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Abstract

The presence of meiosis, which is a conserved component of sexual reproduction, across

organisms from all eukaryotic kingdoms, strongly argues that sex is a primordial feature of

eukaryotes. However, extant meiotic structures and processes can vary considerably

between organisms. The ciliated protist Tetrahymena thermophila, which diverged from ani-

mals, plants, and fungi early in evolution, provides one example of a rather unconventional

meiosis. Tetrahymena has a simpler meiosis compared with most other organisms: It lacks

both a synaptonemal complex (SC) and specialized meiotic machinery for chromosome

cohesion and has a reduced capacity to regulate meiotic recombination. Despite this, it also

features several unique mechanisms, including elongation of the nucleus to twice the cell

length to promote homologous pairing and prevent recombination between sister chroma-

tids. Comparison of the meiotic programs of Tetrahymena and higher multicellular organ-

isms may reveal how extant meiosis evolved from proto-meiosis.

Introduction

Meiosis is a special type of cell division through which eukaryotic germ progenitor cells halve

the somatic diploid chromosome set to generate the gametic haploid set for sexual reproduc-

tion. During this process, parental genomes are shuffled within the gametes, which increases

genetic diversity in the offspring. Hallmarks of meiosis are the formation of programmed

DNA double-strand breaks (DSBs), searching and pairing of homologous parental chromo-

somes, exchange of sections between homologous chromosomes, and segregation of the result-

ing mosaic chromosomes to haploid daughter cells. DNA ends at DSB sites can interact with

intact DNA molecules to probe homology, pair, and initiate homology-dependent repair,

which ultimately leads to interhomolog crossovers (COs) (see [1]). Homologous pairing usu-

ally culminates in the formation of a protein structure, the synaptonemal complex (SC), which

intimately connects the homologs and appears to regulate CO formation (see [2]).

Initial research on meiosis focused on organisms that were suitable for cytological and

genetic analysis. Later, the era of molecular biology shifted the focus to budding yeast as the

model organism, which revealed molecular details of the exchange of homologous DNA

sequences and the cellular machinery of chromosome segregation. In hindsight, the choice of

yeast was a good one because many features of yeast meiosis turn out to be typical of canonical

meiosis, which prevails in vertebrates and plants, and whose understanding is critical for clini-

cal human genetics and plant breeding. However, from studies in fission yeast, Drosophila,

and Caenorhabditis elegans, it became clear that details of the meiotic process can vary.
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Therefore, meiosis research had to include nonstandard model organisms, preferably from

distant evolutionary lineages, in order to capture the full range of meiotic diversity and com-

monalities and to understand the origin of meiosis and its impact on eukaryotic evolution.

This is where Tetrahymena thermophila entered the stage. Tetrahymena is a ciliated protist

of the kingdom Chromalveolata, which branched off early in evolution from animals, plants,

and fungi. This versatile model organism rose to prominence based on its contribution to

unraveling programmed DNA elimination, identifying the first cytoskeletal motor, dynein,

and elucidating the role of histone acetylation in transcription, and, particularly, in the Nobel

Prize–winning discoveries of self-splicing introns and telomere organization (see [3]). Early

studies revealed some structural peculiarities of Tetrahymena meiosis. Since then, closer inves-

tigation has made Tetrahymena meiosis the best-studied model outside the classical fungal,

plant, and animal models and uncovered notable deviations from canonical meiosis (see [4]).

Understanding this uncommon and, in some ways, minimalistic meiosis may help us to

understand many mysterious aspects of the meiotic process and the evolutionary basis of func-

tional adaptations to the meiotic program that exist in higher eukaryotes.

Tetrahymena sexual reproduction

T. thermophila can reproduce both vegetatively and sexually (Fig 1). This makes it, like the

yeasts, convenient for studying meiotic mutants because meiosis-incompetent lines can be

maintained. Tetrahymena is a unicellular organism with the special feature of having 2 func-

tionally distinct nuclei per cell. The macronucleus (MAC) represents the soma, where all gene

transcription occurs. It is highly polyploid (approximately 50×), divides by amitotic splitting,

and becomes degraded during sexual reproduction (see [5]). In contrast, the micronucleus

(MIC), containing 2n = 10 roughly metacentric chromosomes, is genetically silent except for

the transcription of noncoding RNA during sexual reproduction (see [6]). The MIC functions

as the germline: During vegetative growth, it divides mitotically, and during sexual reproduc-

tion, it undergoes meiosis and produces gametic nuclei.

Notably, Tetrahymena has 7 sexes. During development of the somatic nucleus, sex is deter-

mined by the random cleavage and joining of DNA segments among gene pairs at the germ-

line mating type locus [7]. Mating can occur between cells of any 2 different sexes, which

increases the chance of bumping into a mating partner to 6 out of 7 compared with a mere

50% in species with 2 sexes. Sexual reproduction begins when starved cells of complementary

sexes meet. They first enter the so-called costimulation stage, in which they sense the presence

of cells of a different mating type (see [8]). These cells can mate (“conjugate”) and initiate mei-

osis within 2 hours and complete it within 5 hours [9]. The need for starvation to gain sexual

competence is surprising. For yeast, this strategy is understandable because meiosis produces

hardy spores that can outlast lean times. For Tetrahymena, whose meiotic products are not

long lasting, we can only suppose that they adjourn meiosis until an otherwise unproductive

period when vegetative reproduction is halted, anyway. Alternatively, cells might perceive

nutritional stress as dwindling vigor owing to the accumulation of mutations and respond by

genome rejuvenation via sex (see [10,11]).

Meiotic progression can be easily followed and staged (Fig 2) [5]: During prophase, nuclei

stretch into thin threads, and cytological and molecular markers of DSB formation and pro-

cessing appear [12]. Chromosome pairing takes place without an SC [13,14]. At the end of pro-

phase, nuclei shorten and at diplotene/diakinesis, condensed bivalents become discernible.

This is followed by closed first and second meiotic divisions (Fig 2). The reciprocal fertilization

of gametic pronuclei of 2 mating cells produces zygotic nuclei, which generate new germline

and somatic nuclei (Fig 1). Meiotic genes show a characteristic temporal transcription pattern,
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with maximal expression in mating cells occurring from as early as 2 hours after mixing meio-

sis-competent cells [15]. Interestingly, some meiotic genes start being expressed at the costi-

mulation stage, prior to pairing between mating partners (see NCBI dataset GSE132677; [8]).

Although at this point cells may return to the vegetative cycle if the nutritional situation

improves, such preparedness will speed up the mating process if starvation persists.

Its particular proficiency in harnessing ubiquitous proteins for meiotic functions allows

Tetrahymena to employ comparatively few meiosis-specific genes. Studies of deletion mutants

showed that of more than 100 genes with an expression peak at the early mating stage, only

about one-quarter could be assigned a function in meiotic pairing and/or recombination

(Table 1). Another quarter are involved in the maturation of sexual progeny, and about 10%

are regulatory (encode transcription factors, cyclins or cyclin-dependent kinases, or control

meiosis and other mating processes) [16–21]. Deletion of the remaining genes produced no

Fig 1. Vegetative and sexual cycles of Tetrahymena thermophila. During vegetative growth (left), the 2 nuclei divide asynchronously. First, the germline nucleus

(the MIC) divides mitotically, then the somatic nucleus (MAC) stretches and splits amitotically, and, finally, the cleavage furrow closes to divide the cell. Meiosis is

induced when starved cells of 2 different mating types meet (right). The cells mate (“conjugate”), and their MICs undergo synchronous meioses. Three of the 4

meiotic products are degraded, while the remainder is selected and recruited to the conjugation junction, where it undergoes a postmeiotic mitosis. This division

produces 2 gametic nuclei, one migratory and the other stationary. Migratory nuclei are exchanged between the partner cells and fertilize their stationary nuclei.

The resulting genetically identical zygote nuclei divide twice, and the daughter nuclei differentiate into the new MICs and MACs of 4 sexual progeny cells, while

the old MAC is eliminated via autophagy. As soon as new MACs form, they start to polyploidize. The 5 MIC chromosomes are fragmented into about 200 MAC

chromosomes, and about one-third of the MIC genome is eliminated by the removal of thousands of internal eliminated sequences (see [76]). MAC,

macronucleus; MIC, micronucleus.

https://doi.org/10.1371/journal.pgen.1009627.g001
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apparent defect—either they are redundant or their loss causes only moderate meiotic nondis-

junction. In fact, Tetrahymena meiosis is remarkably error tolerant: Even nullisomic gametic

nuclei may be fertile because missing chromosomes can be supplied to the zygote by the

Fig 2. Tetrahymena meiotic stages. Schematic diagrams of mating cells and microscopy images of Giemsa-stained meiotic nuclei. Meiotic prophase is staged according

to [79]. (a) In nonmeiotic cells, the MIC is located in a pocket on the MAC surface. (b) In stage I conjugating cells, the round MIC moves away from the MAC. The

progress of meioses in conjugated cells is largely synchronous. (c–e) Once DSBs begin to form, the MICs start stretching and elongate to about twice the length of the

cell. (f) MICs then shorten, and all DSBs are repaired by the end of stage V. (g) Progressive chromatin compaction reveals the formation of 5 bivalents. (h) Bivalents with

protruding centromeres have reached maximal condensation. (i) Bivalents arranged in a metaphase plate. (j, k) Anaphase I and II follow the conventional scheme. (l)

After telophase II (left cell), one of the 4 meiotic products is selected to divide into 2 gametic nuclei, whereas the other 3 products degenerate (right cell). Bar: 10 μm.

DSB, double-strand break; MAC, macronucleus; MIC, micronucleus.

https://doi.org/10.1371/journal.pgen.1009627.g002
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Table 1. Genes with functions in Tetrahymena meiosis.

Process

TGD ID

NCBI Gene ID,

Protein ID

Meiosis

specific

Function Budding yeast

homolog

Reference(s)

Meiosis initiation and regulation

TCDK3 (TTHERM_00483640) Gene ID: 7840816,

XP_001017477.2

Y Meiotic cyclin–dependent kinase CDC28 [17]

CYC2 (TTHERM_00079530) Gene ID: 7831246,

XP_001015793.1

Y Meiotic B-type cyclin CLB4 [16]

CYC17 (TTHERM_00693080) Gene ID: 7827170,

XP_001023573.2

Y Meiotic B-type cyclin CLB2 [20]

CYC28 (TTHERM_00082190) Gene ID: 7845854,

XP_001012564.3

Y Meiotic cyclin — [21]

E2FL1 (TTHERM_00695710) Gene ID: 7837814,

XP_001025582.2

Y Meiotic E2F family transcription factor — [18]

DPL2 (TTHERM_00047010) Gene ID: 7844987,

XP_001014696.1

Y Meiotic transcription factor — [19]

APRO1 (TTHERM_00112830) Gene ID: 7843544,

XP_001010678.3

Y Meiotic transcription factor — Unpublished

DSB formation

SPO11 (gene_000008668)1 Not listed Y Meiotic DSB formation SPO11 [25]

PARS11 (TTHERM_00133730) Gene ID: 7829243,

XP_001019652.3

Y Meiotic DSB formation and control (REC114 ?)3 [41]

PARS-L (TTHERM_00530039) Gene ID: 24442767,

XP_001470656.1

Y Meiotic DSB formation — Unpublished

Homologous pairing

CNA1 (TTHERM_00146340) Gene ID: 7840155,

XP_001011273.1

N Centromeric histone, meiotic nuclear

reorganization

CSE4 [27]

MELG1 (TTHERM_00711850) Gene ID: 7827803,

XP_001025845.2

Y Meiotic nuclear reorganization — [23]

MELG2 (TTHERM_00289290) Gene ID: 7846875,

XP_001018646.3

Y Meiotic nuclear reorganization — [23]

MELG3 (gene_000025916)1 QPL17970.1 Y Meiotic nuclear reorganization — [23]

Crossover, chiasma formation

ATR1 (TTHERM_01008650) Gene ID: 7843404,

XP_001026698.2

N Meiotic DSB sensing MEC1 [24]

MRE11 (TTHERM_00721450) Gene ID: 7841076,

XP_001031877.2

N DSB end processing MRE11 [35,42]

COM1 (TTHERM_00460480) Gene ID: 7824714,

XP_001018744.1

Y DSB end processing COM1/SAE2 [35]

EXO1 (TTHERM_01179960) Gene ID: 7846424,

XP_001030028.2

(Y)2 DSB end processing EXO1 [42]

SGS1 (TTHERM_01030000) Gene ID: 7824842,

XP_001015163.2

N Helicase, processing of recombination

intermediates

SGS1 [48]

MUS81 (TTHERM_00624870) Gene ID: 7831680,

XP_001022614.2

N Double Holliday junction resolution MUS81 [48]

MMS4 (TTHERM_00194130) Gene ID: 7844641,

XP_001017166.1

N Partner of Mus81, double Holliday

junction resolution

MMS4 [48]

DMC1 (TTHERM_00459230) Gene ID: 7828368,

XP_001024231.1

Y Strand exchange with homologous

chromosome

DMC1 [36]

RAD51 (TTHERM_00142330) Gene ID: 7827499,

XP_001011071.1

N Regulates Dmc1 nucleoprotein filament

formation

RAD51 [36]

HOP2 (TTHERM_00794620) Gene ID: 7825538,

XP_001020981.3

Y Bivalent formation HOP2 [25]

MND1 (gene_000003690)1 Not listed Y Bivalent formation MND1 [25]

(Continued)
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mating partner, and selective replication can correct chromosomal imbalances in progeny

somatic nuclei. However, germline nuclei will accumulate aneuploidies over multiple vegeta-

tive reproduction cycles, leading to decreasing fertility in subsequent generations.

Nuclear reorganization and chromosome pairing

The most visually striking stage in Tetrahymena meiosis is elongation of the prophase nucleus

to about twice the cell length (Fig 2) [22,23]. This requires SPO11-dependent programmed

DSBs and the DNA damage sensor kinase ATR [24]. Artificial DNA damage can restore mei-

otic nuclear elongation in spo11 mutants [25], showing that elongation is triggered by a DNA

damage signal. Nuclear elongation is driven by the polymerization of intranuclear microtu-

bules [13,24,26], aided by elements of the cytoskeleton, membrane-associated proteins, and a

set of microtubule-associated motor proteins. However, identifying the specific proteins

involved in nuclear elongation is notoriously difficult because they are probably also used in

other essential processes, so inhibiting them would impede cell growth and motility. However,

it has been possible to identify a few meiosis-specific factors that repurpose the microtubule

apparatus for meiotic nuclear reorganization [23].

Within the elongated nucleus (often referred to as the crescent), chromosome arms are ori-

ented in parallel, with centromeres and telomeres attached to opposite ends (Fig 3) [27,28].

This arrangement is believed to promote the juxtapositioning of homologous regions, and,

thereby, homologous pairing and CO [27,29]. If elongation is prevented by inhibiting microtu-

bules, DSBs are repaired by recombinational repair via the sister chromatid [24]. Thus, the

Table 1. (Continued)

Process

TGD ID

NCBI Gene ID,

Protein ID

Meiosis

specific

Function Budding yeast

homolog

Reference(s)

BIME2 (TTHERM_00530659) Gene ID: 7827388,

XP_001470665.1

Y Promotes or stabilizes Dmc1

nucleoprotein filaments

(RAD54 ?)3 [44]

MSH4 (TTHERM_00857890) Gene ID: 7832209,

XP_001021931.2

Y MutS-domain protein, stabilizes joint

molecules

MSH4 [37]

MSH5 (gene_000007168)1 Not listed Y MutS-domain protein, stabilizes joint

molecules

MSH5 [37]

ZHP3 (TTHERM_00049220) Gene ID: 7830970,

XP_001014817.4

Y Stabilizes D-loop? (ZIP3 ?)3 [43]

BIME1 (TTHERM_00460720) Gene ID: 7825705,

XP_001018768.3

Y Bivalent formation — [43]

MCMD1 (TTHERM_01207610) Gene ID: 7836088,

XP_001021907.2

Y MCM domain protein, chiasma

formation

— [49]

PAMD1 (TTHERM_001295283) XM_012798783.1 Y Partner of Mcmd1, chiasma formation [49]

Meiotic divisions

REC8 (TTHERM_00245660) Gene ID: 7841491,

XP_001023795.2

N Universal kleisin component of the

cohesin complex

SCC1, REC8 [59]

ESP1 (TTHERM_00297160) Gene ID: 7834521,

XP_001013249.2

N Separase ESP1 [59]

TTHERM_—identifier of annotated genes in the TGD (http://ciliate.org/).
1Incorrect annotation in TGD; the transcript identifier (gene_) from the TFGD (http://tfgd.ihb.ac.cn/) is shown instead.
2EXO1 has a nonessential function in vegetative cells.
3Homology doubtful.

DSB, double-strand break; TFGD, Tetrahymena Functional Genomics Database; TGD, Tetrahymena Genome Database.

https://doi.org/10.1371/journal.pgen.1009627.t001
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dual role of Spo11 in inducing DSBs and nuclear elongation ensures that programmed DSBs

can be repaired via the homologous chromosome.

Unlike the horsetail movement of fission yeast, which disentangles chromosomes and sorts

them by size (see [30]), live cell imaging showed that nuclear elongation is not accompanied

by twisting or meandering movements [31]. Thus, the parallel orientation of chromosome

arms appears sufficient to align homologous regions. While this arrangement resembles the

meiotic chromosome bouquet found in most eukaryotes [32], homologs of Sun1, KASH-

domain proteins, and other conserved bouquet-related proteins have not been identified in

Tetrahymena [27]. Therefore, it is likely that the polarized prophase nucleus represents an

analogous device rather than an extreme version of the classical bouquet [23]. Interestingly,

successful chromosome pairing and crossing over depend more on centromere clustering than

on telomere clustering [23]. Given the increasingly recognized importance of centromeres in

meiotic pairing in a variety of species (see [23,27]), it is conceivable that centromere clustering

(which is a consequence of the anaphase orientation of chromatids in nuclear division) may

have facilitated homologous chromosome alignment in proto-meiosis prior to the evolution of

telomere-driven mechanisms for alignment, such as the bouquet.

Nuclear elongation is also found in some other ciliates [4,33]. Yet others use a so-called

parachute structure, in which chromatin is unevenly distributed in a drop-shaped nucleus; this

structure is more reminiscent of the classic bouquet (see [33,34]). Some ciliates appear to lack

an SC, whereas others possess axial element-like structures or even stretches of SC-like mate-

rial or fragmentary SCs, and normal SCs are present in other chromalveolates [4,14]. Thus,

there seems to be a tendency within the ciliate clade toward loss of the SC, which appears to

Fig 3. Examples of mating cells and meiotic nuclei. (a) An isolated meiotic nucleus showing the polarized arrangement of chromosome arms

with centromeres (immunostained for centromere protein Cna1, red) and telomeres (fluorescence in situ hybridization with a telomere-repeat

probe, green) attached to opposite ends. (b) Mating cells immunostained for the meiosis-specific recombination protein Dmc1 (green) and its

ubiquitous paralog Rad51 (red). Elongated meiotic nuclei only show Dmc1, whereas the somatic nuclei only show Rad51. (c) Meiotic cells with

fully elongated (top) and shortening (bottom) nuclei incubated with BrdU. BrdU incorporation (yellow) into shortening nuclei only indicates

that DSB repair occurs at this stage. Bars: 10 μm. BrdU, bromodeoxyuridine; DSB, double-strand break.

https://doi.org/10.1371/journal.pgen.1009627.g003
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correlate with the presence of elongated meiotic nuclei. This inverse association supports the

notion that the spatial confinement of chromosomes within a tubular nucleus substitutes for

physical linkage of the homologs by an SC [27].

Meiotic recombination

The reciprocal exchange of broken DNA strands enables interhomologous COs to form. In

this process, numerous DSBs are generated by Spo11 to ensure proper homology searching

and homologous pairing (see [1]). In Tetrahymena, DSB formation and repair have been

detected by the transient appearance of chromosome fragments in pulsed field electrophoresis

gels [35], by localization of the recombination protein Dmc1 [36], and by bromodeoxyuridine

(BrdU) incorporation during the recombinational repair of DSBs (Fig 3) [27]. Approximately

200 programmed DSBs are formed during Tetrahymena meiosis [37]. Early steps in meiotic

recombination follow the canonical pathway, with Spo11 inducing DSBs. However, a homolog

of TOPOVIBL, which is an essential complex partner of Spo11 in other species [38], seems to

be missing or has diverged beyond recognition in Tetrahymena. As in yeast, animals, and

plants, poorly conserved cofactors (see [39,40]) are also needed. These include Pars11, which

functions in DSB formation and control (analogous to yeast Rec114; [41]) and an as yet

uncharacterized orphan protein encoded by gene TTHERM_00530039 (Table 1).

A DSB can be repaired in various ways. There is a choice between nontemplated repair,

such as nonhomologous end-joining (NHEJ), and repair using a homologous DNA molecule

from the sister chromatid or homologous chromosome as the template. NHEJ is unlikely to

play even a backup role in Tetrahymena meiotic DSB repair [12]. Therefore, the vast majority,

if not all, of meiotic DSBs are repaired via homologous recombination. Once DSBs have

formed, flanking DNA tracts are resected to expose 30 single-stranded tails capable of invading

double-stranded DNA. The usual suspects are involved in dealing with Tetrahymena DSBs:

the endo/exonuclease Mre11, the exonuclease Exo1, and Sae2 (Com1) (Table 1). However, an

as yet unknown nuclease that initiates DSB processing must also exist because single-stranded

tracts can be generated in the absence of Mre11 [42]. Like most model organisms, Tetrahy-
mena requires for strand exchange the ubiquitous Rad51 recombinase and its meiosis-specific

paralog Dmc1, which associate as multimeric nucleofilaments with single-stranded tracts to

enable their interaction with double-stranded DNA. A unique aspect of this stage in Tetrahy-
mena is that Dmc1 forms numerous foci in meiotic prophase nuclei, whereas Rad51 is not

detectable, despite its abundance at vegetative DNA damage repair sites. This lack is inter-

preted by Rad51 playing only a regulatory role in interhomolog recombination and only short

Rad51-laden tracts being involved in intersister exchange [35,36]. A few other factors assist in

converting DSBs into COs by stabilizing the DNA nucleofilament or promoting homologous

strand invasion; some are clear orthologs of yeast proteins, such as Hop2 and Mnd1 [25],

whereas others (Zhp3, Bime1, and Bime2) have no clear assignment [43,44] (Table 1).

For homologous recombination and segregation, DSB repair must be redirected from the

sister chromatid, which is the spatially preferred template, to the homolog [45]. In budding

yeast and other model organisms, activities of the Red1 and Hop1 chromosome axis proteins

and the Mek1 kinase switch recombination from a mitosis-like intersister mode to a meiotic

interhomolog mode (see [46]). This transition is gradual, as early DSBs are primarily repaired

by the sister, whereas later in prophase, when DSBs become more abundant, the barrier to

intersister exchange is enforced and interhomolog repair prevails [47]. In Tetrahymena, the

situation is different, since DSBs are simultaneously repaired late in prophase [48]. Therefore,

early intersister D loops are believed to be destabilized by the Sgs1 helicase in order to recycle

DSBs for use in homologous recombination once homologs have become aligned [48]. In
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addition, Mcmd1 (a meiosis-specific minichromosome maintenance-like protein) and its part-

ner Pamd1 help delay DSB repair to prevent precocious intersister recombination [49]. Never-

theless, the meiotic interhomolog bias may be weaker than in other organisms: Perfect repair

(instead of meiosis failure) occurs in the absence of Dmc1 or Hop2, which are generally

believed to promote interhomolog recombination [25,36], suggesting a strong potential for

intersister repair. In addition, an unknown percentage of DSBs is likely channeled into nonre-

ciprocal interhomolog recombination (conversion) events, which explains the huge discrep-

ancy between the estimated numbers of DSBs (approximately 200) and putative chiasmata

(approximately 20 to 40) [23,43].

In most eukaryotes, the SC is a prominent structure of meiotic prophase. It promotes the

maturation of recombination intermediates into COs, and the SC or its lateral elements are

believed to be involved in CO interference (the mutual suppression of neighboring COs) (see

[50,51]) and in restricting the number of DSBs [52]. Although Tetrahymena does not possess a

canonical SC, a nonconserved recombination protein, Bime1 (Sa15), forms thread-like struc-

tures on chromatin. This suggests that Bime1 may form part of or be arranged along an axial

structure [43] that resembles SC lateral elements or the linear elements of fission yeast. Confir-

mation of such a meiotic chromosome scaffold would support the generality of the loop–axis

model. According to this model, DSBs may be formed in chromatin loops, but repair requires

the context of chromosome axes to which recombination proteins are attached [53,54].

Most eukaryotes use 2 major pathways to form COs: One is the class I pathway, which

involves SC formation and ZMM proteins and generates COs that are subject to interference.

The other is the class II pathway, which is largely ZMM independent and produces noninter-

fering COs [55]. In contrast, Tetrahymena uses a single mixed pathway that involves some

ZMM proteins and the class II Holliday junction resolvase Mus81 [37,43]. Such limitation to a

single CO pathway is another hallmark of Tetrahymena’s pared-down meiosis. Since Tetrahy-
mena shares with fission yeast the absence of both an SC and the class I CO pathway, and since

CO interference is weak in this organism [56,57], the question arises of whether Tetrahymena’s

COs are interfering. However, without clear data on CO numbers and distribution or genetic

map size (see [58]), neither this question nor the related question of whether the SC has a role

in CO interference can be answered at present.

Meiotic divisions and segregation

Tetrahymena undergoes closed meiotic divisions, i.e., the spindle apparatus is formed within

the intact nuclear membrane [5]. The first division begins when nuclei have shortened and

bivalents are arranged in a metaphase I plate at the nuclear equator. This requires reorganiza-

tion of the microtubule apparatus from a unipolar arrangement to drive nuclear elongation at

prophase to a bipolar arrangement to form the division spindle. Microtubule reorganization is

coordinated by the meiosis-specific cyclin, Cyc28. In a cyc28 deletion mutant, the monopolar

microtubules prematurely undergo reorganization into a bipolar spindle, and chromosomes

start to separate before homologs have paired. Consequently, chromosome segregation is

irregular [21].

In Tetrahymena, the first and second meiotic divisions follow the canonical scheme with

the segregation of homologs and sister chromatids, respectively. However, here, we encounter

another unconventional aspect of Tetrahymena meiosis, namely the lack of a specialized mei-

otic cohesin [59]. Most eukaryotes possess a somatic and a meiotic version of the cohesin com-

plex. This has been explained by meiotic cohesin having a specific function in the stepwise

release of cohesion from chromosome arms and centromeres to allow homologs and sisters to

separate in meiosis I and II, respectively [60]. In general, meiotic cohesin complexes are loaded

PLOS GENETICS

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009627 July 15, 2021 9 / 15

https://doi.org/10.1371/journal.pgen.1009627


during premeiotic S-phase. However, Tetrahymena has no chance to load a meiosis-specific

cohensin, since it does not undergo dedicated premeiotic DNA synthesis [59,61,62]: Most

starving cells are in G2 and enter meiosis or resume mitosis depending on whether they

encounter a mating partner or are provided food. Notably, cohesin is absent in the somatic

nucleus, where all gene transcription occurs. Thus, whereas in most eukaryotes, cohesin may

be involved in the formation of topologically associated domains (TADs), which have been

implicated in transcriptional regulation [63,64], this is not the case in Tetrahymena. In fact,

Hi-C experiments have confirmed that somatic chromatin lacks TADs [28]. A possible expla-

nation for the absence of this gene regulatory function in Tetrahymena is that the small size of

its somatic chromosomes, with each containing only a few genes, may make elaborate regula-

tory mechanisms dispensable. Return-to-growth experiments and knockout studies have

shown that, in principle, a single (meiotic) cohesin version is also sufficient for vegetative and

meiotic divisions in budding yeast, (see [59,65]). This suggests that the vegetative version of

cohesin found in most organisms is likely to be an optimized solution for gene regulation,

which Tetrahymena does not need.

The end game

Once 4 haploid meiotic products have formed in each of the 2 conjugating partners, they

undergo a replication step whereupon 3 nuclei degenerate. This seems wasteful but may possi-

bly allow for a quality control mechanism to select a healthy nucleus for survival. The selected

nucleus undergoes a postmeiotic (PM) mitosis to produce 2 gametic pronuclei.

At this stage, another round of programmed DSBs is believed to take place [66]. These PM

DSBs are induced by a topoisomerase II paralog with exclusive pronuclear expression, possibly

assisted by Spo11. PM DSBs are proposed to be responsible for modified histone replacement

during the reprogramming of generative to undifferentiated progeny nuclei since their repair

is concomitant with the incorporation of newly synthesized histone H3 into pronuclei. Given

the danger of DSBs to genome integrity, their usage in chromatin remodeling in Tetrahymena
is remarkable but may parallel the functions of self-inflicted DSBs in transcriptional regulation

and chromatin decondensation in other organisms [67–70].

The 2 identical gamete pronuclei of each cell then cross-fertilize with their counterparts in

the partner cell. In this way, a pair of conjugating cells produces 4 progeny cells with identical

germline genomes (Fig 1). This is another curious feature of Tetrahymena sexual reproduction,

which at first sight seems to violate the postulate that meiosis should produce genetically, and,

hence, phenotypically diverse siblings to avoid wasteful sibling competition [71,72]. However,

siblings differentiate phenotypically due to random genotypic assortment of their polyploid

somatic genomes. This means that over time, progeny cells that started with a 50:50 allele ratio

for a somatic gene will acquire different allele ratios and may eventually become homozygous

for either allele. In addition, imprecise somatic DNA elimination can create diversity in the

genetic makeup of siblings (see below and [6]). Notably, inbreeding of siblings is largely pre-

vented by the sexual immaturity of young sexual progeny. Only after approximately 85 to 90

vegetative fissions can cells mate with cells of a similar clonal age (see [73]). By this time, sib-

lings have dispersed and are unlikely to encounter each other to mate [74].

Mendelian and RNA-guided transgenerational epigenetic

inheritance take place concomitantly in the germline

Tetrahymena and other ciliates have evolved the ultimate way of combating transposable ele-

ments (TEs) and other undesired DNA sequences, namely their elimination [75]. In Tetrahy-
mena, the approximately 12,000 internal eliminated sequences (IESs; corresponding to about
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one-third of the genome) present in the germline nucleus are removed from the somatic

nucleus, and somatic chromosomes are fragmented into approximately 225 minichromosomes

[76]. The vast majority of IESs (approximately 18 MB) are TE-related sequences; the remain-

der are centromeres and perhaps other structural or regulatory elements that are dispensable

for the function of the somatic nucleus [75–77]. Elimination of most germline-limited DNA

sequences is guided by noncoding RNA, which is transcribed in the early meiotic nucleus [78].

This is the only detectable transcriptional activity of the germline nucleus, and it occurs con-

comitantly with meiotic recombination [79]. The transcription of small RNA precursors from

both DNA strands produces double-stranded RNA molecules (see [6]), which are cleaved into

small (28 to 30 nucleotides) RNAs (also called scan RNAs (scnRNAs)) [80]. scnRNAs are

transferred from the germline nucleus to the old somatic nucleus, where they undergo a selec-

tion process: Those that match sequences in the somatic nucleus are degraded, and the

remaining scnRNAs (corresponding to germline-limited sequences) enter the new somatic

nucleus, where they instruct heterochromatinization and IES elimination [6]. Thus, 2 layers of

sexual inheritance exist in Tetrahymena: One is mendelian inheritance via meiosis and fertili-

zation of the germline nucleus, and the other is the transfer to sexual progeny of RNA-encoded

information on the genetic makeup of the parental somatic nucleus. Notably, this information

flow is not flawless as DNA elimination is sometimes imprecise, and some sequences are erro-

neously retained or eliminated. Such sequence variants may become homozygous in the poly-

ploid somatic nucleus due to random assortment during amitotic segregation, allowing cells to

adapt to environmental changes. Once fixed in the somatic nucleus, advantageous variants

could be inherited by sexual progeny via selected scnRNA [6,75].

Compared with its modest genetic commitment to meiosis, Tetrahymena expends consid-

erable effort in eliminating TEs from the soma: Of all genes that are exclusively or preferen-

tially expressed within the first 2 hours after the initiation of mating, about one-quarter are

involved in IES elimination. But why doesn’t Tetrahymena instead remove these sequences

from its germline to prevent their transmission to progeny? One answer may be a benefit of

TE activity in rearranging the germline genome or creating novel genes, thereby providing

opportunities for evolutionary innovation (see [81] and lit. cit. therein).

The massive burst of genome-wide transcriptional activity concomitant with early meiosis

raises the question of whether these processes influence each other. Efforts are currently

underway to map DSBs and determine whether scnRNA transcription and meiotic DSB for-

mation avoid spatial overlap or, in contrast, share open chromatin tracts such as nucleosome-

depleted regions at transcription start sites (see [40]). In this regard, Tetrahymena is an ideal

model to study functional relationships between recombination and transcription. Owing to

its nuclear dualism, all transcription in the meiotic nucleus is nonessential and can be tweaked

or even shut down completely without serious consequences for the progression of meiosis.

Conclusions

Tetrahymena sexual reproduction has some unusual features. It has 7 sexes, and pairs of mat-

ing cells produce genetically identical progeny. In addition to transmission of genetic informa-

tion via meiosis and fertilization, there is RNA-encoded epigenetic transgenerational

inheritance of the genetic constitution of the soma. Most notably, the meiotic step in the repro-

duction cycle has some unique features. For example, it lacks the elaborate meiosis-specific SC

and, instead, ensures homologous pairing via nuclear elongation and largely utilizes genes that

have a dual function in somatic and meiotic chromosome dynamics. Combined with the

almost exclusive use of somatic repair genes for its streamlined CO pathway and a single ubiq-

uitous cohesin complex, this allows the organism to capitalize on a small number of meiosis-
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specific genes. Unlike most eukaryotes, which have evolved increasingly diverse and sophisti-

cated meioses, ciliated protists have simplified the process, with Tetrahymena probably being

the most pared-down example. Therefore, although not primordial, Tetrahymena’s meiosis,

stripped down to the essentials of the process, may mirror the minimal features of a hypotheti-

cal proto-meiosis.
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