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Abstract

Motivation: Disease states are distinguished from each other in terms of differing clinical phenotypes, but character-
istic molecular features are often common to various diseases. Similarities between diseases can be explained by
characteristic gene expression patterns. However, most disease–disease relationships remain uncharacterized.

Results: In this study, we proposed a novel approach for network-based characterization of disease–disease relation-
ships in terms of drugs and therapeutic targets. We performed large-scale analyses of omics data and molecular inter-
action networks for 79 diseases, including adrenoleukodystrophy, leukaemia, Alzheimer’s disease, asthma, atopic
dermatitis, breast cancer, cystic fibrosis and inflammatory bowel disease. We quantified disease–disease similarities
based on proximities of abnormally expressed genes in various molecular networks, and showed that similarities
between diseases could be explained by characteristic molecular network topologies. Furthermore, we developed a
kernel matrix regression algorithm to predict the commonalities of drugs and therapeutic targets among diseases.
Our comprehensive prediction strategy indicated many new associations among phenotypically diverse diseases.

Contact: yamani@bio.kyutech.ac.jp

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Disease states are distinguished from each other in terms of differing
clinical phenotypes, but recent medical studies have uncovered com-
monalities between different diseases. For example, whereas erectile
dysfunction and pulmonary hypertension are phenotypically differ-
ent diseases, they share the therapeutic target protein phospho-
diesterase 5 (PDE5; Boolell et al., 1996; Weimann et al., 2000). The
approved drug sildenafil (Viagra) is hence prescribed for both of
these diseases, suggesting that disease pairs with shared therapeutic
targets can inform drug discovery. However, disease phenotypes fol-
low highly complex interactions between numerous biomolecules.
Defects in PDE5 are known consequences of post-transcriptional
regulation (Boolell et al., 1996; Weimann et al., 2000). Therefore, it
is important to investigate disease–disease relationships in terms of
molecular interaction networks.

A network-based approach is useful for analyzing drug–drug,
disease–disease and drug–disease associations. As examples of drug–
disease associations, target proteins of approved drugs reportedly lo-
cate neighbourhoods of disease-related proteins in such networks
(Yıldırım et al., 2007). Subsequently, a drug–disease proximity
measure was proposed to quantify the therapeutic effects of drugs in
a network of disease-related genes. This drug–disease proximity
measure identified novel uses for existing drugs (Guney et al., 2016).
Moreover, to identify disease–disease associations, subnetworks
(modules) were identified in the network using disease-related genes.
These modules enable determinations of pathological relationships,
such as co-expression patterns, symptom similarities and shared
comorbidities among diseases. These efforts also confirmed that

phenotypically related diseases have similar disease-causing genes,
whereas primary disease-related genes are not always shared.
Although types of molecular interactions were not distinguished in
the previous works, the importance of network-based approaches to
identifying relationships between diseases was suggested.

Despite the promise of network-based approaches, disease-
causing genes did not always correspond with therapeutic targets of
diseases. Specifically, disease–gene interactions were elucidated using
the information on genetic disorders (Guney et al., 2016; Menche
et al., 2015; Yıldırım et al., 2007), in which Online Mendelian
Inheritance in Man (OMIM; Amberger and Hamosh, 2017), Genome
Wide Association Study catalog, the UniProt Knowledgebase
(UniProtKB; Mottaz et al., 2008) and the Phenotype–Genotype
Integrator (PheGenI; Ramos et al., 2014) were used. These databases
contain huge numbers of gene defects and related diseases. However,
most disease phenotypes cannot be explained by gene defects alone,
and disease pathogenesis is better defined by disruptions of coordi-
nated gene expression systems in cells.

In this study, we proposed a novel approach for network-based
characterization of disease–disease relationships in terms of drugs
and therapeutic targets. We performed large-scale diseasome analy-
ses of omics data and molecular interaction networks for 79 dis-
eases, including adrenoleukodystrophy, leukaemia, Alzheimer’s
disease, asthma, atopic dermatitis, breast cancer, cystic fibrosis and
inflammatory bowel disease. We quantified disease–disease similar-
ities based on the proximities of abnormally expressed genes in vari-
ous molecular networks, and suggested that similarities between
diseases could be explained by characteristic molecular network top-
ologies. Furthermore, we developed a kernel matrix regression
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algorithm to predict the commonalities of drugs and therapeutic tar-
gets among diseases. Our comprehensive prediction suggests many
new associations among some phenotypically different diseases.

2 Materials and methods

2.1 Disease-specific gene expression profiles
Disease-specific gene expression profiles were constructed based on
gene expression profiles in CRowd Extracted Expression of
Differential Signatures (CREEDS; Wang et al., 2016). Initially, we
retrieved gene expression profiles for patients with 695 diseases with
assigned disease ontology IDs (DOIDs; Kibbe et al., 2015) annotated
as manual disease signatures v1.0. The gene expression profiles com-
prised scores that were calculated using the characteristic direction
method (Clark et al., 2014), which compares gene expression levels in
diseased tissues with those in control tissues. According to a previous
study (Iwata et al., 2019), we converted these DOIDs into the Kyoto
Encyclopaedia of Genes and Genomes (KEGG) DISEASE (Kanehisa
et al., 2010) IDs using medical subject headings terms or the OMIM
database (Hamosh, 2002). Genes with non-zero expression scores
were considered disease-associated genes. In total, we constructed
14 804-dimensional gene expression profiles for 79 diseases.

2.2 Molecular interaction networks
To characterize disease–disease relationships in molecular inter-
action networks, we constructed several types of networks of
protein–protein interactions (human interactome). We curated pro-
tein–protein interactions from the same databases and denoted these
as ‘Y2H interactions’, ‘protein complexes’, ‘kinase–substrate pairs’,
‘metabolic enzyme-coupled interactions’ and ‘signalling interactions’
according to the types of interactions. These interaction types are
described in detail below:

• Y2H interactions

We combined several yeast-two-hybrid high-throughput datasets
from the literature (Rolland et al., 2014; Rual et al., 2005; Stelzl
et al., 2005; Venkatesan et al., 2009; Yang et al., 2016; Yu et al.,
2011) with a yeast two-hybrid database (HuRI). These data sources
together yielded 57 942 interactions between 9441 proteins.

• Protein complexes

Protein complexes are single molecular units that integrate mul-
tiple gene products. The comprehensive resource of mammalian pro-
tein complexes (CORUM) database (Giurgiu et al., 2019) is a
collection of mammalian complexes that were characterized in co-
immunoprecipitation, co-sedimentation and ion-exchange chroma-
tography analyses. In total, CORUM yields 2837 protein complexes
with 3067 proteins connected by 38 876 interactions.

• Kinase–substrate pairs

Protein kinases are crucial regulators of many biological proc-
esses, and principally act through specific signal transduction path-
ways. PhosphositePlus (Hornbeck et al., 2012) provided a network
of peptides that can be bound by kinases, yielding a total of 5424
interactions between 2424 proteins.

• Metabolic enzyme-coupled interactions

When two enzymes share adjacent reactions, they are assumed
to be coupled. We obtained enzyme-coupled interactions from the
KEGG RPAIR database (Shimizu et al., 2008). The database con-
tains 70 033 metabolic interactions between 1765 enzymes.

• Signalling interactions

Signalink 2.0 (Fazekas et al., 2013) is a multi-layered database of
signalling pathways and their regulators, such as scaffold and endo-
cytotic proteins, and modifier enzymes, such as phosphatases, ubi-
quitin ligases, and transcriptional and post-transcriptional regulators

of all components in Caenorhabditis elegans, Drosophila melanogaster
and Homo sapiens. We downloaded all layers of human associations,
including manually curated pathways (pathway members), endocytot-
ic and scaffold proteins (pathway regulators), pathway protein modi-
fying enzymes (post-translational modifications), possible first
neighbours of pathway proteins with direction (directed protein–pro-
tein interactions), transcription factor (TF)–TF binding site (promoter)
interactions (transcriptional regulators), miRNA–mRNA interactions
and transcriptional regulation of miRNAs (post-transcriptional regula-
tors), and undirected protein–protein interactions from small-scale
and high-throughput databases (further interactions). Because the
genes were listed with gene symbols in the database, these were con-
verted into ensemble IDs. After conversion, we identified 49 590 inter-
actions between 2155 proteins.

• Mixture

In a previous study, molecular interaction networks were con-
structed by combining different types of protein–protein interactions
into a single one (Menche et al., 2015). In further experiments, we
integrated all interactions from these databases and found 219 192
interactions between 12 648 proteins. This interactome data is
denoted ‘mixture’ in this paper.

Table 1 summarizes the number of proteins, the number of inter-
actions, the network density and the average number of edges for each
node (average degree). Maximum interactions are available from
‘metabolic enzyme-coupled interactions’, followed by ‘Y2H interac-
tions’ and ‘signalling interactions’. The maximum average degrees are
available from ‘metabolic enzyme-coupled interactions’, suggesting
that each protein in the network has a relatively large number of inter-
actions. In contrast, the network based on ‘kinase–substrate pairs’ was
relatively small. The networks ‘Y2H interactions’, ‘protein complexes’
and ‘kinase–substrate pairs’, have sparse network densities.

2.3 Therapeutic targets and drugs of diseases
We identified 1523 disease–target associations involving 100 dis-
eases and 579 therapeutic target proteins from medical books
(Papadakis et al., 2013) and the KEGG DISEASE (Kanehisa et al.,
2010) database. We also obtained 5606 drug–disease associations
involving 2266 drugs and 461 diseases from medical books
(Papadakis et al., 2013) and the KEGG DISEASE (Kanehisa et al.,
2010) database.

3 Methods

3.1 Disease similarity based on proximity in networks
To consider disease similarities based on their molecular networks,
proximities between diseases must be evaluated in the network. In a
previous study (Guney et al., 2016), proximity was evaluated using
a separation distance measure that was defined by path lengths be-
tween disease-related proteins.

Herein, we denoted the set of related proteins for diseases A and
B as SA and SB, respectively. To define the shortest path lengths be-
tween these sets of disease-related proteins (SA and SB), we calcu-
lated degrees of dispersion between disease-related protein sets as
follows:

dispersion SA; SBð Þ ¼ SAj jj jdc SB; SAð Þ þ SBj jj jdc SA; SBð Þ
SAj jj j þ SBj jj j ;

where SAj jj j is the number of related proteins for disease A, SBj jj j is
the number of related proteins for disease B, and dc SA; SBð Þ is the
closest measure between diseases A and B. The closest measure is
defined as

dc SA; SBð Þ ¼ 1

Aj jj j þ Bj jj j
X
a2A

minb2Bd a;bð Þ þ
X
b2B

mina2Ad a;bð Þ
� �

:

We then defined the shortest path length ds between the set of
disease-related proteins SA and SB as follows:
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ds SA; SBð Þ ¼ dispersion SA; SBð Þ � d0c SA; SAð Þ þ d0c SB; SBð Þ
2

;

where d0c is the modified closest measure in which the shortest path
length from the node to itself is set as infinite.

To evaluate the distances between diseases, the shortest path
length was normalized using the distribution of randomized shortest
path lengths. It is referred to as proximity measure (Guney et al.,
2016). In this study, we obtained the network-based disease similar-
ity from the proximity measure by the sign inversion and scaling in
the range from 0 to 1. For example, the reference length for the pair
of diseases A and B was repeatedly calculated using two randomly
selected sets of proteins, with certain criteria for random selection.
The number of proteins in randomly selected sets corresponded with
those in diseases A or B. Moreover, degrees of each protein basically
corresponded with those of each protein in diseases A or B. After
100 repetitions, we calculated the mean l SA; SBð Þ and the standard
deviation r SA; SBð Þ and defined the normalized proximity z SA; SBð Þ
as follows:

z SA; SBð Þ ¼ d SA; SBð Þ � l SA; SBð Þ
r SA; SBð Þ :

Finally, we obtained network-based disease similarity scores by
scaling the normalized proximity measure between 0 and 1.

Note that, due to the scale-free nature of the human interactome,
few nodes have high degrees. Thus, to avoid repeatedly choosing the
same nodes during random selection, we applied a binning approach
in which nodes within certain degree intervals were grouped so that
at least 100 nodes were included in the bin.

3.2 Algorithm for predicting commonalities among

diseases
Given two diseases, we consider predicting the commonality be-
tween the diseases. In this study, we evaluated the disease–disease
commonality by the commonality of drugs or therapeutic targets be-
tween different diseases. For example, if two different diseases share
at least one drug, the two diseases are considered to have common-
ality in terms of drugs. Likewise, if two different diseases share at
least one therapeutic target, the two diseases are considered to have
commonality in terms of therapeutic targets. We attempt to predict
if different diseases would share the same therapeutic targets, and
we also attempt to predict if different diseases would share the same
drugs.

Suppose that we have an explanatory random variable x 2 Rd

and a response random variable y 2 f0; 1gl for a set of diseases. We
considered that the information on the omics data is available for all
N diseases, but the information on therapeutic targets/drugs is avail-
able for the first n diseases and not for the remaining (N�n) dis-
eases. Accordingly, we refer to the first n diseases as the training set,
and the remaining N � nð Þ diseases as the prediction set.

Let k and g be symmetric positive definite kernels for x and y, re-
spectively. When we compute the kernel matrix for the explanatory
variable x, we obtain an N �N kernel matrix K, where
Kð Þij ¼ k xi; xjð Þ 1 � i; j � Nð Þ, xi indicates the i-th disease with

omics data, and N is the number of all diseases. In contrast, when
we compute the kernel matrix for the response variable y, we obtain

the N �N kernel matrix G, where Gð Þij ¼ g yi; yjð Þ 1 � i; j � nð Þ,
yi indicates the i-th disease with the information on therapeutic tar-
gets/drugs, and n is the number of available diseases n < Nð Þ. Note
that G contains missing values for all entries Gð Þij with
max i; jð Þ > n. In this study, K corresponds to a similarity matrix of
diseases with omics data, and G corresponds to an adjacency matrix
in which each element indicate if two diseases share the same thera-
peutic targets/drugs or not.

To estimate the missing part of G using full Gram matrix K, we
considered a form of correlation between the two kernels. We ex-
press each kernel matrix by splitting the matrix into four parts.
Ktt resp:Gttð Þ denotes the n� n kernel matrix for the training set ver-
sus itself, Kpt resp:Gpt

� �
denotes the N � nð Þ � n kernel matrix for

the prediction set versus the training set, and Kpp resp:Gpp

� �
denotes

the N � nð Þ � N � nð Þ kernel matrix for the prediction set versus it-
self as follows:

K ¼ Ktt K>pt

Kpt Kpp

� �
; G ¼ Gtt G>pt

Gpt Gpp

� �
:

Note that Kpt and Kpp are known and Gpt and Gpp are unknown.
The objective is to predict Gpt and Gpp from K and Gtt. Here, we de-
scribe two approaches to solve the problem of kernel matrix
completion.

(i) Unsupervised approach with similarity values

The most straightforward approach is to directly use Kpt and
Kpp for Gpt and Gpp, respectively. The approach is referred to as un-
supervised approach. We directly used disease similarity scores as
prediction scores; therefore, similar diseases are predicted to share
drugs and therapeutic targets. This framework is similar to a previous
work on disease–disease relationship analysis (Guney et al., 2016).

(ii) Supervised approach with kernel matrix regression (KMR)

In reality, the commonality information on therapeutic targets
and drugs are partially known for a limited number of diseases. To
incorporate the pre-knowledge on disease commonality in the super-
vised learning framework, we propose a variant of the regression
model based on the underlying features in the reproducing kernel
Hilbert space.

The ordinary regression model between the explanatory variable
x 2 Rd and the response variable y 2 R can be formulated as
follows:

y ¼ f xð Þ þ �; (1)

where f :Rd ! R and � is a noise term. By analogy, we regarded
x; x0ð Þ 2 Rd � Rd as an explanatory variable and g y; y0ð Þ 2 R as a

response variable in the present context. Assuming the underlying
feature u xð Þ 2 Rm in the reproducing kernel Hilbert space, we for-
mulated a variant of the regression model as follows:

g y; y0
� �

¼ f x; x0ð Þ þ � ¼ u xð Þ>u x0ð Þ þ �; (2)

where f :Rd � Rd ! R. We refer to this model as a KMR model. We
note that imposing f to be of the form f x; x0ð Þ ¼ u xð Þ>u x0ð Þ for
some feature u : Rd ! Rm ensures that the regression function is

Table 1. Summary of molecular interaction networks

Types of interactions Database Number of proteins Number of interactions Network density Average degree

Y2H interactions HuRI 9441 57 942 0.001 12

Protein complexes CORUM 3067 38 876 0.006 21

Kinase–substrate pairs PhosphsitePlus 2424 5424 0.002 4

Metabolic enzyme-coupled interactions KEGG repair 1765 70 033 0.045 79

Signalling interactions Signalink 2155 49 590 0.021 46

Mixture – 12 648 219 192 0.003 34

The best score for each method is highlighted in bold.
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positive and definite and the number of dimensions m of the feature
u is allowed to be infinite.

Following kernel methods, we consider features in the reproduc-
ing kernel Hilbert space of kernel K that possess an expansion of the
form:

u xð Þ ¼
Xn

j¼1

kðx; xjÞwj; (3)

where w ¼ ðw1;w2; � � � ;wnÞ> is a weight vector and n is the number
of diseases in the training set. When m different features are consid-
ered, we express them using the feature vector u as

u xð Þ ¼ ðu 1ð Þ xð Þ; u 2ð Þ xð Þ; � � � ; u mð Þ xð ÞÞ>.
To represent the set of features for all diseases, we defined the fea-

ture score matrices Ut xð Þ ¼ ½u x1ð Þ; u x2ð Þ; � � � ; u xnð Þ�> for the training

set and Up xð Þ ¼ ½u xnþ1ð Þ; u xnþ2ð Þ; � � � ; u xNð Þ�> for the prediction set.

In the matrix form, we computed feature score matrices as Ut ¼
KttW for the training set and Up ¼ KptW for the prediction set,

where W ¼ ½w 1ð Þ; w 2ð Þ; � � � ; w mð Þ�.
The inner products of the feature vectors between two diseases

are hence denoted as g x; x0ð Þ ¼ u xð Þ>u x0ð Þ. To represent all disease–
disease similarities in the feature space, we defined the similarity ma-

trix Q as ðQÞij ¼ q xi; xjð Þ ¼ uðxiÞ>u xjð Þ 1 � i; j � Nð Þ. To split

the matrix Q into several parts according to the training set, the pre-
diction set and their interactions, we performed the following
computations:

Training set versus Training set:

Qtt ¼ UtU
>
t ¼ KttWW>K>tt ; (4)

Prediction set versus Training set:

Qpt ¼ UpU>t ¼ KptWW>K>tt ; (5)

Prediction set versus Prediction set:

Qpp ¼ UpU>p ¼ KptWW>K>pt: (6)

In these computations, we determined the n�m weight matrix

W for which Qtt fits Gtt as much as possible. If we set H ¼WW>,
this problem can be addressed by finding the H that minimizes the
difference between Gtt and Qtt, thus avoiding considerable compu-
tational burdens for computing W itself, even if m is infinite. The

Hð¼WW>Þminimizes

L ¼ Gtt �KttHK>tt
�� ���� ��2

F; (7)

where �j jj jF indicates the Frobenius norm. We can rewrite the above
equation in the trace form as follows:

L ¼ trf Gtt �KttHK>tt
� �

Gtt � KttHK>tt
� �>g: (8)

Here we introduce regularization in KMR by finding Hð¼
WW>Þ that minimizes the following penalized loss function:

L ¼ Gtt � KttHKttj jj j2F þ kPENðHÞ; (9)

where k is a regularization parameter and PENðHÞ is a penalty term

for H and is defined as PEN Hð Þ ¼ 2tr HKttð Þ: In this case, the opti-
mization problem is reduced to finding H, which minimizes

L ¼ tr ðGtt �KttHK>tt ÞðGtt �KttHK>tt Þ
>

n o
þ 2ktr HKttf g: (10)

The derivative of L with respect to H is given by the following
equation:

1

2

@L

@H
¼ �KttGttKtt þ K2

ttHK2
tt þ kKtt

Therefore, the solution of the above penalized optimization

problem is obtained as H ¼ Ktt
�1 Gtt � kK�1

tt

� �
K�1

tt : The penalty

used is only justified for positive semidefinite matrices, which can be
generated at least for sufficiently small k values. Therefore, we com-
pute the feature-based similarity matrix Q involving the prediction
set as follows:

Prediction set versus Training set:

Qpt ¼ UpU>t ¼ KptK
�1
tt ðGtt � kK�1

tt Þ; (11)

Prediction set versus Prediction set:

Qpp ¼ UpU>p ¼ KptK
�1
tt ðGtt � kK�1

tt ÞK�1
tt K>pt: (12)

Using Qpt and Qpp, we can predict the missing entries in the ker-
nel matrix G that correspond with Gpt and Gpp

.

We set the regularization parameter lambda by performing the
fivefold cross-validation experiments, following the previous study
(Yamanishi et al., 2007). We evaluated the accuracy scores by vary-
ing the lambda parameter little by little, and obtained the highest
performance when the lambda value was around 0.1. Thus, the
lambda was set to 0.1 in this study.

3.3 Performance evaluation
We evaluated the performance by performing fivefold cross-
validation experiments using receiver operating characteristic
(ROC) curves that were derived from plots of true-positive rates ver-
sus false-positive rates, and precision–recall (PR) curves that were
derived from plots of precision (positive predictive values) versus re-
call (sensitivity). We summarized performance using the area under
ROC curve (AUC) scores in which 1 indicates perfect inference and
0.5 indicates purely random inference, and area under the PR curve
(AUPR) scores for which 1 indicates perfect inference and the ratio
of positive examples in the therapeutic target or drug-sharing data
indicates random inference. We calculated the prediction scores for
all disease–disease pairs, split them into ICD-11 disease categories,
and evaluated the AUC scores for disease pairs within the same dis-
ease category or across disease categories.

To assess the efficacy of our network-based similarity, we pre-
pared a profile-based similarity as a baseline. In the profile-based
method, disease similarities were calculated by correlation coeffi-
cients based on disease-specific gene expression profiles. We trans-
formed disease-specific gene expression profiles into binary profiles
by distinguishing genes with high and low expression levels.
Subsequently, we calculated Jaccard similarity scores. The profile-
based method calculates disease similarities based on the overlap of
disease-related genes between diseases. In contrast, the network-
based method can calculate disease similarities even if there is no
overlap of disease-related genes between diseases. There are many
diseases that are characterized by molecular networks of genes ra-
ther than individual genes, as shown in the previous study (Menche
et al., 2015).

4. Results

4.1 Therapeutic target-sharing disease pairs have

higher similarities
To test whether a disease is more likely to be proximal to other dis-
eases that share therapeutic targets, we compared network similar-
ities between disease pairs that did and did not share therapeutic
targets.

Figure 1A shows distributions of network-based similarities be-
tween disease pairs, in which disease pairs are distinguished in terms
of therapeutic target sharing. Among the possible 3081 disease
pairs, 201 (6.5%) shared at least one therapeutic target. Disease
pairs with shared therapeutic targets tended to have higher similar-
ities than disease pairs that did not share gene targets in the mixture
network (P<2.2e-16; Kolmogorov-Smirnov test). Especially, a
strong tendency was observed in ‘Y2H interactions’, ‘protein com-
plexes’, ‘kinase–substrate pairs’, ‘signal interactions’ (P<2.2e-16;
Kolmogorov-Smirnov test). These findings suggest that disease pairs
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with highly network-based similarities tend to share therapeutic
targets.

4.2 Drug-sharing disease pairs have higher similarities
We determined whether diseases are more likely to be proximal to
others when they share drugs. Figure 1B shows the distributions of
network-based similarities for disease pairs that were distinguished
in terms of sharing of approved drugs. In all possible 3081 disease
pairs, 168 (5%) shared at least one drug. As for therapeutic target
sharing (see Fig. 1A), drug-sharing disease pairs had higher similar-
ities than those that did not share drugs (P<2.2e-16; Kolmogorov-
Smirnov test for all types of human interactomes). We show that the
disease pairs that share approved drugs have higher topological
similarities.

4.3 Performance evaluation of predictions of

therapeutic target commonalities among diseases
Here we evaluated the performance for predicting therapeutic target
commonalities among diseases. We compared the performance be-
tween unsupervised approach and supervised approach. As gold
standard data, we used 201 disease pairs with shared therapeutic
targets, including 37 diseases.

Table 2A shows AUC and AUPR scores for the unsupervised and
supervised approaches with the baseline profile-based and network-
based disease similarities. We used the Jaccard similarity score in the
profile-based method, because the Jaccard similarity score tended to
work better than other similarity scores such as Pearson and
Spearman similarities. Supplementary Table S1 shows the results of
the performance comparison between Pearson, Spearman and

Jaccard similarities. The AUC and AUPR values are always higher in
supervised algorithms than in their unsupervised counterparts. The
profile-based and network-based similarities were comparable in
terms of prediction of therapeutic target commonalities. We also
evaluated the performance by precision at low recall, and provided
the experimental results in Supplementary Table S2. The precision
scores at low recall (i.e. 5 and 10%) with supervised learning were
higher than those with unsupervised learning in most cases. In the
case of supervised learning, the network-based methods achieved
higher precision at low recall, compared with the profile-based
method. For instance, the network-based methods with Y2H and
signalling interaction networks achieved the highest precision at the
5% recall in the prediction tasks for both therapeutic targets and
drugs. These results suggest the usefulness of the network-based
method with supervised learning.

The prediction using the mixture interactome provides the best
accuracy among network-based methods (AUC ¼ 0.750), which is
because the number of constructed interactions was highest for the
mixture network. Metabolic enzyme-coupled interactions also had
comparable AUC scores (AUC ¼ 0.749) to those of mixture inter-
actions, despite lower numbers of network proteins than in mix-
ture networks. These results suggest that proteins involved in
metabolic enzyme-coupled interactions tend to be therapeutic
targets.

We further investigated whether disease categories can be easily
predicted by specific networks. Each heatmap in Figure 2 corre-
sponds to the performance evaluation with a kind of molecular
interaction network. For example, the performance for ICD-11 cat-
egory V diseases (endocrine, nutritional or metabolic diseases) was
low in some cases (e.g. ‘kinase–substrate pairs’, ‘protein complexes’
and ‘mixture’ for the network-based method and the profile-based

A

B

Fig. 1. Comparisons of network-based disease similarities between therapeutic target-sharing disease pairs and non-sharing pairs (A) and between drug-sharing disease pairs

and non-sharing pairs (B). Distributions coloured in pink and blue correspond with disease pairs that share and do not share therapeutic targets or drugs, respectively. The

horizontal axes indicate network-based disease similarities as calculated using ‘Y2H interactions’, ‘protein complexes’, ‘kinase–substrate pairs’, ‘metabolic enzyme-coupled

interactions’, ‘signal interactions’ and all of those interactions (mixture)
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Table 2. Performance evaluation for the prediction of commonalities of therapeutic targets and drugs

Supervised learning Unsupervised learning

Method AUC AUPR AUC AUPR

(A) Therapeutic target commonality

Profile-based method 0.761 0.526 0.685 0.408

Network-based method

Mixture 0.750 0.526 0.692 0.423

Y2H interactions 0.715 0.510 0.682 0.417

Protein complexes 0.718 0.469 0.699 0.423

Kinase–substrate pairs 0.711 0.476 0.700 0.438

Metabolic enzyme-coupled interactions 0.749 0.508 0.660 0.422

Signalling interactions 0.718 0.482 0.674 0.421

(B) Drug commonality

Profile-based method 0.836 0.087 0.690 0.032

Network-based method

Mixture 0.837 0.099 0.713 0.039

Y2H interactions 0.779 0.088 0.693 0.037

Protein complexes 0.716 0.055 0.707 0.037

Kinase–substrate pairs 0.662 0.022 0.687 0.035

Metabolic enzyme-coupled interactions 0.807 0.076 0.685 0.041

Signalling interactions 0.819 0.114 0.711 0.039

Note: The best score for each method is highlighted in bold.

A B

Fig.2. Performance evaluation based on ICD-11 disease chapters for therapeutic target commonality (A) and drug commonality (B). Roman numbers are showing the ICD-11

disease chapters. The green to yellow colour shows the AUC score for combination of ICD-11 diseases. The blue to red colour shows the number of diseases used for calculat-

ing the AUC. Chapter I: certain infectious or parasitic diseases; chapter II: neoplasms; chapter III: diseases of the blood or blood-forming organs; chapter IV: diseases of the im-

mune system; chapter V: endocrine, nutritional or metabolic diseases; chapter VI: mental, behavioural or neurodevelopmental disorders; chapter VIII: diseases of the nervous

system; IX: diseases of the visual system; chapter XII: diseases of the respiratory system; chapter XIII: diseases of the digestive system; chapter XIV: diseases of the skin; chapter

XV: diseases of the musculoskeletal system or connective tissue: chapter XX: developmental anomalies
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method). In contrast, the performance for ICD-11 category V dis-
eases did not make a difference in the other cases (e.g. ‘metabolic
enzyme-coupled interactions’ and ‘signalling interactions’).
Therefore, the diseases in ICD-11 category V could be well charac-
terized by the metabolic-related and signalling-related interactome,
not by the protein-binding and gene-expression interactome. These
results suggest that the characterization of disease–disease relation-
ships depends heavily on the kind of molecular interaction net-
works, and the use of the mixture interactome does not always work
the best, which are important findings in this study.

4.4 Performance evaluation of predictions of drug

commonalities among diseases
Next, we evaluated the performance for predicting drug commonal-
ities among diseases. As gold standard data, we used 40 disease pairs
with shared drugs between 34 diseases.

Table 2B shows AUC and AUPR scores for the unsupervised
and supervised approaches with the baseline profile-based and
network-based disease similarities. The AUC score was the high-
est for the comprehensive human interactome (AUC ¼ 0.837),
which had a comparable AUC value and a higher AUPR value
than those from baseline calculations. This result suggests that
the interactome offers considerable predictive power for drug
commonalities.

Figure 2B compares AUC scores between ICD-11 disease
chapters. The AUC scores between ICD-11 chapter VIII (diseases
of the nervous system) and chapter XI (diseases of the circula-
tory system) from complexes was higher than the others.
Similarly, the pair of ICD-11 chapter XII (diseases of the re-
spiratory system) and ICD-11 chapter XIV (diseases of the skin)
gave slightly higher AUC values in ‘protein complexes’ and ‘kin-
ase–substrate pairs’ than the other chapters, suggesting that
some disease categories tend to be predicted by specific protein–
protein networks.

4.5 Novel prediction of therapeutic target-sharing

disease pairs
We predicted novel therapeutic target-sharing disease pairs by the
profile-based and network-based methods. We used 37 diseases
with information on therapeutic targets as a training set, where 201
pairs of diseases were known to share at least one therapeutic target.
Overall, 43 novel disease pairs shared therapeutic targets
(Supplementary Fig. S1 and Table S3). Our network-based predic-
tion demonstrated more therapeutic target-sharing disease pairs
than the profile-based method.

For example, the association of Parkinson’s disease (H00057)
and Lewy body dementia (LBD) (H00066) was predicted from both
profile-based and network-based computations (Supplementary
Table S3). This result suggests that these diseases have many over-
lapping genes and high similarities in the human interactome. In
contrast, the association between adrenoleukodystrophy (H00176),
involving ICD-11 chapter V (endocrine, nutritional or metabolic dis-
eases) and idiopathic pulmonary fibrosis (IPF; H01299), involving
ICD-11 chapter XII (diseases of the respiratory system), was only
predicted in the Y2H network. Perhaps suitable combinations of
network and disease pairs will be optimally predictive of therapeutic
targets.

4.6 Novel prediction of drug-sharing disease pairs
Finally, we predicted novel drug-sharing disease pairs for 79 dis-
eases. Among these, 40 were known drug-sharing associations be-
tween 34 diseases and were used as training data. Overall, we found
novel 68 disease pairs with shared drugs (Fig. 3 red edges and
Supplementary Table S4).

Although diseases of the same ICD-11 disease groups tended to
share drugs (Fig. 3 grey edges), our network-based method pre-
dicted associations between different categories of ICD-11 dis-
eases. For example, IPF (H01299), which is a disease of the
respiratory system in ICD11 and is categorized in ICD-11 chapter

XII (diseases of the respiratory system), may share drugs with
atopic dermatitis (AD; H01358), which is categorized in ICD-11
chapter XIV (diseases of the skin). Indeed, prednisolone sodium
phosphate (D00981), which was not in the KEGG Release 84.1
(released on December 1, 2017) from which we derived informa-
tion concerning drugs for diseases, is approved for the treatment of
both diseases in the KEGG database Release 91.0 (released on July
1, 2019). However, this association was only predicted by ‘kinase–
substrate pairs’, indicating that these diseases only share kinase–
substrate interactions.

The glucocorticoid receptor (GR) is a therapeutic target of
prednisolone sodium phosphate and is located close to IPF related
genes (green circles in Supplementary Fig. S2) in the kinases net-
work. Although the gene encoding GR is not related to IPF in our
dataset, a recent study demonstrated that GR expression was sig-
nificantly lowered in lung tissues from IPF and might be a bio-
marker for IPF (Bin et al., 2019). Similarly, the dopamine
receptor D2 (DRD2), which is a therapeutic target of AD, was
localized in neighbourhoods of the IPF module. It has been shown
that inhibition of the dopamine receptor D1 (DRD1), which is a
subtype of dopamine receptors, reverses fibrosis through YAP/
TAZ signalling in mice. Hence, some drugs may be effective for
both IPF and AD.

5 Discussion and conclusions

In this article, we present a novel method for revealing disease–
disease relationships based on molecular interaction networks
using machine learning. The originality of the approach lies in the
quantitation of disease similarities from characteristics of five mo-
lecular interaction networks and disease-specific omics profiles.
This approach revealed novel disease–disease relationships that
share therapeutic targets and drugs. In particular, the KMR iden-
tified novel disease–disease associations, with greater effect than
the unsupervised method. Our approach is expected to be useful
for understanding disease–disease relationships. The information
on predicted disease commonality pairs can be used to find new
candidates for drugs and therapeutic targets. For example, if one
disease in a predicted disease commonality pair has a known
drug, the other disease (without drug information) in the disease
commonality pair is predicted to have the same drug. Likewise, if
one disease in a predicted disease commonality pair has a known
therapeutic target, the other disease (without target information)
in the disease commonality pair is predicted to have the same
therapeutic target.

In this study, we demonstrated that topological molecular net-
work characteristics of diseases that share therapeutic targets or
drugs differ from those of diseases that do not share drugs or thera-
peutic targets. Considering disease similarities based on types of mo-
lecular networks helps to predict disease relationships. For example,
the association between IPF and AD was predicted only in analyses
of ‘kinase–substrate pairs’ (Fig. 3). In reality, these diseases share
this drug and were added to the KEGG Release 91.0 (released on
July 1, 2019) but were not present in KEGG Release 84.1 (released
on December 1, 2017), from which we extracted information
regarding drugs for diseases.

In recent pharmaceutical studies, network-based approaches
have provided promising frameworks and novel insights that may
accelerate drug discovery (Barabási et al., 2004) by quantifying
disease–disease (Menche et al., 2015), drug–disease (Cheng et al.,
2018; Guney et al., 2016) and drug–drug–disease relationships
(Cheng et al., 2019). More careful examinations are required,
however, to decipher novel disease–disease associations that share
therapeutic targets and drugs. Previously developed methods con-
sidered only disease-causing genes, and excluded disease-specific
gene profiles based on mRNA expression levels. Because disrup-
tions of coordinated gene expression will likely be more definitive
of disease pathogenesis, and because disease-causing genes with
mutations are rarely considered as therapeutic targets, further
studies are required to consider gene expression profiles in predic-
tions of therapeutic targets and drugs. In addition, the previous
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Fig. 3. Predicted associations of drug-sharing diseases. Gray, red, blue and purple edges indicate known associations, predicted by network-based method only, predicted by

profile-based method only, and predicted by both network-based and profile-based methods, respectively. Details of ICD-11 chapters are described in Figure 2 legend
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studies neglected to be attentive to types of molecular interactions
in networks. Perhaps suitable types of networks will be predictive
of new disease associations that share therapeutic targets and
drugs, warranting studies of individual types of molecular
interactions.
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