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Combining tissue and circulating tumor
DNA increases the detection rate of a
CTNNB1 mutation in hepatocellular
carcinoma
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Abstract

Background and aims: Studies suggest that mutations in the CTNNB1 gene are predictive of response to
immunotherapy, an emerging therapy for advanced hepatocellular carcinoma (HCC). Analysis of circulating tumor
DNA (ctDNA) offers the possibility of serial non-invasive mutational profiling of tumors. Combining tumor tissue and
ctDNA analysis may increase the detection rate of mutations.
This study aimed to evaluate the frequency of the CTNNB1 p.T41A mutation in ctDNA and tumor samples from HCC
patients and to evaluate the concordance rates between plasma and tissue. We further evaluated changes in
ctDNA after various HCC treatment modalities and the impact of the CTNNB1 p.T41A mutation on the clinical
course of HCC.

Methods: We used droplet digital PCR to analyze plasma from 95 patients and the corresponding tumor samples
from 37 patients during 3 years follow up.

Results: In tumor tissue samples, the mutation rate was 8.1% (3/37). In ctDNA from HCC patients, the CTNNB1
mutation rate was 9.5% (9/95) in the pre-treatment samples. Adding results from plasma analysis to the subgroup
of patients with available tissue samples, the mutation detection rate increased to 13.5% (5/37). There was no
difference in overall survival according to CTNNB1 mutational status. Serial testing of ctDNA suggested a possible
clonal evolution of HCC or arising multicentric tumors with separate genetic profiles in individual patients.

Conclusion: Combining analysis of ctDNA and tumor tissue increased the detection rate of CTNNB1 mutation in
HCC patients. A liquid biopsy approach may be useful in a tailored therapy of HCC.

Keywords: Hepatocellular carcinoma, Molecular pathology, Circulating tumor DNA, Droplet digital PCR, Predictive
biomarkers
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Background
Hepatocellular carcinoma (HCC) is a severe disease with
significant morbidity and high mortality [1]. Treatment
of HCC is guided by tumor stage, underlying liver dis-
ease and performance status. For the past decade, sys-
temic treatment options were limited to sorafenib but
recently, other tyrosine-kinase inhibitors demonstrated a
survival benefit in advanced HCC [2, 3]. In addition,
new treatment strategies with immunotherapy for ad-
vanced HCC are emerging [4]. As many treatments will
be available for patients with advanced HCC, clinicians
need methods to select the right treatment for the right
patient.
Pronounced intratumor heterogeneity and the pres-

ence of multicentric tumors challenge a global tumor
molecular profiling from a single biopsy [5, 6]. In
addition, mutational profiling of tumor biopsies taken at
an early stage of HCC do not necessarily provide optimal
guidance for treatment decisions later in the disease
course. Conversely, ctDNA potentially represents the
whole tumor burden and may provide information on
specific tumor mutations during a clonal evolution.
ctDNA analysis is non-invasive and can be performed
repeatedly during the course of disease and thereby pro-
vide an accurate picture of the tumor mutation profile
before clinical decision-making.
CTNNB1 mutations belong to the most prevalent gen-

etic alterations in HCC [7]. The p.T41A mutation is de-
tected in 10–15% of tissue samples from primary tumors
and leads to activation of the Wnt/β-catenin signaling
pathway [8]. CTNNB1 mutations can appear at any time
in tumor evolution [9], and Vilarinho et al. suggested a
progressive clonal evolution in the CTNNB1 gene during
malignant transformation and development of metastasis
[10]. Studies indicate that patients with mutations in the
Wnt/β-catenin pathway, including CTNNB1 mutations,
have an inferior response to regorafenib [11] and par-
ticularly to immunotherapy [12]. A murine HCC model
supports these clinical findings showing resistance to
anti-PD-1 therapy in tumors with activation of the Wnt/
β-catenin pathway [13].
In the present study we aimed to prospectively moni-

tor and evaluate the concordance between the CTNNB1
p.T41A mutation in ctDNA and tumor tissue in patients
with HCC. For this purpose, droplet digital PCR
(ddPCR) is a sensitive, feasible and affordable method
for detecting specific low frequency mutated alleles in a
background of abundant non-mutated alleles [14]. We
hypothesized that the combined analysis of ctDNA and
tumor tissue DNA may provide a more complete picture
of the frequency of CTNNB1 mutation. Further, we
aimed to evaluate serial testing of ctDNA in a clinical
setting and the correlation of the CTNNB1 mutation to
clinical outcome.

Methods
Ethical approval
The study was approved by the Central Denmark Region
Committee on Biomedical Research Ethics (no. 1–10–
72-240-16) and conducted in accordance with the
Declaration of Helsinki.

Patients and sample preparation
The study included 95 patients with the following inclu-
sion criteria; a clinical diagnosis of HCC; plans to initiate
a new treatment modality; and age above 18 years and
no synchronous malignancy (apart from non-melanoma
skin cancer). All patients gave written informed consent.
Patients were recruited from November 2016 through
October 2018 at the Department of Hepatology and
Gastroenterology or the Department of Oncology,
Aarhus University Hospital.
Clinical data on disease stage, previous and new treat-

ment(s), treatment response, and mortality were ob-
tained from patient charts.
Blood samples were collected from each patient before

commencing a new treatment, after 1 month and every
6 months thereafter for up to 3 years. Samples were col-
lected in 9 mL EDTA tubes (Becton Dickinson,
Plymouth, United Kingdom) and processed within 4 h.
Samples were centrifuged (1800 g at 4 °C for 10 min),
and plasma was carefully removed to avoid contamin-
ation and stored at − 80 °C. Tumor tissue was available
from 37 of the patients. From 8 patients undergoing re-
section, fresh tumor tissue samples were collected in li-
quid nitrogen. All 8 samples passed quality control for
mutation analysis. Formalin-fixed, paraffin-embedded
(FFPE) samples from 32 previously performed diagnostic
biopsies were retrieved for the study and 29 biopsies
passed quality control for mutation analysis.

Cell-free DNA (cfDNA) and tumor tissue DNA analysis
Using QIAamp Circulating Nucleic Acid Kit (Qiagen,
Hilden, Germany) cfDNA was extracted from 4 to 5 mL
of plasma and eluted in 100 μl of elution buffer. DNA
extraction from macro dissected tumor tissue samples
was performed with the DNA Mini Kit (Qiagen) on a
QIAsymphony according to the manufacturer’s manual.
Doplet digital PCR (ddPCR) analyses were performed

with the CTNNB1 p.T41A and wild type (WT) assay
from Bio-Rad using the QX200 AutoDG Droplet Digital
PCR system (Bio-Rad, Hercules, CA, USA). Samples
were run in triplicates. They underwent quality control
and were repeated in cases of outliers or discrepancy.
Each run included a nontemplate control, cell-free DNA
(cfDNA) from a healthy donor and a mutation-positive
control. QuantaSoft analysis software version
v.1.7.4.0917 (Bio-Rad) was used in all data analyses.The
limit of detection (LoD) was determined as previously
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described by analyzing cfDNA from healthy donors [15].
See Supplementary material for a more detailed descrip-
tion of the methods used.

Statistical analysis
Statistical analyses were performed in STATA version
16.0 (Stata Corporation) and GraphPad Prism version
8.3.0. All tests were two-sided, and P values < 0.05 were
considered statistically significant. Survival analyses were
performed using the Cox proportional hazards regres-
sion. Correlations between the mutational status and pa-
tient characteristics were evaluated by the chi-squared
test. Concordance between the mutational status in
plasma and tumor tissue was calculated by Cohen’s
kappa statistics. Data collection was managed using Re-
search Electronic Data Capture (REDCap) hosted at Aar-
hus University [16, 17].

Results
Patient characteristics
We recruited 95 HCC patients for the study, 24 women
(25%) and 71 men (75%). The number of patients with
underlying cirrhosis were 61 (64%) and the primary eti-
ology of cirrhosis was alcohol (51%). Median follow-up
time was 439 days (IQ range 146–724 days) and 69
(71.5%) patients died within the follow-up period. Char-
acteristics of the patients according to CTNNB1 muta-
tional status in plasma and tissue can be seen in Table 1.
Females were more often CTNNB1 mutation positive
(20.1% vs. 5.6%, P = 0.028) and there was a trend towards
an association with Hepatitis C virus infection etiology
in plasma mutation positive patients (P = 0.071). More
than half of the patients were in BCLC stage C (57.9%),
but tumor load estimated by TNM stage was more
evenly distributed in the cohort, reflecting that the
BCLC classification includes both factors linked to
tumor burden and performance status of the patient.

Mutational status and clinical course of disease
A total of 37 (8 fresh frozen (FF) and 29 formalin-fixed,
paraffin-embedded (FFPE)) tissue samples were ana-
lyzed. Three tissue samples (8.1%) were positive for the
CTNNB1 mutation (1 FF, 2 FFPE). At inclusion, plasma
samples from 9 patients out of 95 (9.5%) were positive
for the CTNNB1 p.T41A mutation.
Based on a large proportion of samples being CTNNB1

mutation negative in both plasma and tumor tissue, the
agreement between plasma and tissue mutational status
was 91.7% (kappa value 0.53 (0.20–0.85), P = 0.0007).
Adding results from plasma analyses increased the
CTNNB1 mutation detection rate to 13.5% (5/37) in the
subgroup of patients with tumor tissue available.

There was no correlation between CTNNB1 mutation
status and mortality (HR 0.71 (0.28–1.81) P = 0.47, ad-
justed for TNM stage, vascular invasion, sex and age).

Figure 1 shows the changes in the concentration of
CTNNB1 mutated alleles during follow up, in relation to
treatment and response in the five patients who were
positive for CTNNB1 mutation in plasma at inclusion
and with follow-up samples available. The concentration
of the mutated alleles correlated to clinical outcome.
The patient depicted in Fig. 1a, had two separate intra-
hepatic tumors on a background of hepatitis C virus,
and had a resection of one tumor and radiofrequency
ablation of the other tumor. The resected tumor was
positive for the CTNNB1 mutation, while there was no
tissue available from the ablated tumor. Mutated alleles
were undetectable after treatment. The patient later had
recurrent disease at the ablation site, but without detect-
able CTNNB1 mutation in plasma in subsequent follow
up samples. The patient in Fig. 1b received sorafenib,
but treatment was stopped after 8 weeks because of pro-
gression and declining performance status. The mutated
allele frequency gradually increased during the same
period. The patient in Fig. 1c underwent radiofrequency
ablation with complete response, mirrored by undetect-
able levels of mutated alleles in follow up samples. The
patient in Fig. 1d received Trans Arterial Chemo
Embolization with a mixed clinical response and showed
a more delayed decline in mutated allele frequency com-
pared to the complete response observed in patient A
and C. And finally, the patient in Fig. 1e received sorafe-
nib, but stopped treatment because of declining per-
formance status and died after 6 months. The clinical
course was preceded by a significant increase in mutated
alleles within the first 4 weeks of treatment, resembling
patient B.
Two patients were positive in plasma, but negative in

tumor tissue. In both cases, the FFPE biopsies were from
large inhomogeneous tumors (6.2 and 14.5 cm, respect-
ively). Another patient had a positive tissue sample
(FFPE) but negative plasma sample at inclusion. Follow
up revealed a negative plasma sample at week 4 and
week 26 but at week 104 the mutation was detectable,
coinciding with progression of disease.

Discussion
In this study we applied ddPCR to detect the CTNNB1
p.T41A hotspot mutation in plasma and tumor tissue
from HCC patients at inclusion and during 3 years of
follow-up. We showed that it is feasible to detect the
CTNNB1 p.T41A mutation in both plasma and tumor
samples using ddPCR. In essence, the combined analysis
of ctDNA and tumor tissue increased the detection rate
of a CTNNB1 mutation in HCC patients. Moreover, ser-
ial testing of ctDNA in individual HCC patients revealed
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the appearance of CTNNB1 mutations, possibly reflect-
ing a clonal evolution of HCC or arising multicentric tu-
mors with separate genetic features.
Recent studies suggest that mutations affecting the

beta-catenin pathway including the CTNNB1 p.T41A

mutation may prove predictive of beneficial effects of
immunotherapy [12, 18, 19]. The CTNNB1 p.T41A mu-
tation activates the Wnt pathway and leads to T-cell ex-
haustion and innate resistance to immune checkpoint
inhibitors [19, 20]. Harding et al. found a survival

Table 1 Patient characteristics

Plasma Tumor tissue

CTNNB1 mutation
positive

CTNNB1 mutation
negative

P value CTNNB1 mutation
positive

CTNNB1 mutation
negative

P value

All (n = 9) (n = 86) (n = 3) (n = 34)

Age 68 (64–82) 72 (66–78) 0.992 65 (55–86) 75 (67–81) 0.559

Sex

Women 5 (55.6%) 19 (22.1%) 0.028 2 (66.7%) 6 (17.6%) 0.112

Men 4 (44.4%) 67 (77.9%) 1 (33.3%) 28 (82.4%)

Cirrosis

Yes 6 (66.7%) 54 (62.8%) 0.918 2 (66.7%) 12 (35.3%) 0.538

No 3 (33.3%) 25 (29.1%) 1 (33.3%) 19 (55.9%)

Unknown – 7 (8.1%) – 3 (8.8%)

Child Pugh stage

Noncirrhosis 3 (33.3%) 32 (37.2%) 1 (33.3%) 22 (64.7%)

A 1 (11.1%) 26 (30.2%) 0.160 1 (33.3%) 7 (20.6%) 0.825

B 5 (55.6%) 23 (26.7%) 1 (33.3%) 5 (14.7%)

C – 5 (5.8%) – –

Cirrhosis etiology

Alcohol 2 (22.2%) 29 (33.7%) 0.802 1 (33.3%) 9 (26.5%) 0.469

Hepatitis C 3 (33.3%) 10 (11.6%) 0.071 1 (33.3%) 3 (8.8%) 0.469

Non alcoholic
steatohepatitis

– 4 (4.7%) 0.509 – 1 (2.9%) 0.672

Other (AIH/
haemochromatosis)

– 7 (8.1%) 0.374 – 1 (2.9%) 0.672

Unknown/no cirrhosis 4 (44.4%) 36 (41.9%) 0.881 1 (33.3%) 20 (58.8%) 0.393

Barcelona Clinic Liver Cancer stage

0 2 (22.2%) 9 (10.5%) 0.857 – 2 (5.9%) 0.872

A 1 (11.1%) 13 (15.1%) 1 (33.3%) 9 (26.5%)

B 1 (11.1%) 9 (10.5%) – 7 (20.6%)

C 5 (55.6%) 50 (58.1%) 2 (66.7%) 15 (44.1%)

D – 5 (5.8%) – 1 (2.9%)

TNM stage

I 2 (22.2%) 29 (33.7%) 0.914 2 (66.7%) 12 (35.3%) 0.478

II 2 (22.2%) 18 (20.9%) 1 (33.3%) 6 (17.6%)

III 2 (22.2%) 16 (18.6%) – 6 (17.6%)

IV 3 (33.3%) 23 (26.7%) – 10 (29.4%)

Vascular invasion 0 (0.0%) 19 (22.1%) 0.115 0 (0.0%) 4 (11.8%) 0.529

Alpha-fetoprotein

< 20 ng/mL 5 (55.6%) 36 (41.9%) 0.642 2 (66.7%) 16 (63.1%) 0.658

≥ 20 ng/mL 4 (44.4%) 40 (46.5%) 1 (33.3%) 14 (41.2%)

Not available – 10 (11.6%) 4 (11.8%)
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Fig. 1 Correlation between amount of CTNNB1-mutated alleles with 95% confidence intervals during follow up and clinical course of disease in
five HCC patients. a Patient underwent resection and concomittant radiofrequency ablation. Relapse diagnosed on CT scans after 1 year. b Patient
received sorafenib. Stopped treatment after 8 weeks because of progressive disease and declining performance status. c Patient underwent
radiofrequency ablation with complete response. d Patient received Trans Arterial Chemo Embolization with a mixed response. e Patient recieved
sorafenib. Stopped treatment due to declining performance status. Deceased after 6 months
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difference dependent on Wnt/β pathway mutational sta-
tus of 6.1 months in patients treated with immune
checkpoint inhibitors [12]. This underlines the import-
ance of awareness of the mutational status in the indi-
vidual patient. Furthermore, adenomas with mutations
in the Wnt/β-catenin pathway have higher risk of malig-
nant transformation [21], therefore this noninvasive
strategy may also guide decisions regarding treatment or
surveillance.
We observed no difference in mortality depending on

CTNNB1 mutational status, however, this study was not
designed to evaluate the efficacy of systemic treatment.
In five patients with detectable CTNNB1 mutation in
plasma at inclusion, the dynamic changes in the concen-
tration of mutated alleles correlated to treatment
response. As a proof-of-concept, ctDNA became un-
detectable in patients radically treated, and conversely,
we observed an increasing number of mutated alleles in
patients with progressive disease. This should, however,
be investigated in larger studies.
At inclusion, we detected the CTNNB1 p.T41A muta-

tion in plasma in 9.5% of patients and the mutation rate
was 13.5% when combining results from plasma and
tumor tissue analysis. Thus, the mutation detection rates
are in line with the expected mutation rate demon-
strated in previous studies of CTNNB1 p.T41A muta-
tions in HCC patients [9, 22]. CTNNB1 mutations are
more frequent in alcohol-related HCC [23] and associ-
ated with old age and negatively associated with hepatitis
B and elevated alpha-fetoprotein [9], thereby mirroring
the etiologic profile of the northern European HCC
population. However, the number of patients included in
this study does not allow validation of these associations.
The majority of previous studies on molecular profiles

of HCC were performed on early-stage tumors and with-
out real-time evaluation of impact on treatment effect.
ddPCR is a non-invasive method for CTNNB1 p.T41A
mutation that is implementable in most larger HCC
treatment facilities. ddPCR may supplement next gener-
ation sequencing of tumor tissue samples, as it requires
a relatively low input of ctDNA, results are readily inter-
pretable, and ctDNA reflects the genetic background of
the entire tumor burden [24]. Importantly, in this study
we detected the CTNNB1 mutation in plasma in two pa-
tients in whom tissue biopsy was mutation negative.
ddPCR is useful for serial testing of tumor mutational
status, as demonstrated by one patient with a positive
tissue biopsy who became ctDNA positive during
follow-up.
The concordance between plasma and tissue muta-

tional status was high, mainly due to a high number of
CTNNB1 mutation double negative patients. Discrep-
ancy between mutational status in tissue and plasma
may be due to tumor heterogeneity, tumor clonal

evolution or multicentric tumors, and additionally, dif-
ferent DNA isolation techniques from blood and tissue
might have influenced the concordance rate. In one case
of discrepancy, with CTNNB1 mutation in ctDNA while
not present in the index biopsy, we observed progression
in satellite tumors during follow-up. Together with the
results from the patient in Fig. 1a, this scenario could be
explained by the presence of multicentric tumors with
separate genetic composition.
The strength of the present study is the number of

well characterized patients with HCC from a single ter-
tiary referral center and the follow-up of patients during
different treatment scenarios. A weakness is the number
of tumor tissue available for analysis, mainly due to the
international guidelines where the HCC diagnosis in cir-
rhosis patients can be based exclusively on imaging. This
study focused on only the most frequent mutation
known in the CTNNB1 gene. For a more comprehensive
characterization, the multiplex ddPCR method may help
increase the number of different mutations investigated.

Conclusions
In conclusion, analysis of ctDNA revealed tumor muta-
tions that were not apparent in single tumor biopsies,
and the combined analysis of ctDNA and tumor tissue
increased the detection rate of CTNNB1 mutation in
HCC patients. Serial analysis of ctDNA may facilitate a
non-invasive personalized therapy strategy by close
monitoring of tumor mutation profiles. We suggest lar-
ger studies to further explore whether changes in ctDNA
can predict and help monitor treatment response in
HCC patients.
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