature, electrodermal activity, and
heart rate [102]. Not surprisingly, there have been preliminary successes in predicting
both physical and mental health using wearable data both through traditional statistical
modelling, and more recently, machine learning approaches [103–105].

In the context of cognitive fatigue, some researchers have recently attempted to pre-
dict fatigue levels by adopting the digital biomarker approach. For instance, a study by
Al-Libawy and colleagues [106] using data collected from a wrist wearable compared
two different machine learning methods (i.e., artificial neural network and support vector
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machine) to predict cognitive fatigue. Six extracted physiological features were used (i.e.,
heart rate mean and standard deviation, wrist temperature mean and standard deviations,
heart rate and wrist temperature power spectral density), which were chosen based on their
influence on classification results. The artificial neural network and support vector machine
models achieved 88.3% and 91.3% accuracy in classifying cognitive fatigue state, respec-
tively, though the details of the test sample are unclear and might be inflated by resampling.
Furthermore, the models achieved 94.7% and 97.2% accuracy in classifying alertness state,
respectively. However, it should be noted that cognitive fatigue and alertness were not
directly measured in this study but inferred from the ratio of low- to high-frequency power
that was concurrently collected from an electrocardiograph.

Another study using reduced cognitive performance as an index of cognitive fatigue
compared the support vector machine and random forest approaches with and without
principal components analysis in predicting cognitive fatigue using various HRV features
collected with a research-grade electrocardiograph [107]. The three-fold cross-validated
random forest model achieved only 57.8% accuracy and, in combination with principal
components analysis (leave-one-out cross-validated), improved to 63.9% accuracy. By
contrast, they found that the three-fold cross-validated support vector machine model
achieved 60% accuracy in predicting cognitive performance. Furthermore, the addition
of principal components analysis increased accuracy to 84.4% with a precision of 92.6%,
a recall of 73.3%, and an f-score of 81.8%. Notably, some of the selected features for the
support vector machine model included not only the ratio of low- to high-frequency power,
but also time-domain components, such as the number of R-R intervals, the average of
all normalised R–R intervals (AVNN), and the standard deviation of all normalised R–R
intervals (SDNN), and non-linear components, such cardiac vagal index (CVI) and cardiac
sympathetic index (CSI). These features were measured and averaged from the fifth to
eighth trial during the onset of cognitive fatigue. Trial differences between baseline and on-
set of cognitive fatigue for these features were also included as additional features amongst
others. Tsunoda and colleagues [107] highlighted that the use of principal components
analysis increased prediction accuracy as the dimensional reduction technique reduced
measurement noise. By analysing this model at the individual level, the researchers found
that cognitive performance was more accurately predicted in participants with (1) greater
number of R-R intervals, (2) larger trial difference in AVNN, (3) larger trial difference in
CVI, and (4) larger, but negative, trial difference in the number of R-R intervals. This
indicates that cognitive performance can be predicted with higher accuracy in participants
with a certain type of physiological profile.

More recently, a study examined various machine learning approaches (i.e., support
vector machine, K-nearest neighbour, naive Bayes, and logistic regression) in predicting
cognitive fatigue, using data collected from a portable electrocardiogram patch [108].
Using a random forest approach, three time-domain features were selected based on their
contribution to prediction accuracy—as indicated by the mean decrease accuracy and
mean decrease Gini values: AVNN, the root mean square of the differences between
each successive normalised R-R interval (RMSSD), and the proportion of normalised
R-R intervals that are more than 50 ms from preceding interval (pNN50). In addition,
three frequency-domain features were selected, namely very-low-frequency power, low-
frequency power, and total spectral power. After comparing the various machine learning
approaches with the combination of up to six of the aforementioned HRV features, this
study demonstrated that the K-nearest neighbour model (k = 3) with AVNN, low-frequency
power, and total spectral power features achieved the highest five-fold cross-validated
accuracy of 75.5% in predicting self-reported cognitive fatigue [108], as measured by the
Chalder Fatigue Scale [17].

Overall, these studies indicate the feasibility of using machine learning in processing
physiological data to monitor cognitive fatigue with moderate to high accuracy rates. It
should be highlighted that the studies conducted by Huang and colleagues [108], as well
as Tsunoda et al. [107], used electrocardiogram-derived HRV. The biomarker research
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described in the previous section also predominantly used electrocardiogram to measure
HRV [43–45,48–51]. The electrocardiogram uses electrodes to measure the electrical activ-
ity of the cardiac cycle [109]. However, most consumer wearables with the capability to
measure cardiac activity use photoplethysmography due to its simplicity, comfort, and
cost [110,111]. In contrast to electrocardiography, photoplethysmography uses specific
wavelengths of light, such as infrared, to measure blood volumetric changes [110], which
can be used to estimate blood circulation and associated HRV [112]. Arguably, the peak-
to-peak interval observed in photoplethysmography can be interpreted as the equivalent
of the R-R intervals of electrocardiography [112]. However, in terms of real-world ap-
plication, this is only true under non-movement conditions as photoplethysmography
recordings are extremely sensitive to motion artefacts, such as wrist movements [112–115].
For example, a recent study using a clinical-grade electrocardiogram as a benchmark ex-
amined several photoplethysmography-based consumer and research-grade wearables
under different conditions [113]. In particular, this study reported that wearables had
greater measurement error during physical activity than at rest [113]. Within a laboratory
setting, Al-Libawy and colleagues [106] have provided indicative evidence of the validity
of photoplethysmography-derived features in predicting electrocardiography-derived fea-
tures. Furthermore, previous biomarker studies have also provided indicative evidence
that photoplethysmography-derived frequency-domain features predicted cognitive fa-
tigue [46,47]. Moving forward, future research should examine the reliability and validity
of using photoplethysmography in predicting cognitive fatigue beyond laboratory settings.
Exploring plausible algorithmic approaches to account for motion artefacts in photoplethys-
mography would also be imperative within this research area. Prospective researchers
should also explore other machine learning methods to predict cognitive fatigue levels to
improve accuracy.

5. Towards a Biomarker-Informed Machine Learning Model of Cognitive Fatigue

It appears that traditional biomarker research, as well as digital biomarker research,
has contributed substantially to our understanding of the physiological features of cognitive
fatigue and the degree to which these features can accurately predict varying states of
cognitive fatigue. However, it is important to highlight that the traditional biomarker
approach predominantly uses statistical modelling, which is viewed as a form of primary
data analysis, whereas the digital biomarker approach typically uses data mining, which
is considered as a form of secondary data analysis [116]. Due to the ad-hoc nature of
data mining, most researchers are very cautious when it comes to the use of data-driven
approaches, such as machine learning, as spurious relationships observed within a dataset
can be easily misinterpreted [116–119]. Indeed, such data-driven models are usually
atheoretical and thus have limited interpretability [120]. On the flip side, discovering
novel relationships in unstructured datasets through data-driven approaches can also help
further develop and refine current theoretical accounts [121]. Nonetheless, data-driven
models have the potential of achieving high predictive power as their primary goal is to
maximise “fit” within a given dataset [117].

In the context of cognitive fatigue, the physiological underpinnings have largely been
ignored in data-driven models. As evident in the aforementioned digital biomarker studies
in the previous section, machine learning approaches have the potential of producing highly
accurate predictive models of cognitive fatigue [106–108]. However, the generalisability
of these machine learning models should be further evaluated using test datasets. It is
also evident in these previous studies that the HRV features selected are fairly inconsistent,
which points to the data-driven nature of these models [106–108]. Given that the imbalance
in sympathetic and parasympathetic nervous activity has been proposed as a physiological
correlate of cognitive fatigue, the knowledge derived from traditional biomarker research
is particularly informative and should be incorporated into machine learning models to
aid development and validation. Specifically, such domain-specific knowledge can help
with the selection of parameters, features, or models, which could result in models that are
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more theoretically coherent, physiologically sound, generalisable, and interpretable [122].
In addition, using multiple biomarkers to build a multivariate model could potentially
improve overall predictive power [123]. Thus, adopting a hybridised approach, combining
domain-specific knowledge gained from traditional biomarker research with modern
machine learning approaches, could potentially help researchers to build a more robust and
generalisable model of cognitive fatigue. To this end, future researchers could incorporate
our current knowledge on the putative biomarkers of cognitive fatigue (e.g., low-frequency
power, high-frequency power, and the ratio of low- to high-frequency power) to aid in
feature selection or act as a parameter constraint when developing machine learning
models of cognitive fatigue. Open-source tools, such as PySiology, are readily available for
researchers to extract these physiological features for machine learning [124].

6. Issues and Implications

When building a model of cognitive fatigue, potential confounds or closely-related
concepts, such as stress and mental workload, should be considered. Stress can be broadly
defined as “an emergent process that involves interactions between individual and envi-
ronmental factors, historical and current events, allostatic states, and psychological and
physiological reactivity” [125] (p. 1). Mental workload, in particular, can be viewed
as a form of task-related or occupation-related stressor [126]. Mental workload can be
objectively defined as the cost of internal resources (i.e., mental effort) to perform at a
certain level or complete a task [127–129]. Cognitive overloading due to high levels of
mental workload may lead to cognitive fatigue [6]. Not surprisingly, previous studies have
demonstrated that various frequency-domain HRV indices, such as low-frequency power,
high-frequency power, and the ratio of low- to high-frequency power, were associated
with increased stress (for review, see [130]). In addition, previous research has shown that
the mental with physical workload condition had significantly lower AVNN and lower
vagal modulation, indexed by lower pNN50, as compared to the physical only workload
condition [131]. Interestingly, Fairclough and colleagues [44] found a significant interaction
effect, whereby low-frequency power is higher in the low mental workload condition as
compared to the high mental workload condition during the initial period of a 64-min
task. While low-frequency power increased in both conditions over time, the increase in
low-frequency power was attenuated in the low mental workload condition at the end of
the task, resulting in higher levels of low-frequency power in the high mental workload
condition than the low mental workload condition [44]. Overall, there appears to be sig-
nificant overlap and complex interactions amongst cognitive fatigue, mental workload,
and stress.

One argument is that putative biomarkers of a particular psychological state should
have a certain level of specificity [82,132]. That is, HRV should be more strongly correlated
with cognitive fatigue than with stress or mental workload. However, this approach could
be erroneous; first, for many individuals, cognitive fatigue, stress, and mental workload
could be inherently associated, and thus disentangling these phenomena might not only re-
sult in misclassification but could actually be impossible; second, this approach might result
in excessive reductionism and thus “paradigm-bound theories” [133]. Hence, prospective
researchers should further examine the interaction amongst cognitive fatigue, stress, and
mental workload in relation to HRV changes, aiming to represent both “robust reverse
inference” (i.e., predicting behaviour from biological responses and predicting biological
responses from behaviour). In the context of building models, stress should be accounted
for when predicting cognitive fatigue due to the significant overlap in physiological find-
ings between stress and cognitive fatigue. Given the interaction between mental workload
and cognitive fatigue on low-frequency power [44], it appears that mental workload is a
potential moderator that needs to be considered. Moreover, previous research comparing
cognitive fatigue and mental workload levels found that HRV is a better index of cognitive
fatigue, whereas heart rate is a better index of mental workload [134]. Hence, future studies
could explore using heart rate, as well as heart rate variability, as a measure of mental
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workload in the development of a more generalisable predictive model of cognitive fatigue,
serving as a moderator to account for varying levels of mental workload across different
tasks and situations.

7. Conclusions and Applications

Cognitive fatigue is a mental state characterised by the subjective feelings of tired-
ness, insufficient energy, difficulty with concentration, and impaired ability to think [1,2].
Traditionally, cognitive fatigue has been assessed through self-report and cognitive task
performance. Later, biomarker approaches have been adopted to help understand the
physiological underpinnings of cognitive fatigue. In particular, the imbalance of sympa-
thetic and parasympathetic nervous activity has been proposed as a physiological correlate
of cognitive fatigue. Indeed, as highlighted in the second section of this paper, various
HRV indices have been demonstrated to vary as a function of cognitive fatigue levels,
indicating that these HRV measures are putative biomarkers of cognitive fatigue. More re-
cently, researchers have also demonstrated that machine learning approaches are capable of
predicting cognitive fatigue using physiological data to a high level of accuracy [106–108].
Given the ubiquity of wearables that can measure cardiovascular activity, it appears that
data collected from these devices have the potential of accurately predicting cognitive
fatigue through machine learning approaches. However, the use of domain-specific knowl-
edge from traditional biomarker research with novel machine learning approaches is
imperative in building a robust and generalisable predictive model of cognitive fatigue.

A robust model of cognitive fatigue would allow for the development of a contin-
uous fatigue monitoring system on wearables, which could be used to alert or remind
an individual of the need to rest. For instance, given that cognitive fatigue increases the
risk of accidents and errors [14,15], such a device may help mitigate not only minor errors
but also potentially major accidents. By incorporating fatigue alleviating interventions
with this monitoring system, timely and adequate rest could be objectively quantified
and maximised. For instance, a previous study has shown that providing HRV biofeed-
back to participants attenuated cognitive fatigue during a mentally fatiguing task [135].
These effects have also been observed in the chronic fatigue syndrome population, albeit
preliminary, where a pilot study has demonstrated that providing HRV biofeedback has
improvements on specific cognitive components of fatigue [136]. Besides biofeedback,
exposure to natural sounds has also been shown to have a positive effect on cognitive
fatigue recovery [137]. Overall, this area of research is important in advancing our knowl-
edge on not only cognitive fatigue monitoring but also cognitive fatigue recovery, which
have significant implications in mitigating and minimising the risk of human errors in
cognitively fatiguing situations.
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