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.e partial least squares method has many advantages in multivariable linear regression, but it does not include the function of
feature selection. .is method cannot screen for the best feature subset (referred to in this study as the “Gold Standard”) or
optimize the model, although contrarily using the L1 norm can achieve the sparse representation of parameters, leading to feature
selection. In this study, a feature selection method based on partial least squares is proposed. In the newmethod, exploiting partial
least squares allows extraction of the latent variables required for performing multivariable linear regression, and this method
applies the L1 regular term constraint to the sum of the absolute values of the regression coefficients. .is technique is then
combined with the coordinate descent method to perform multiple iterations to select a better feature subset. Analyzing tra-
ditional Chinese medicine data and University of California, Irvine (UCI), datasets with the model, the experimental results show
that the feature selection method based on partial least squares exhibits preferable adaptability for traditional Chinese medicine
data and UCI datasets.

1. Introduction

In the era of rapid information technology development,
data have become increasingly important. As one of the key
techniques of data mining, statistical analysis methods have
received extensive attention in the fields of biomedicine,
physical chemistry, and traditional Chinese medicine
[1–3]. One target variable, however, is often affected by
other features, which exert different degrees of influence.
Traditional Chinese medicine data with multicollinearity,
meanwhile, include somewhat irrelevant as well as re-
dundant information that not only increases the time and
space complexity of the model but also seriously affects its
accuracy and operational efficiency. In conventional sta-
tistical analysis methods, calculating the regression co-
efficients has the partial advantage of reflecting the
relationships between features when dealing with such data
[4, 5], whereas for data containing irrelevant and re-
dundant features, feature selection may be achieved only

minimally; in which case, we lose the chance to achieve
model optimization and improved regression accuracy.
.erefore, given the multicollinearity of traditional Chi-
nese medicine data as well as the problem of irrelevant and
redundant content, there is an urgent need to find a
method of data analysis that can remove irrelevant and
redundant features from the original dataset, thereby
overcoming multicollinearity and screening out the “Gold
Standard” feature subset in order to construct a robust
model.

.e remainder of this manuscript is organized as follows.
Related research is introduced in Section 2. In Section 3, the
new model is described in detail. In Section 4, 3 traditional
Chinese medicine datasets and 3 public UCI datasets are
used in the new model and subjected to experimental
analysis. .e new model is compared with several existing
algorithms in order to further verify its feasibility and ef-
fectiveness..e final section concludes this study with a brief
summary and discussion.
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2. Related Work

Feature selection, as an effective dimension reduction
method, involves choosing a subset of features from the
original set that has an acceptable distinguishing capability
based on a particular standard [6, 7], thereby retaining the
features that are most effective and favorable for regression
(or classification) while decreasing the complexity of the
algorithm. .is method has attracted the attention of nu-
merous researchers. In the medical field, for example, Peng
et al. [8] have developed a multimodal feature selection
method based on a hypergraph for multitask feature se-
lection in order to choose effective brain region data; Ye et al.
[9] have proposed an informative gene selection method
based on symmetric uncertainty and support vector machine
(SVM) recursive feature elimination that can effectively
remove irrelevant genes; and Zhang et al. [10] proposed a
hybrid feature selection algorithm that can select genetic
subsets with strong classification ability. In addition, feature
selection methods have successfully been applied in other
fields. Hu et al. [11] proposed a feature selection algorithm
for joint spectral clustering and neighborhood mutual in-
formation that can remove features unrelated to markers;
Huang et al. [12] proposed a feature selection algorithm
based on multilabel ReliefF that can remove irrelevant
features while opting for features having strong correlations
with categories. In terms of our research questions, most of
the experimental data from traditional Chinese medicine
present characteristics having multielement, multitarget, and
strong multicollinearity problems [13]. Although the feature
selectionmethod can eliminate the irrelevant features in order
to achieve an improved dimensionality reduction effect, this
will not be a good solution to the multicollinearity problem.
.erefore, we are in the process of pursuing further im-
provements and continuing our exploration.

As a nonparametric multivariate statistical analysis
method, partial least squares (PLS) provides a regression
modeling method for multidependent variables to multi-
independent variables in order to effectively solve the
problem of multicollinearity [14, 15] when there is a high
correlation between independent variables. Based on
preponderance, some researchers have proposed a series of
improved models. You et al. [16] have proposed a feature
selection method (PLSRFE) by combining PLS with the
recursive feature elimination method (RFE). .e PLSRFE
can remove irrelevant features and select a small number of
features, although it lacks reliability due to the default
parameters applied. Shang et al. [17] presented a robust
feature selection and classification algorithm based on
partial least squares regression to solve the problem of
multicollinearity and redundancy in features, yet the
follow-up question as to whether the selection of param-
eters in the model is sufficient remains to be answered.
Nagaraja et al. [18] connected partial least squares re-
gression and optimization experimental design in order to
select features by analyzing the model parameters while
ignoring the interference of noise samples, which weakened
the robustness of the model. In view of the shortcomings of
the methods proposed above, by only using partial least

squares for all data in the regression model without con-
sidering the advantages of the feature selection method, we
create a model with poor interpretability and issues such as
overfitting, shortcomings that make it impossible to
achieve “Gold Standard” screening, and model optimiza-
tion..erefore, the goal of this study is to determine how to
effectively perform feature selection on multicollinear
traditional Chinese medicine (TCM) data and establish a
regression model that is as simple and accurate as possible.

In a feature selection study, higher-quality feature se-
lection methods should exhibit the following characteristics
[19]: (1) interpretability, meaning that the features selected
in the model have scientific significance; (2) acceptable
model stability; (3) avoidance of deviations in the hypothesis
test; and (4) model calculation complexity within a man-
ageable range. Traditional feature selection methods such as
stepwise regression, ridge regression, and principal com-
ponent regression [20, 21] only satisfy some of the above
characteristics. .erefore, effectively overcoming such
problems and achieving better feature selection results have
become a research point for regression and classification. In
order to determine a feasible solution to this problem,
Tibshirani has presented a feature selection method called
“lasso” [22] and applied it successfully by taking inspiration
from both the ridge regression algorithm proposed by You
et al. [23] and the nonnegative garrote algorithm proposed
by Breiman [24]. .e lasso method compresses the re-
gression coefficients by using the absolute value function of
the model coefficients as a penalty to achieve the selection of
significant features as well as the estimation of corre-
sponding parameters. .e lasso method preferably over-
comes the insufficiencies of the traditional selectionmethods
in the feature selection model.

Given the above, this study proposes a feature selection
method (LAPLS) that unites the concepts of the lasso
method and partial least squares (PLS). .is method utilizes
PLS to perform the regression and applies the L1 regular
term constraint to the sum of the absolute values of the
regression coefficients. In this way, the regression co-
efficients of insignificant features are compressed to 0,
helping in achieving the goal of feature selection. .is
technique is then combined with the coordinate descent
method to perform multiple iterations in order to select a
higher-quality feature subset, which can then be used to
screen the target for the “Gold Standard.” .e new model
algorithm not only can effectively overcome the issues of
multicollinearity but can also eliminate insignificant fea-
tures, making it suitable for the data analysis of traditional
Chinese medicine.

3. Feature Selection Method Based on Partial
Least Squares (LAPLS)

.e lasso method uses L1 norm penalty regression to find
the optimal solution [25, 26], in which a sparse weight
matrix is generated that can be applied to feature selection.
.e basic idea is that under the constraint that the sum of the
absolute values of the regression coefficients is less than or
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equal to a threshold s (i.e.,  |w|≤ s), the sum of the residual
sums is minimized, so that the regression coefficients with
smaller absolute values are compressed to 0. Following this,
feature selection and corresponding parameter estimation
are simultaneously realized, thus achieving an improved
data dimensionality reduction effect.

.e partial least squares method is a regression tech-
nique for solving multiple independent variables and
multiple dependent variables. Compared with traditional
regression analysis, PLS overcomes the problems of multi-
collinearity, small sample size, and variable number limit
[27, 28]. For achieving the effective modeling purposes of
partial least squares, firstly, extracting the latent variables t1
and u1 from the original independent variable X and the
dependent variable Y, respectively, and simultaneously meet
the criteria that t1 and u1 should represent the datasets as
well as possible, and t1 has a strong explanatory power for u1
[29, 30]. If the accuracy condition is not met, the residual
information is used to continue to carry out the second
latent variables extraction until the accuracy condition is
satisfied [31]. In the process of regression, however, the PLS
method does not have the function of feature selection and
cannot achieve an improved dimensionality reduction effect.
Exploiting the lassomethod, however, can effectively remove
irrelevant and partially redundant features, thereby selecting
better feature subsets. .is study uses the lasso algorithm to
optimize the partial least squares method, not only to
achieve the feature selection functionality of partial least
squares but also to achieve the screening of the “Gold
Standard” via iteration. At the same time, this research helps
us to overcome the problem of multicollinearity, which is an
issue with the traditional lasso method.

.e LAPLS method first uses the latent variables
extracted by principal component analysis and canonical
correlation analysis as the input for the multiple linear re-
gression in partial least squares and then makes the sum of
the absolute values of the coefficients less than or equal to a
constant when performing the regression. .at is to say, the
L1 regular term constraint regression coefficient is added to
the objective function, and, simultaneously, the sum of the
squares of the residuals is minimized so that some regression
coefficients strictly equal to 0 can be generated, thereby
eliminating the irrelevant and partially redundant features.
Combination with the coordinate descent method (CDM)
[32] at last yields the “Gold Standard” feature subset. .e
construction process is shown in Figure 1.

.e specific construction process is as follows:

Step 1. Standardize the data (z-score): X⇒E0, Y⇒F0.
Step 2. Extract the latent variables: the first latent
variables t1 and u1 are, respectively, extracted from
E0 andF0, with the goal of deriving the largest mutation
information,var(t1)⟶ max , var(u1)⟶ max; the
largest degree of correlation, r(t1, u1)⟶ max; and
the largest comprehensive covariance of both sides,
Cov(t1, u1)⟶ max, in which o1, c1 is the first unit
vector of E0, F0. o1, c1 can be obtained by solving
the maximum value of oT

1 ET
0 F0c1, that is, using

the Lagrangian algorithm; o1, c1 is the eigenvector

corresponding to the largest eigenvalue of
ET
0 F0F

T
0 E0, FT

0 E0E
T
0 F0. In this way, calculation of t1, u1

and the residual information matrix E1, F1 can be
obtained, wherein t1 � E0o1, u1 � F0c1, F1 � F0 − t1r

T
1 ,

E1 � E0 − t1p
T
1 , r1 � (FT

0 t1)/‖t1‖
2, and p1 � (ET

0 t1)/
‖t1‖

2. .e residual information matrix E1, F1 is then
substituted for E0, F0, after which o2, c2 and the second
latent variables t2, u2 are then calculated according to
the above steps.
Step 3. Judge whether satisfactory accuracy has been
reached: according to the definition of cross-validity
(1), if the currently extracted latent variables t2 makes
the square of Qh less than 0.0975 [30], then the added
latent variables t2 has no significant effect on the
prediction deviation of the reduction equation.
.erefore, the previously extracted latent variable t1 is
sufficient to achieve satisfactory accuracy, and the al-
gorithm can be terminated. If, however, the currently
extracted latent variable t2 makes the square of Qh

greater than 0.0975, and it can be assumed that in-
creasing the latent variables t2 will improve the pre-
diction accuracy..erefore, the next latent variables are
then extracted, and a judgment is made as to whether it
is beneficial for reducing the prediction deviation of the
equation. .is process is cyclically looped until the
satisfactory accuracy is no longer improved, and the
algorithm can be terminated:

Q
2
h � 1−


q
i�1 F0i −F0h(−i) 

2


q

i�1 F0i −F0(h−1)i 
2, (1)

where q is the number of samples; h is the latent
variables number (h � 2, . . . , r); and r is the rank of the
matrix E0; and F0h(−i) is the fitting value of F0 at the
sample point i, and the solution process is as follows:
firstly, divide all sample points into two parts (one part
including n− 1 and another part including one), and
then use n− 1 sample points and the h latent variables
for doing a regression equation, and finally the one
sample point is substituted into the equation to obtain
the fitted value F0h(−i). In addition, all sample points are
used to fit the regression equation containing h− 1
latent variables, and then the predicted value F0(h−1)i of
the ith sample point can be obtained.
Step 4. Acquire the regression coefficients: assuming
that the number of the latent variables extracted is m
(m< r) when the satisfactory accuracy is achieved, the
t regression equation for F0 and the inverse nor-
malized equation are as shown in equation (2),
thereby obtaining the regression coefficient W � (w1,

w2, . . . , wm) that will be processed:

F0 � t1r
T
1 + t2r

T
2 + · · · + tmrT

m + Fm,

Y �  wkxk + Fml (k � 1, 2, . . . , m),

⎧⎨

⎩ (2)

where Fml is the l column of the residual matrix Fm;
l � 1, 2, . . . , L; L is the number of dependent variables.
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Step 5. Construct the objective function: after gener-
ating the coefficients using the above PLS regression,
the function J(w) can be constructed by combining the
regression coefficient W with the L1 regularization
term of the lasso algorithm, in which the function
satisfies the constraint that the sum of the absolute
values of the regression coefficients wj is less than or
equal to a threshold. Under this condition, the sum of
the squared residuals is minimized:

J(w) � 

q

i�1
yi − 

m

j�1
wjxj

⎛⎝ ⎞⎠

2

+ λ
m

j�1
wj



. (3)

Minimization of the residual sum of squares:

argmin
w



q

i�1
yi − 

m

j�1
wijxij

⎛⎝ ⎞⎠

2⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

s.t 
m

j�1
wj



≤ s,

(4)

where q is the number of samples; s is the threshold;
and the parameter value is λ � e(iter−k), k ∈ [8, 17].
Step 6. Solve the function: since the new model imposes
the L1 regular term constraint on the regression co-
efficients generated by PLS, the resulting constructed
function has absolute values, which makes the function
underivable at the zero point. .erefore, this study uses
the coordinate descent method [33] to solve the
problem. It is worth noting that the new algorithm
(LAPLS) is a reimplementation of the standard

coordinate descent algorithm for lasso regression with
an initial solution generated using PLS (Algorithm 1).
First, the function is divided into 2 parts, RSS �


q
i�1(yi −

m
j�1wjxj)

2 and L1 � λ
m
j�1|wj|. Next, the

partial derivative is calculated separately so that the
overall partial derivative can be obtained:

zJ(w)

zw
�

2zjwj − 2ρj − λ, wj < 0,

−2ρj − λ,−2ρj + λ , wj � 0,

2zjwj − 2ρj + λ, wj > 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

where ρj � 
q
i�1xj(yi −k≠jwkxk), zj � 

q
i�1x

2
i .

Let zj(w)/zw � 0, and then determine the regression
coefficient wj under the regular term constraint:

wj �

ρj + λ/2 

zj

, ρj < −
λ
2

 ,

0, ρj ∈ −
λ
2

 ,
λ
2

 ,

ρj − λ/2 

zj

, ρj >
λ
2
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

Step 7. Perform multiple iterations through Step 6, in
which some regression coefficients are strictly com-
pressed to 0 at a certain iteration so that the best feature
subset (i.e., the “Gold Standard”) can be selected. .e
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selected subset of features is then regressed to construct
a simpler optimization model than PLS regression:

Y
∗

�  w
∗
hxh + F

∗
h , h<m. (7)

4. Experimental Design

4.1. Experimental Data Description. In this study, the 6
experimental datasets included the traditional Chinese
medicine data (WYHXB, NYWZ, and DCQT) from the Key
Laboratory of Modern Chinese Medicine Preparations
Ministry of Education as well as Communities and Crime
(CCrime), Breast Cancer Wisconsin (Prognostic) (Breast-
Data), and Residential Building Dataset (RBuild) from the
UCI Machine Learning Repository. .e basic information
for each dataset is listed in Table 1. .ere are 798 features in
WYHXB, 1 dependent variable, and 54 samples; 10283
features in NYWZ, 1 dependent variable, and 54 samples; 9
features in DCQT, 1 dependent variable, and 10 samples;
CCrime describes community crime and includes 127 fea-
tures, 1 dependent variable, and 1994 samples; BreastData
describes breast cancer cases and includes 34 features, 1
dependent variable, and 198 samples; and RBuild describes
residential buildings and includes 103 features, 1 dependent
variable, and 372 samples. Since the UCI datasets obtained
from the UCI Machine Learning Repository generally had
numerous missing values, the mean filling method was used
for data preprocessing during the experiment. .e reason
this study adopted CCrime, BreastData, and RBuild from the
UCI datasets for the experiment was to compare the re-
gression effects of the new model on a public dataset con-
sisting of diversified data, in order to validate the reliability
and robustness of the new model.

WYHXB and NYWZ are the basic experimental data of
Shenfu injections used to treat cardiogenic shock, which
utilizes the left anterior descending coronary artery near the
edge of the heart to replicate the middle-end cardiogenic
shock rat model. In seven groups of 6 shock model rats, each
were injected with 0.1, 0.33, 1.0, 3.3, 10, 15, or 20mL·kg−1 of

Shenfu. .ere was also a model setting group and a blank
group. Sixty minutes after receiving the Shenfu, the red
blood cell flow rate (μm/s) pharmacodynamic indicator was
collected. .e material information contained in the Shenfu
injection is called the exogenous substance (i.e., theWYHXB
data, as shown in Table 2), and the material information of
the experimental individual is called the endogenous sub-
stance (i.e., the NYWZ data, as shown in Table 3). In the 2
datasets, the material information is the independent vari-
able (i.e., the feature), and the red blood cell flow rate is the
dependent variable.

.e experimental data of the traditional Chinese med-
icine (DCQT) were mainly used to study the factors affecting
the physiological index (d-lactic acid content) under the
influence of the active ingredients in Chinese medicinal
rhubarb. .e contents (characteristics) of the active in-
gredients of the rhubarb include aloe emodin, emodin, rhein
and chrysophanol, emodin methyl ether, magnolol, as well
as honokiol, hesperidin, and synephrine. .e dependent
variable is D(−)-lactic acid content. .e partial experimental
data are listed in Table 4.

4.2. Results and Discussion

4.2.1. Experimental Parameters. Using a strategy of selecting
and optimizing the parameters corresponding to each
dataset with the goal of ensuring model result reliability is
significant given that the experimental data themselves have
different characteristics and the corresponding model

Input: Dataset D
Output: LAPLS regression equation
Begin:
(1) Standardize the dataset D to get (E0, F0);
i� 1
(2) While (the number of latent variables i has yet to reach satisfactory accuracy)
(a) Calculate the maximum eigenvalue of the ET

i−1Fi−1F
T
i−1Ei−1, FT

i−1Ei−1E
T
i−1Fi−1 matrix and its corresponding eigenvector oi, ci;

(b) Calculate the latent variables score vectors ti � Ei−1oi and ui � Fi−1ci based on the feature vector oi, ci;
(c) Calculate the load vector and the square of Qh: Pi � (ET

i−1ti)/‖ti‖
2, ri � (FT

i−1ti)/‖ti‖
2, and the residual information matrix Ei

and Fi;
End
(3) Solve the multiple regression equation Y and denormalize the regression coefficient: W � (w1, w2, . . . , wm);
(4) Construct the objective function in conjunction with the L1 regular term constraint: J(w) � 

q
i�1(yi −

m
j�1wjxj)

2 + λ
m
j�1|wj|;

(5) Use the coordinate descent method to iterate multiple times, solve the compressed regression coefficient W∗, and construct a
new regression equation Y∗ �  w∗hxh + F∗h ;
End

ALGORITHM 1: LAPLS

Table 1: Basic dataset information (default task: regression).

Dataset Number of samples Number of attributes
WYHXB 54 799 (798 + 1)
NYWZ 54 10284 (10283 + 1)
DCQT 10 10 (9 + 1)
CCrime 1994 128 (127 + 1)
BreastData 198 35 (34 + 1)
RBuild 372 104 (103 + 1)
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parameters are inconsistent. First, the model parameters
were initialized and set to s � 0.1 and λ � e(iter−10), where s is
the model threshold, λ is the model parameter value, and iter
is the number of iterations. Next, based on the initialization
value, a comparison strategy was used for analysis. Specif-
ically, with the maintenance condition of s � 0.1, the λ value
was gradually increased or decreased until the best λ value
was determined based on the R-squared evaluation index (as
shown in Table 5). Finally, by keeping the selected λ value for
each dataset fixed while increasing or decreasing the
threshold s, a set of model parameters could preferentially be
selected (as shown in Table 6).

In Table 5, keeping s � 0.1 fixed, the results are as fol-
lows: for the WYHXB data, the result of the homologous
R-squared evaluation indicates that the best result occurs
when k� 13 (i.e., λ � e(iter−13)); for the NYWZ data, the best
result occurs when k� 12 (i.e., λ � e(iter−12)); for the DCQT

data, the best result occurs when k� 10 (i.e., λ � e(iter−10)); for
the CCrime data, the best result occurs when k� 12 (i.e.,
λ � e(iter−12)); for the BreastData data, the best result occurs
when k� 12 (i.e., λ � e(iter−12)); and for the RBuild data, the
best result occurs when k� 13 (i.e., λ � e(iter−13)). By com-
paring the results of Table 6, one group of optimal pa-
rameters for each dataset can be selected: for the WYHXB
data, we should choose λ � e(iter−13), s � 0.1; for the NYWZ
data, we should choose λ � e(iter−12), s � 0.11; for the DCQT
data, we should choose λ � e(iter−10), s � 0.1; for the CCrime
data, we should choose λ � e(iter−12), s � 0.11; for the
BreastData data, we should choose λ � e(iter−12), s � 0.13;
and for the RBuild data, we should choose λ � e(iter−13),
s � 0.05.

At the same time, in order to verify the feasibility and
availability of the LAPLS method, we should consider the
feature analyses of each dataset (with the model parameters
utilizing the above results) during our experimentation.
Specifically, by determining the iteration at a particular
time (the number of iterations ranged from 1 to 25), the
model achieving the best feature subset (“Gold Standard”)
and the best homologous R-squared value can be selected.
.e results of this analysis are shown in Figures 2–8. It can
be seen in Figure 2 that the number of features in the 6
groups of experimental data decreased as the number of
iterations increased, indicating the trend towards the goal
of eliminating irrelevant and partially redundant features.
Similarly, Figures 3–8 show the trend of the corresponding
R-squared values during the iterative process of each
dataset (i.e., the stages as the number of features change).
.is does not indicate, however, that the fewer the number

Table 2: Partial data of basic experiments with traditional Chinese medicine substances (WYHXB).

0.34_237.0119 (m/z) 0.35_735.1196 (m/z) 0.36_588.0942 (m/z) . . . 0.36_590.0903 (m/z) Red blood cell flow rate (μm/s)
0.48808 302.16 0 . . . 27.8589 750
100.078 62.016 0 . . . 3.80712 1400
11.6992 52.5058 7.61005 . . . 4.85059 785
143.643 284.113 0 . . . 456.607 790
7.75089 54.4535 0 . . . 0 670
18.2499 0 0 . . . 14.6621 680
. . . . . . . . . . . . . . . . . .

28.5783 0 0 . . . 2.3551 850
2.91064 0 16.1624 . . . 3.41406 620
. . . . . . . . . . . . . . . . . .

Table 3: Partial data of basic experiments with traditional Chinese medicine substances (NYWZ).

11.10_787.5077 (m/z) 12.29_526.1784 (m/z) 12.29_531.2005 (m/z) . . . 12.47_631.3847 (m/z) Red blood cell flow rate (μm/s)
53.3719 11557.6 764.329 . . . 1795.79 2200
43.4717 7971.33 875.465 . . . 1842.39 2750
76.507 3399.9 870.161 . . . 1562.81 1980
153.145 51027.4 916.064 . . . 1619.62 1860
16.3197 10694.4 942.699 . . . 1612.42 2100
42.2836 11048.1 714.536 . . . 1649.23 2000
. . . . . . . . . . . . . . . . . .

55.5021 4702.83 748.844 . . . 1632.9 2481
153.21 78912.8 835.24 . . . 1647.55 2970
. . . . . . . . . . . . . . . . . .

Table 4: Effects of active ingredients in traditional Chinese
medicine on physiological indices (DCQT).

Aloe
emodin Emodin Rhein . . . Synephrine D(−)-lactic acid

0.0625 0.0468 0.0945 . . . 0.2198 0.0625
0.0450 0.0317 0.0558 . . . 0.4865 0.0525
0.0075 0.0085 0.0126 . . . 0.0176 0.0300
0.0350 0.0278 0.0434 . . . 0.0709 0.0400
. . . . . . . . . . . . . . . . . .

0.1006 0.0875 0.1841 . . . 0.1239 0.0575
0.1060 0.0960 0.1982 . . . 0.0536 0.1325
0.0540 0.0441 0.0871 . . . 0.0471 0.1900
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of features, the better the calculated result. .e specific
results were as follows: for the WYHXB data, after 10 it-
erations, 425 significant features could be selected (373
features had been eliminated), and the homologous
R-squared value was optimal; for the NYWZ data, after 12
iterations, 1247 significant features could be selected (9036
features had been eliminated) and the homologous
R-squared value was optimal; for the DCQT data, after 11
iterations, 5 significant features could be selected (4 fea-
tures had been eliminated) and the homologous R-squared
value was optimal; for the CCrime data, after 11 iterations,
82 significant features could be selected (45 features had
been eliminated) and the homologous R-squared value was
optimal; for the BreastData data, after 13 iterations, 22
significant features could be selected (12 features had been
eliminated) and the homologous R-squared value was
optimal; for the RBuild data, after 14 iterations, 39 sig-
nificant features could be selected (64 features had been
eliminated) and the homologous R-squared value was
optimal.

From the above experiments, we could determine the
respective parameters and the homologous iteration times

Table 5: R-squared (s � 0.1 constant) for 6 datasets with different λ � e(iter−k) values.

k� 8 k� 9 k� 10 k� 11 k� 12 k� 13 k� 14 k� 15 k� 16 k� 17
WYHXB 0.4756 0.5412 0.5881 0.6927 0.7321 0.7434 0.7408 0.7407 0.7411 0.7411
NYWZ 0.5827 0.6938 0.6521 0.7434 0.7689 0.7615 0.7452 0.7316 0.7294 0.7294
DCQT 0.1258 0.8760 0.9546 0.9417 0.9355 0.8686 0.9277 0.9277 0.9277 0.9277
CCrime 0.4517 0.4517 0.5320 0.6621 0.6708 0.6680 0.6684 0.6684 0.6684 0.6684
BreastData 0.6475 0.6475 0.5435 0.6829 0.7436 0.5697 0.5728 0.5732 0.5641 0.5641
RBuild 0.7567 0.7567 0.7567 0.8195 0.8801 0.9593 0.9404 0.9181 0.9045 0.8757

Table 6: Comparative analysis of several parameter combinations
for 6 datasets.

s, λ � e(iter−k) R2

WYHXB
s� 0.001, k� 13 0.7366
s� 0.005, k� 13 0.7366
s� 0.01, k� 13 0.7427
s� 0.05, k� 13 0.7403
s = 0.1, k = 13 0.7434
s� 0.11, k� 13 0.7434
s� 0.12, k� 13 0.7434
s� 0.13, k� 13 0.7418
s� 0.14, k� 13 0.7418
s� 0.15, k� 13 0.7418
s� 0.20, k� 13 0.7235
NYWZ
s� 0.001, k� 12 0.7361
s� 0.005, k� 12 0.7361
s� 0.01, k� 12 0.7435
s� 0.05, k� 12 0.7456
s� 0.1, k� 12 0.7689
s = 0.11, k = 12 0.7692
s� 0.12, k� 12 0.7692
s� 0.13, k� 12 0.7468
s� 0.14, k� 12 0.7468
s� 0.15, k� 12 0.7468
s� 0.20, k� 12 0.7344
DCQT
s� 0.001, k� 10 0.8760
s� 0.005, k� 10 0.8760
s� 0.01, k� 10 0.8760
s� 0.05, k� 10 0.8760
s = 0.1, k = 10 0.9546
s� 0.11, k� 10 0.9546
s� 0.12, k� 10 0.9546
s� 0.13, k� 10 0.9546
s� 0.14, k� 10 0.9546
s� 0.15, k� 10 0.9546
s� 0.20, k� 10 0.9546
CCrime
s� 0.001, k� 12 0.6524
s� 0.005, k� 12 0.6524
s = 0.01, k = 12 0.6722
s� 0.05, k� 12 0.6625
s� 0.1, k� 12 0.6708
s� 0.11, k� 12 0.6620
s� 0.12, k� 12 0.6678
s� 0.13, k� 12 0.6678
s� 0.14, k� 12 0.6678
s� 0.15, k� 12 0.6678
s� 0.20, k� 12 0.6678

Table 6: Continued.

s, λ � e(iter−k) R2

BreastData
s� 0.001, k� 12 0.6419
s� 0.005, k� 12 0.6419
s� 0.01, k� 12 0.6419
s� 0.05, k� 12 0.7401
s� 0.1, k� 12 0.7436
s� 0.11, k� 12 0.7436
s� 0.12, k� 12 0.7436
s = 0.13, k = 12 0.7887
s� 0.14, k� 12 0.7887
s� 0.15, k� 12 0.7887
s� 0.20, k� 12 0.7213
RBuild
s� 0.001, k� 13 0.9407
s� 0.005, k� 13 0.9407
s� 0.01, k� 13 0.9589
s = 0.05, k = 13 0.9845
s� 0.1, k� 13 0.9593
s� 0.11, k� 13 0.9593
s� 0.12, k� 13 0.8803
s� 0.13, k� 13 0.8803
s� 0.14, k� 13 0.8803
s� 0.15, k� 13 0.9285
s� 0.20, k� 13 0.9285
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for each of the 6 datasets and also obtain the dimensionality
reduction effect of each feature selection by the new model
(i.e., the degree of irrelevant and redundant feature elimi-
nation), as shown in Figure 9. It is worth noting, however,
that the number of eliminated features cannot be 0, given the
meaning of feature selection.

4.2.2. Comparison of the LAPLS with Other Methods.
Further analysis of the new model consisted of randomly
dividing each dataset into a training set and a test set
(ratio� 7 : 3) and then utilizing traditional partial least
squares (PLS), lasso, PLSRFE, and the improved algorithm
(LAPLS) for training and learning..e test set was subjected
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Figure 2: Change in the number of features.
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to a regression experiment (with parameters and number of
iterations consistent with the previously listed optimal
values), in which the R-squared (R2) and root-mean-square
error (RMSE) values were used as the model evaluation
indicators. Meanwhile, in order to ensure the reliability of
the experimental results, 10 tests were performed for each set
of experimental data, and ultimately, the respective average
values were chosen as the final experimental results, as
shown in Table 7. Via the above experimental design, the
verification of the new model could be analyzed from two
perspectives: (1) the comparison between the LAPLS and the
traditional methods (PLS, lasso) and (2) the comparison
between the LAPLS and the same type of feature selection
method (PLSRFE).

Table 7 lists the experimental results of LAPLS re-
gression on the test sets of 6 sets of original data (WYHXB,
NYWZ, DCQT, CCrime, BreastData, and RBuild). .e R2

values were 0.6558, 0.7326, 0.9384, 0.6703, 0.7064, and
0.9831, respectively, and the RMSE were 412.7325,
140.5172, 0.0117, 0.1516, 3.1468, and 202.5260, re-
spectively. Compared with PLS and lasso, the LAPLS had a
slightly inferior RMSE for the CCrime (larger sample size)
data (0.0128 greater error than PLS and 0.0212 greater
error than lasso), but for the results of the remaining
experimental datasets, the new method performed better
than the traditional methods. Compared with the PLSRFE,
the LAPLS was slightly inferior for the CCrime data and

the LAPLS RMSE was slightly higher than the PLSRFE
RMSE for the RBuild data, although the LAPLS results
were better than those of the PLSRFE for the remaining
experimental data. Overall, the results of the improved
algorithm were better than those of the other existing
algorithms, indicating that the new model has the effect of
eliminating irrelevant and redundant features. In addition,
as shown by the experimental results, the new model
proved to be relatively adaptable, demonstrating effec-
tiveness not only for multifeature data but also for data
with fewer features.

In order to observe the experimental results more in-
tuitively, the trend graphs were portrayed separately (Fig-
ures 10 and 11) in order to reflect the fluctuations of the R2

and RMSE values. It can be seen that the R2 and RMSE values
of the new model for the 6 sets of experimental data are
basically superior to those of the other algorithms, indicating
that the regression results of the new model are better and
that this approach effectively eliminates the irrelevant and
partially redundant features. In summary, the improved
algorithm not only performs feature selection and screens
out the “Gold Standard” feature subset for general high-
dimensional data but also could well suit the traditional
Chinese medicine data.

5. Conclusions

.e traditional partial least squares method has no feature
selection function, and the goal of obtaining of a higher-
quality feature subset cannot be achieved for experimental
data from traditional Chinese medicine. Given this, we
proposed a feature selection method based on partial least
squares. .is method made sufficient use of the advantages
of the lasso algorithm, namely, imposing constraints on the
sum of the absolute values of the regression coefficients and
carrying out feature selection, while simultaneously com-
bining this technique with the partial least squares method,
which can solve the multicollinearity problem in order to
perform regression analysis. In this way, both data di-
mensionality reduction and the screening of the “Gold
Standard” feature subset were realized. .rough the ex-
perimental comparison of TCM data and UCI datasets, it
was clearly demonstrated that the improved algorithm
significantly strengthens the interpretation degree and
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prediction accuracy of the model, and it is a suitable ana-
lytical method for TCM data. .e improved algorithm,
however, has the disadvantage of only eliminating the
partially redundant features from high-dimensional data.
Going forward, we will continue to improve the algorithm in
order to boost its efficiency. In addition, ensuring that
reasonable relevant parameters are set during model crea-
tion also requires further study.
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