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ABSTRACT
Introduction The diagnosis of epilepsy frequently relies 
on the visual interpretation of the electroencephalogram 
(EEG) by a neurologist. The hallmark of epilepsy on EEG 
is the interictal epileptiform discharge (IED). This marker 
lacks sensitivity: it is only captured in a small percentage 
of 30 min routine EEGs in patients with epilepsy. In the 
past three decades, there has been growing interest in the 
use of computational methods to analyse the EEG without 
relying on the detection of IEDs, but none have made it 
to the clinical practice. We aim to review the diagnostic 
accuracy of quantitative methods applied to ambulatory 
EEG analysis to guide the diagnosis and management of 
epilepsy.
Methods and analysis The protocol complies with the 
recommendations for systematic reviews of diagnostic test 
accuracy by Cochrane. We will search MEDLINE, EMBASE, 
EBM reviews, IEEE Explore along with grey literature for 
articles, conference papers and conference abstracts 
published after 1961. We will include observational 
studies that present a computational method to analyse 
the EEG for the diagnosis of epilepsy in adults or children 
without relying on the identification of IEDs or seizures. 
The reference standard is the diagnosis of epilepsy by a 
physician. We will report the estimated pooled sensitivity 
and specificity, and receiver operating characteristic area 
under the curve (ROC AUC) for each marker. If possible, 
we will perform a meta- analysis of the sensitivity and 
specificity and ROC AUC for each individual marker. We 
will assess the risk of bias using an adapted QUADAS- 2 
tool. We will also describe the algorithms used for signal 
processing, feature extraction and predictive modelling, 
and comment on the reproducibility of the different 
studies.
Ethics and dissemination Ethical approval was not 
required. Findings will be disseminated through peer- 
reviewed publication and presented at conferences related 
to this field.
PROSPERO registration number CRD42022292261.

BACKGROUND
Epilepsy is characterised by an enduring 
propensity towards epileptic seizures—tran-
sient neurological manifestations provoked 

by a state of abnormal and excessive neuronal 
activity in the brain.1 Epilepsy affects over 
65 million people worldwide, and 10% of 
the population will experience at least one 
seizure in their lifetime.2 3 Epileptic seizures 
can lead to fractures, road accidents, isola-
tion, anxiety, cognitive decline and death.4 In 
specialised- care settings, the first antiseizure 
medication (ASM) achieves seizure freedom 
in approximately 47% of patients.5 A prompt 
diagnosis is key in the prevention of epilepsy- 
related morbidity and mortality.4

A history of epileptic seizures or a high 
recurrence risk after a single seizure are the 
basis for the definition of epilepsy by the Inter-
national League Against Epilepsy (ILAE).1 
Ancillary tests are often needed to estimate 
seizure recurrence risk after a single seizure. 
These include the neurological examination, 
neuroimaging and the electroencephalo-
gram (EEG).

STRENGTHS AND LIMITATIONS OF THIS STUDY
 ⇒ This systematic review will be the first to critically 
evaluate the diagnostic accuracy of computational 
markers of epilepsy on routine electroencephalo-
gram (EEG), with an emphasis on identifying the bar-
riers towards clinical translation of this technology.

 ⇒ The publication of this protocol ensures transparen-
cy, and evaluation of all studies during screening, 
selection and data extraction by independent re-
viewers reduces the risk of bias in the selection and 
analysis of included studies.

 ⇒ High heterogeneity in reporting standards and in-
clusion criteria is anticipated, possibly preventing 
the reliable estimation of diagnostic performance 
metrics.

 ⇒ Our review will constitute a comprehensive refer-
ence of current practices in the automated process-
ing and analysis of routine EEG for epilepsy.
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An EEG records the electrical activity of the brain. 
It is recommended that all patients who present with 
a first unprovoked seizure or with new diagnosis of 
epilepsy undergo an EEG.6 7 The initial EEG is gener-
ally performed with electrodes applied to the patient’s 
scalp (scalp EEG or routine EEG) for a duration of 
20–40 min.8 The EEG tracing is then interpreted visu-
ally by a neurologist, who attempts to identify interictal 
epileptiform discharges (IEDs; aka spikes). IEDs are brief 
(20–200 ms) sharp discharges, clearly emerging from 
background oscillations, often negative in polarity and 
sometimes followed by a typical slow wave.8 The presence 
of interictal spikes on the EEG is considered a hallmark 
of epilepsy, as it represents a strong predictor of seizure 
recurrence.9 10 Furthermore, the identification of inter-
ictal spikes can help localise an epileptic focus that may 
be amenable to surgical resection, and can guide the 
withdrawal of ASMs in patients after a prolonged period 
of seizure freedom.11 12

The interictal spike has several limitations. It occurs 
very sporadically: in patients with epilepsy, only 29%–55% 
of routine EEGs will capture these transient abnormali-
ties.8 After a first unprovoked seizure in adults, the sensi-
tivity of a single routine EEG for detecting epileptiform 
abnormalities is only 17%.9 Furthermore, their identifi-
cation is somewhat subjective: the percent agreement 
between EEG experts is around 76%.13 Many physiolog-
ical transient discharges can be misinterpreted as epilep-
tiform spikes. This can lead to the erroneous diagnosis 
of epilepsy, with sometimes important consequences.14 15 
In patients labelled with drug- resistant epilepsy, over 25% 
may have had an erroneous diagnosis as a result of both 
inadequate history taking and misinterpretation of 
the EEG.16 Despite the abundant information on brain 
activity recorded by the EEG, no other interictal anom-
alies have been validated for use in clinical settings.1 17 18

Compared with other neuroimaging modalities, a scalp 
EEG is inexpensive, easy to acquire and confers functional 
information with high temporal resolution.19 20 More-
over, great effort was put in the last decade by the ILAE 
in standardising the equipment, recording and storage 
of EEG data.10 21 Decades of research have suggested 
that the automated analysis of EEG can identify hidden 
differences between with epilepsy and non- epileptic 
subjects in terms of connectivity,22–24 signal predictability 
and complexity,25 26 spectral power27 28 and chaoticity.29 
Computational analysis of EEG holds the promise of 
extracting information that is invisible to the naked eye of 
the human interpreter, in an objective and reproducible 
manner. Discovering new, non- visible markers of epilepsy 
could increase the diagnostic yield of the EEG, improve its 
accessibility and reduce costs, especially in settings where 
the expertise of a fellowship- trained neurophysiologist 
is unavailable.18 30 In spite of this, none of the proposed 
non- visible markers of epilepsy have made it into clinical 
practice.10 31 This discrepancy calls attention to the lack of 
comprehensible and systematic evaluation of these new 
methods.

We will perform a systematic review of diagnostic test 
accuracy (DTA) for automated methods of interictal EEG 
analysis to distinguish between patients with and without 
epilepsy, without relying on the detection of spikes. The 
questions that this review addresses are the following: 
What is the current evidence on the performances of 
automatically extracted hidden markers compared with 
the clinical diagnosis of epilepsy by a physician? What 
is the benefit over the visual identification of IEDs on 
routine EEG? And what are the different algorithms that 
have been tested and how does their diagnostic accuracy 
compare?

METHODS
Study design
This will be a systematic review and meta- analysis following 
guidance from the Cochrane DTA group. We will report 
the results according to the Preferred Reporting Items 
for Systematic Reviews and Meta- Analyses statement for 
DTA.32

Study selection criteria
Type of studies
We will include all studies that describe a computed 
marker of epilepsy on routine (scalp) EEG, which does 
not explicitly rely on the identification of interictal spikes 
or ictal activity (seizures). Studies must compare the EEG 
signal of individuals with and without epilepsy. We will 
include retrospective or prospective comparative studies 
enabling the assessment of diagnostic accuracy (cohort 
or case- control studies). We will exclude studies reporting 
data on non- human animals only, studies that include 
only intracranial or critical care EEG recordings, studies 
that do not include both individuals with and without 
epilepsy, and studies that are focused solely on seizure/
spike detection or on short- term (<24 hours) seizure 
prediction. For studies that include multiple EEG types, 
we will only extract data that meet the inclusion criteria. 
We restricted the search to studies published after 1961 
(the first use of digital EEG).33 There are no restrictions 
for language.

Population
Our population of interest is individuals undergoing 
routine EEG in a clinical or research setting. A routine 
EEG is defined as a 20–60 min scalp recording using the 
international 10–20 electrodes system, with or without 
prior sleep deprivation. There is no restriction for age 
groups or diagnoses.

Reference standard
We defined the reference standard as the diagnosis of 
epilepsy by a physician based on criteria specified by the 
authors (clinical or paraclinical). These criteria must 
accord with the definition of epilepsy by the ILAE: having 
had at least one seizure and long- term enduring predis-
position to other unprovoked seizures.1 34
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Index test
The index test is a characteristic or feature which is 
computationally extracted from the EEG signal to iden-
tify patients with epilepsy, without relying on detecting 
IEDs or seizures. These include measures of connec-
tivity, entropy, chaoticity and power spectrum density.35 
Also included are statistical models that combine several 
features or models that take as input the raw or processed 
EEG.

Search strategy
The search strategy (online supplemental appendix 1) 
was developed by two medical librarians specialised in 
systematic reviews (BN and RP), and peer- reviewed by 
a senior colleague. We will search MEDLINE (Ovid), 
EMBASE (Ovid), EBM reviews (Ovid), IEEE Explore 
along with grey literature for articles, conference papers 
and conference abstracts. We will use the Covidence 
platform (Melbourne, Australia) to manage our data 
for eligibility assessment, selection and data collection. 
Two independent reviewers (EL and either JNB or BR) 
will screen the records for eligibility using their title and 
abstract. Any item selected by either reviewer will proceed 
to the next phase. This process will be repeated on the 
screened items, this time by consulting the items’ full 
text. A third, senior reviewer (EBA), will settle conflicts as 
necessary during the final selection.

Data items
Data collection will be performed using Covidence by two 
independent reviewers (EL and JNB/BR), and conflicts 
will be resolved by a third author (EBA). Authors of the 
primary study will be contacted if the required data are 
not available in the original publication. Data collection 
will include the following information:
1. Title and authors of the study, country of sampling, 

year of publication.
2. Study type: retrospective versus prospective, design 

(cohort, case control).
3. Study sample: exclusion and inclusion criteria, num-

ber of screened and included patients.
4. Data collection:

a. Number of patients, number of EEGs, duration of 
EEG recordings, use of activation procedures (hy-
perventilation, photic stimulation, sleep depriva-
tion), setting of recording (hospitalised or ambula-
tory), whether the same protocol was used for all 
patients.

b. Number of electrodes, sampling frequency.
c. If public dataset: reference to the original dataset, 

dataset name, exclusion/inclusion criteria used on 
the EEG segments from the dataset.

d. Participant characteristics: age, sex, comorbidities, 
number of ASM, age of first seizure.

5. Reference standard: whether a predefined reference 
standard was used, definition of reference standard, 
whether all patients underwent the same reference 

standard, time- lapse between reference standard and 
EEG.

6. Index test:
a. Preprocessing: artefact detection and removal (au-

tomated or manual), filtering method, filtering 
frequencies, segmentation protocol (whole EEG 
vs EEG segments, window size, overlapping vs non- 
overlapping segments, manual vs automated selec-
tion of segments), channel selection.

b. Feature extraction and selection: multichannel ver-
sus single channel, number of channels selected, 
whether feature selection was performed, feature 
extraction algorithm, feature selection method, 
whether feature selection was applied to data before 
versus after excluding testing data.

c. Classification: algorithm(s) used for classification, 
testing methodology (cross- validation vs held out 
testing set).

d. Metric used to report diagnostic performances: 
ROC AUC, accuracy/sensibility/specificity, F1- score, 
reporting of CIs.

7. Diagnostic performances: number of true positives, 
number of true negatives, number of false positives, 
number of false negatives, reported accuracy, report-
ed sensitivity, reported specificity, reported F1- score, 
reported ROC AUC (if more than one index test is 
performed on the same patient, we will only consider 
the first test).

8. Reproducibility: whether every data processing step is 
detailed, whether methods can be reproduced easily, 
data availability, code availability, open- source comput-
er libraries referenced.

Risk of bias
The risk of bias of all included studies will be assessed 
through an adapted version of the QUADAS- 2 tool.36 Risk 
of bias for each of the following four elements will be 
evaluated by two independent reviewers (EL and JNB/
BR) as low, high or unclear. Conflicts will be resolved by 
a third author (EBA). In addition, all publicly available 
datasets used by at least one of the included studies will 
be evaluated with the same tool. The following items will 
be assessed:
1. Patient selection

a. Is the population representative of clinical practice?
b. Are inclusion and exclusion criteria identical for 

cases (patients with epilepsy) and controls?
c. Are withdrawals explained and appropriate? If indi-

vidual EEG segments were excluded, were the same 
criteria used for all segments?

2. Index test
a. Were the protocols used for recording the EEG 

identical in all patients, irrespective of the epilepsy 
diagnosis?

b. Was the index test validated on an independent 
sample of patients (patients which were not used to 
identify the index test’s threshold or train the learn-
ing algorithm)?

https://dx.doi.org/10.1136/bmjopen-2022-066932
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3. Reference standard
a. Are the criteria used for the diagnosis of epilepsy 

specified and acceptable (likely to correctly classify 
the target condition)?

b. Was the reference standard assessment independ-
ent and blinded to the index test?

4. Flow and timing
a. Did the whole sample undergo the reference stand-

ard?
b. Did the whole sample undergo the same reference 

standard?
c. Was the time- lapse between reference standard and 

EEG acceptable?
d. Was the same data used in the index method availa-

ble at the time of the reference standard?
e. Were all EEGs included in the analysis?

Data synthesis
We will provide a table summarising every published 
study included in the review, comparing the studies’ 
design, population, reference standard, dataset size, data 
processing methods and diagnostic accuracy. We will also 
provide a figure that summarises the risk of bias for each 
item in the adapted QUADAS- 2 tool, comparing (1) every 
individual article included in the review and (2) every 
public dataset that is used in ≥2 studies.

We will describe the number of patients, number of 
EEGs, duration of EEGs and the EEG- duration- per- 
patient ratio across all included studies. We will report 
the pooled proportion of patients with focal versus gener-
alised epilepsy, adult versus children, structural versus 
non- structural epilepsy, IEDs on EEG, and with specific 
epilepsy syndromes. For every publicly available dataset 
identified during the review, we will report the number of 
studies that used that dataset in their work.

We will summarise in a table the methods used by the 
different articles during the pipeline’s algorithm (prepro-
cessing, feature extraction, feature selection and classifi-
cation algorithm), along with the proportion of studies 
that used each method.

Analyses
We will estimate the specificity and sensitivity for each 
study, using the Wilson score to compute 95% CI. For 
studies with varying thresholds, we will estimate the ROC 
AUC and 95% CI.

If there are sufficient (≥5) studies that report the 
number of true/false positives and true/false negatives, we 
will estimate the pooled sensitivity and specificity of each 
individual marker using a hierarchical, bivariate gener-
alised linear mixed model.37 This allows us to account 
for the correlation between specificity and sensitivity in a 
single study. If ≥5 studies report these numbers for varying 
thresholds, we will estimate the pooled ROC curve using 
the Rutter and Gatsonis hierarchical summary receiver 
operating characteristic (HSROC) model.38 All analyses 
will be implemented with the R statistical language. A 
p<0.05 will be considered statistically significant. Given 

insufficient data for the pooled estimates, we will only 
describe the diagnostic performances (sensitivity, speci-
ficity, ROC AUC) narratively. We will present the results of 
the analyses with forest plots. We will compare the perfor-
mance of the computational markers for the diagnosis of 
epilepsy to the visual identification of IEDs on EEG.9

We will quantify heterogeneity using the variances of 
the logit specificity and sensitivity, as well as the median 
OR.39 The median OR is a measure of inter- study vari-
ance translated on the OR scale. It corresponds to the 
increase in the odds of being true positive/negative in a 
patient/control going from a study with lower sensitivity/
specificity to a study with higher sensitivity/specificity. 
For heterogeneity in the ROC plane, we will compute the 
area of the 95% prediction ellipse and present the results 
on a scatterplot in the ROC plane.39 The median OR and 
the area of the 95% prediction ellipse are easily obtained 
and interpreted, and take into account the correlation 
between a single study’s specificity and sensitivity in 
contrast to univariate methods like Cochrane’s Q and 
I.2 37 40 We will perform subgroup analysis for the following 
variables: epilepsy type (focal, generalised), epilepsy aeti-
ology (structural vs non- structural), presence of IEDs, 
age groups (children (<18 years), adults (≥18 years)), 
epilepsy syndromes, extracted marker and dataset used. 
We will also perform a subgroup analysis for populations 
with a higher prevalence of IEDs without epilepsy (cere-
bral palsy, autism spectrum disorder, attention deficit 
disorder)41 and for extratemporal versus temporal focal 
epilepsy. We will assess heterogeneity for all subgroup 
analyses. We will consider a study as belonging to a partic-
ular subgroup if ≥80% of the studied population belongs 
to that subgroup. Sensitivity analysis will be conducted for 
the main analyses by excluding studies with overall high/
unclear risk of bias.

Some studies use multiple markers to classify patients 
with epilepsy from controls (eg, as input features for a 
machine learning algorithm). For each marker that is 
used in ≥2 of such studies, we will evaluate the number 
of studies for which these markers were identified as 
‘important’ (selected for the classification task or statis-
tically significant in separating the two classes) and the 
ratio between the number of studies in which this marker 
was extracted versus identified as important.

Reporting bias for sensitivity and specificity will be eval-
uated by visual inspection of funnel plots.

Patient and public involvement
No patients will be involved for this study.

DISCUSSION
The interictal EEG is key in informing the diagnosis of 
epilepsy, solely based on the visual identification of inter-
ictal spikes.42 Despite years of research on computational 
biomarkers of epilepsy, only these spikes are currently 
used in clinical settings.1 17 18 This review aims to system-
atically evaluate the performances of hidden interictal 
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markers of epilepsy on EEG against the clinical diag-
nosis by a physician, describe the data processing pipe-
lines favoured by the researchers to classify the EEG for 
epilepsy diagnosis and identify the pitfalls that prevent 
clinical translation of these algorithms.

Algorithms have gained growing interest in medicine 
for their potential to assist diagnosis and guide clinical 
decision making.43 EEG analysis is well suited for this 
application due to the complex nature of the EEG signal. 
Automated extraction of new epilepsy markers on routine 
EEG could lead to reduced rate of misdiagnosis, increased 
availability in areas without access to an expert neuro-
physiologist and more efficient clinical trials. Research on 
automatic analysis of EEG data is thriving, in part assisted 
by the recent increase in computational capacities.44–51 
However, automatic analysis of EEG is not mentioned in 
any of the high- quality clinical practice guidelines system-
atically reviewed by the ILAE.17

In recent years, increased computational capacities 
have allowed the development of powerful algorithms 
that can learn complex representations such as medical 
images and EEG signals.44 52 53 A growing number of 
algorithms have now been approved by the US Food 
and Drug Administration for assisting in the diagnosis of 
several diseases.54 Recent systematic reviews have found 
that most of the studies on automated diagnosis using 
artificial intelligence have high risk of bias, mostly due to 
patient selection methodology and absence of validation 
on external data.55–57 Systematic reviews on computer- 
based clinical- decision support systems also highlight the 
need for more robust patient selection.58–63

Translation of technology to clinical practice requires 
strong evidence based on high- quality research. This 
review is important because it will establish the poten-
tial of automatic analysis of EEG as a diagnostic tool for 
epilepsy, and if evidence to support its use is lacking, 
it will identify the pitfalls that need to be overcome in 
future research. Also, by systematically describing current 
practices that are used by research groups, it will serve as 
a reference for new researchers in the field. On comple-
tion of this review, we will have a better understanding of 
the potential ways that automated analysis of EEG could 
be integrated into the clinical workflow; this information 
will be valuable to anyone designing clinical studies on 
clinical decision support systems for epilepsy.

We anticipate that diagnostic accuracy of automatic 
analysis of EEG for epilepsy will be hard to estimate 
because of the high heterogeneity between the different 
dataset used and between the data processing meth-
odology. We also anticipate high risk of bias in many 
studies, because of the high volume of ‘proof- of- concept’ 
studies that emphasise computation performances and 
algorithm development over rigorous diagnostic study 
methodology. In these cases, we hope to produce recom-
mendations that will assist in bridging the gap between 
the development of new automated markers and valida-
tion in appropriate populations, for ultimate implemen-
tation into clinical practice.
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