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Akkermansia muciniphila is a commensal bacterium of the gut mucus layer. Although both
in vitro and in vivo data have shown that A. muciniphila strains exhibit strain-specific
modulation of gut functions, its ability to moderate immunity to ulcerative colitis have not
been verified. We selected three isolated human A. muciniphila strains (FSDLZ39M14,
FSDLZ36M5 and FSDLZ20M4) and the A. muciniphila type strain ATCC BAA-835 to
examine the effects of different A. muciniphila strains on dextran sulfate sodium-induced
colitis. All of the A. muciniphila strains were cultured anaerobically in brain heart infusion
medium supplemented with 0.25% type II mucin from porcine stomach. To create animal
models, colitis was established in C57BL/6 mice which randomly divided into six groups
with 10 mice in each group by adding 3% dextran sulfate sodium to drinking water for 7
days. A. muciniphila strains were orally administered to the mice at a dose of 1 × 109 CFU.
Only A. muciniphila FSDLZ36M5 exerted significant protection against ulcerative colitis
(UC) by increasing the colon length, restoring body weight, decreasing gut permeability
and promoting anti-inflammatory cytokine expression. However, the other strains
(FSDLZ39M14, ATCC BAA-835 and FSDLZ20M4) failed to provide these effects.
Notably, A. muciniphila FSDLZ20M4 showed a tendency to exacerbate inflammation
according to several indicators. Gut microbiota sequencing showed that A. muciniphila
FSDLZ36M5 supplementation recovered the gut microbiota of mice to a similar state to
that of the control group. A comparative genomic analysis demonstrated that the positive
effects of A. muciniphila FSDLZ36M5 compared with the FSDLZ20M4 strain may be
associated with specific functional genes that are involved in immune defense
mechanisms and protein synthesis. Our results verify the efficacy of A. muciniphila in
improving UC and provide gene targets for the efficient and rapid screening of A.
muciniphila strains with UC-alleviating effects.
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INTRODUCTION

Akkermansia muciniphila is a strictly anaerobic gram-negative
gut bacterium that uses mucin as its sole energy source (Derrien
et al., 2017). This bacterium is a potential candidate for next-
generation probiotic because it has a positive effect on human
metabolic disorders such as diabetes, alcoholic liver disease,
obesity and gastrointestinal diseases (Cani and de Vos, 2017;
Plovier et al., 2017; Grander et al., 2018; Bian et al., 2019).

Increasing numbers of studies are focusing on the relationship
between A. muciniphila and intestinal barrier function and host
immunity. For example, Png et al. demonstrated that the
abundance of A. muciniphila was dramatically decreased in
patients with inflammatory bowel disease compared with
controls, suggesting that A. muciniphila may be correlated with
intestinal mucosal health (Png et al., 2010). Several reports have
observed that A. muciniphila is associated with body weight gain,
reduction in the expression of pro-inflammatory cytokines and
the recovery of gut epithelial barrier function in dextran sulfate
sodium (DSS)-induced colitis (Bian et al., 2019; Zhai et al., 2019).
Other studies have shown that supplementation with A.
muciniphila can restore the normal thickness of the inner mucus
layer and increase the expression of tight-junction (TJ) proteins
such as claudins, occludin and zonula occludens-1(ZO-1) in the
gutofmice (Everard et al., 2013;Geerlings et al., 2018;Grander et al.,
2018). These findings suggest that A. muciniphila plays an
important role in protecting the intestinal tract from damage.

Although multiple reports have suggested that probiotics have
the potential to alleviate intestinal disease, some studies have
demonstrated that the effects of probiotics on intestinal disease
are strain specific. For example,Lactobacillus caseiATCCBAA-835
393, DN-114001 and Lbs2 have been demonstrated to alleviate
damage in gut disease by restoring histopathological damage,
improving the disease activity index (DAI) score, increasing the
differentiation of regulatory T (Treg) cells and inhibiting pro-
inflammatory cytokine expression (Zakostelska et al., 2011;
Thakur et al., 2016; Xu et al., 2018). However, other reports have
revealed that the ingestion of L. casei does not prevent the
occurrence of diarrhea or inhibit pathogenic infections (Arena
et al., 2017). Moreover, a study found that in vitro A. muciniphila
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
ATCC BAA-835 significantly augmented Treg differentiation,
whereas another A. muciniphila strain 139 did not have this effect
(Zhai et al., 2019). Another study showed that some murine A.
muciniphila strains may aggravate colitis in IL10−/−mice (Seregin
et al., 2017). In sum, these findings suggest that different A.
muciniphila strains have strain-specific physiological functions.

Studies have shown that confounding factors including the
origin, genetic background and physiological characteristics of the
strains may influence the functional specificity of probiotics.
Different species are able to adjust to specific environments
through genome specialization that drive niche‐specific
adaptations (Frese et al., 2012; Cen et al., 2020; Xiao, 2020).
Specific genes in the gut bacteria determine their beneficial
function in the intestine. One study conducted a phylogenetic
genomic analysis of 100 strains of L. rhamnosus isolated from
different sources and found that the differences among the strains
were partly related to the differing ecological niches they occupied,
resulting in strains with different competitive advantages in
different environments that thus exert different probiotic effects
(Frese et al., 2012). Furthermore, the intestinal protective effects of
probiotic bacterial strains are closely related to their physiological
characteristics. A study has claimed that the micro integral
membrane proteins of L. plantarum CGMCC 1258 can remedy
TJ injury by upregulating the relative expression of TJ proteins such
as JAM-1and claudin-1 (Yin et al., 2018).Amuc_1100, amembrane
protein secreted byA.muciniphila, can remedymetabolic disorders
and enhance the intestinal permeability of mice (Plovier et al.,
2017).Extracellular vesicles ofA.muciniphilaATCCBAA-835have
been demonstrated to have a positive effect on alleviating DSS-
induced colitis inmice (Kang et al., 2013). Furthermore, conjugated
linoleic acids and short-chain fatty acids produced by probiotics
also improve the gut barrier and regulate gut immune function
(Cremon et al., 2018).

Although much evidence has shown that probiotics have a
beneficial effect on colitis, the positive effects of A. muciniphila and
its ability tomoderate immunity to colitis have not been verified. The
inter-species or inter-genetic differences of A. muciniphila has been
evaluated by several studies, but no definite conclusion has been
reached thus far,partlydue to the limitednumberof isolatedstrainsof
this species. In fact, most investigations of A. muciniphila have only
assessed the type strain ATCC BAA-835. Therefore, we selected A.
muciniphila ATCC BAA-835 and three other A. muciniphila
strains, FSDLZ36M5, FSDLZ39M14 and FSDLZ20M4, isolated
from human feces in our laboratory to investigate the effects of
A.muciniphila onDSS-induced ulcerative colitis (UC). The genomic
and functional characteristics of the different A. muciniphila strains
were used to assess their effects from a genetic perspective.
MATERIALS AND METHODS

Bacterial Strains and Preparation
All of the A. muciniphila strains, namely ATCC BAA-835,
FSDLZ20M4, FSDLZ36M5 and FSDLZ39M14, were cultured
anaerobically (10% H2, 10% CO2 and 80% N2) in synthetic
media, the machine for anaerobic culture incubator (GRP-9080)
was purchased from Shanghai senxin Experimental Instrument
GRAPHICAL ABSTRACT |
August 2021 | Volume 11 | Article 698914

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Liu et al. Regulation of A. muciniphila on UC
Company (Shanghai, China). The strain was cultured in brain
heart infusion (BHI) medium (Qingdao Hope Bio-Tcehnology
Company, Qingdao, China) supplemented with 0.25% type II
mucin from porcine stomach (Sigma) at 37°C for 18 h.

Animal Experiment Design
Sixty adult male specific pathogen-free C57BL/6 mice were
randomly divided into six groups with 10 mice in each group: five
of the groups were administered DSS to induce UC (UC groups)
and the sixth was a control group. Four of the UC groups were
supplemented with one of the strains of A. muciniphila (treatment
groups) and the fifth received no supplementation (DSS group). All
of themicewere fed standard commercialmouse food and kept in a
12-h light/dark cycle environment at 22–24°C under controlled
humidity (40–70%). The experimental protocol was approved by
the Ethics Committee of Jiangnan University, China (JN.
No.20190915c0801101), and was performed in accordance with
European Community Directive 2010/63/EU.

Each mouse in the control group was administered 0.2 ml of
sterile phosphate-buffered saline (PBS) daily and distilled water
during the 7-day experiment. The other five groups were given
3% (w/v) DSS (36–50 kDa, MP Biomedicals Ltd, Santa Ana,
USA) in drinking water to induce UC, and those in the treatment
groups were given a sterile PBS suspension of A. muciniphila (1 ×
109 CFU/0.2 ml per mouse per day). After 7 days of treatment,
the mice were anesthetized and sacrificed. The feces, blood and
colon tissues of the mice were then harvested for analysis. The six
groups were as follows.

Control group: Sterile PBS + distilled water

DSS group: DSS + sterile PBS

ATCC BAA-835: DSS + A. muciniphila ATCC BAA-835
bacterial suspension

FSDLZ20M4: DSS + A. muciniphila FSDLZ20M4 bacterial
suspension

FSDLZ36M5: DSS + A. muciniphila FSDLZ36M5 bacterial
suspension

FSDLZ39M14: DSS + A. muciniphila FSDLZ39M14 bacterial
suspension
Assessment of the Severity of UC
During the experiment, the body weight of each mouse was
measured daily and the colon length was measured when the
mice were sacrificed to determine the severity of the induced UC
(Yang et al., 2020).

Gut Permeability
The fluorescein isothiocyanate-conjugated dextran (FITC-
dextran) assay obtained from Sigma-Aldrich (Saint Louis, MO,
USA) was used to determine the gut permeability of the mice.
The concentration of FITC-dextran was determined using a
previously described method (Bian et al., 2019).

Biochemical Analysis of the Colon Tissue
A colon sample from each mouse was accurately weighed (0.1 g)
and homogenized in nine volumes of cold PBS. The supernatant
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
was separated by centrifugation at 3000 g (4°C, 5 min). The
mucin 2 (MUC2), interleukin (IL)-6, IL-10, IL-1b and tumor
necrosis factor alpha (TNF-a) contents were detected using the
corresponding kits from SenBeiJia Biological Technology Ltd.
(Nanjing, China).

Fecal DNA Extraction, Sequencing,
and Analysis
The bacterial DNA from mouse feces was isolated using a
FastDNA® Spin kit from MP Biomedicals Ltd. (CA, USA). The
sequencing of the intestinal microbiota was performed using a
previously described method. A principal component analysis
(PCA) was used with the STAMP software to analyze the results.
The inter-group differences in the intestinal microbiota
composition were determined by an LEfSe analysis.

Comparative Genomic Analysis
of A. muciniphila
The genome sequencing and annotation of the A. muciniphila
isolates were performed following the method given in previous
studies. Maximum likelihood phylogenetic tree using the
neighbor-joining method was analyzed and constructed using
FastTree (Price et al., 2010). Orthologous genes were generated
using Roary with the default parameters (Page et al., 2015). COG
annotation was done with the COG database using BLAST
(Tatusov et al., 2000). The CAZyme database (Lombard et al.,
2014) were used to annotate carbohydrate active enzymes.

Statistical Analysis
Experimental data are presented as the mean ± standard error of
the mean. A one-way analysis of variance (ANOVA) was used to
analyze the data, followed by Tukey’s multiple comparison test to
identify statistical significance. P values < 0.05 were regarded as
statistically significant. All of the statistical analyses were
conducted and visualized with GraphPad Prism (GraphPad
Software Inc., San Diego, CA, USA).
RESULTS

Phylogenetic Tree of the
A. muciniphila Strains
We selected 37 reported A. muciniphila strains (including the
type strain ATCC BAA-835) and 3 A. muciniphila strains from
our laboratory to analyze the evolutionary history of A.
muciniphila, all of which were isolated from fecal samples from
Chinese people. The 40 strains shared 598 homologous genes.
We found that FSDLZ36M5, FSDLZ20M4 and FSDLZ39M14
occurred on different branches of the phylogenetic tree
(Figure 1). Therefore, we selected the type strain and these
three strains with relatively distant genetic relationships to
evaluate their ability to alleviate UC.

Effect of A. muciniphila on Body Weight
and Colon Length
The addition of DSS to the drinking water of the mice in the UC
groups resulted in a significant drop in body weight and a rapid
August 2021 | Volume 11 | Article 698914
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shortening of the colon relative to that of the control group
(Figures 2A, B). After supplementation with A. muciniphila
FSDLZ36M5, all indicators showed significant improvement
compared with those of the untreated DSS group. However,
the other strains did not show any obvious alleviating effects, and
A. muciniphila FSDLZ20M4 had a tendency to exacerbate the
physiological damage to the gut of the mice.

Effect of A. muciniphila on
Gut Permeability
DSS caused significant increases in the concentration of FITC-
dextran in the serum of the mice in the UC groups compared
with the control group (P < 0.001, Figure 3). Treatment with
different A. muciniphila had different effects on the increased gut
permeability caused by DSS. A reduced gut permeability in mice
treated with A. muciniphila ATCC BAA-835, FSDLZ36M5 and
FSDLZ39M14 was observed relative to the untreated DSS group,
and A. muciniphila FSDLZ36M5 in particular contributed to a
marked reduction in the levels of FITC-dextran (P < 0.001,
Figure 3), indicating enhanced gut barrier function. However,
the oral administration of A. muciniphila FSDLZ20M4 tended to
aggravate the damage to the intestinal barrier of the mice.

Effect of A. muciniphila on Inflammatory
Cytokine Expression in the Colon
DSS led to the substantial expression of inflammatory cytokines
in the colon tissue (Figure 4). An increase in pro-inflammatory
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
cytokines (TNF-a, IL-1b and IL-6) and a decrease in anti-
inflammatory cytokines (IL-10) were observed in all of the
mice administered with DSS compared with the control group
(Figures 4A–D). After treatment with A. muciniphila
FSDLZ36M5, all cytokine indicators significantly improved (P <
0.05). Similar results were found for the three other A.
muciniphila strains (Figure 4B). Furthermore, compared with
the control group, the MUC2 content in the DSS group was
significantly decreased, but the content was recovered in the
treated groups, consistent with the above (Figure 4E).

Effect of A. muciniphila on the Gut
Microbiota Composition
The PCA results revealed that the gut microbiota compositions of
the UC groups were significantly different from that of the control
group (Figure 5A). Supplementation with A. muciniphila strains
led to structural alterations in the gut microbial communities of all
of the treated groups relative to the gut microbiota of the untreated
DSS group. Notably, the gutmicrobiota of the group supplemented
with the A. muciniphila FSDLZ36M5 strain was similar to that of
the control group, but the other three strains had no prominent
recovery effect (Figure 5A). At the phylum level, in the DSS group,
the abundance of Firmicutes and Proteobacteria significantly
increased, whereas that of Verrucomicrobia and Actinobacteria
decreased to varying degrees compared with the control group
(Figure 5B). At the genus level, the abundance of Bifidobacterium
andLactobacilluswas recovered in theA.muciniphilaFSDLZ36M5
FIGURE 1 | Maximum likelihood phylogenetic tree based on the core genomes of 40 A. muciniphila isolates. The neighbor-joining method was used to infer the
evolutionary history of the core-genomes of the 40 A. muciniphila strains.
August 2021 | Volume 11 | Article 698914
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group (Figure 5C) to levels greater than those in the DSS group.
Meanwhile, a significant drop in the abundance of Bacteroides and
Enterobacteriaceae was observed (Figure 5C). The LEfSe analysis
also revealed similar results (Figures 6A–C).

Comparative Genomic Analysis of the
Selected A. muciniphila Strains
Although there was no significant difference in the cluster of
orthologous groups (COGs) and carbohydrate-active enzyme
(CAZy) levels between FSDLZ36M5 and FSDLZ20M4 strains
(Figures 7A, B), there were some specific genes in the
FSDLZ36M5 strain (Table 1).
DISCUSSION
This study aimed to verify whether the UC-alleviating effects of
A. muciniphila are strain specific. Although the evidence of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
functional differences between different strains of this species is
abundant, the factors that contribute to the specificity of these
strains remain unclear. The genetic background of the bacterial
strains is considered to have an important influence on the
functional specificity of probiotics (Ribbera et al., 2013; Luongo
et al., 2017; Wang et al., 2017). A previous report revealed that
although the genomes of A. muciniphila ATCC BAA-835 and A.
muciniphila 139 are highly similar, they contain strain-specific
genes that result in a differing ability to relieve gut inflammation
and restore intestinal flora in chronic colitis (Zhai et al., 2019). It
was also reported that L. kefiranofaciens ZW3 showed a stronger
ability to protect the gut barrier than other investigated strains of
the same species due to the presence of four specific genes (pgm,
ugp, uge and pgi), which were identified to encode enzymes that
regulate carbon flux and in turn affect exopolysaccharides yield,
thus exerting a positive effect on the host gut microbiota (Xing
et al., 2017). Furthermore, a study showed that Bifidobacterium
infantis EVC001 had a remarkable fitness advantage over other
tested strains due to the presence of an H5 gene cluster associated
with the ability to metabolize human milk oligosaccharides and
to colonize the infant gut, resulting in the strain having a
beneficial function in the gut of infants (Duar et al., 2020). We
therefore selected four A. muciniphila strains with relatively
different genetic positions on the phylogenetic tree as the test
strains to evaluate their ability to alleviate UC.

Our results verified that the therapeutic effect of A.
muciniphila strains on UC was strain specific. Among the four
A. muciniphila strains used in the animal study, A. muciniphila
FSDLZ36M5 showed a positive effect on UC symptoms, but the
other tested strains failed to show such effects. Two indicators,
body weight and colon length, were used to determine the
severity of UC. Most previous studies have found increased gut
permeability and a thinner colonic mucus layer in mouse and
human patients with UC, indicating impairment of the gut
barrier that exacerbates UC (Petersson et al., 2011; Dicksved
et al., 2012). A. muciniphila is considered to be a mucin-
degrading bacteria that has the ability to continuously refresh
A B

FIGURE 2 | Effects of A. muciniphila strains on a DSS-induced ulcerative colitis mouse model. (A) Body weight change after 7 days of DSS intake (%). (B) Colon
length after 7 days of DSS intake. **P < 0.01 vs the DSS group, ****P < 0.0001 vs the DSS group. DSS, dextran sulfate sodium. n.s., not significant.
FIGURE 3 | Gut permeability determined by measuring the plasma
concentration of FITC-dextran. ***P < 0.001 vs the DSS group. FITC-dextran,
fluorescein isothiocyanate conjugated dextran; DSS, dextran sulfate sodium.
n.s., not significant.
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and reshape the gut mucus layer, thus improving the integrity of
the gut epithelial barrier and maintaining intestinal homeostasis
(Derrien et al., 2008; Everard et al., 2013). In vivo, we observed a
decreased concentration of FITC-dextran in the blood and
increased MUC2 content in the colon tissue of mice due to A.
muciniphila supplementation, which indicated decreased
permeability and restored gut barrier function, in accordance
with the results of previous reports (Bian et al., 2019).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
Furthermore, several studies have reported that UC may be
linked with an overreaction of the immune system to the gut
microbiota (Wang et al., 2017; Zhang et al., 2017). Hence, the gut
microbial composition of each group in this study was analyzed
to investigate the effect of each strain of A. muciniphila on the gut
microbiome. Our findings revealed an altered gut microbiota in
the mice treated with DSS, with a change in the relative
abundance of specific bacterial taxa. After the administration
A B

D E

C

FIGURE 4 | Effects of A. muciniphila on the expression of inflammatory cytokines and MUC2 in colon tissue. Bar charts represent the colonic cytokine levels of IL-6
(A), IL-10 (B), IL-1b (C), TNF-a (D) and MUC2 (E) in the groups. *P < 0.05 vs the DSS group, **P < 0.01 vs the DSS group, ****P < 0.0001 vs the DSS group. DSS,
dextran sulfate sodium; IL, interleukin; TNF-a, tumor necrosis factor alpha; MUC2, mucin 2. n.s., not significant. ***P < 0.001 vs the DSS group.
A

B

C

FIGURE 5 | The relative abundance analysis of microbiome composition in ulcerative colitis-induced mice. (A) Principal component analysis of the gut microbiota.
Each plot represents one sample. (B) Relative abundance of taxa at the phylum level. (C) Relative abundance of taxa at the genus level.
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FIGURE 6 | LEfSe analysis of gut microbiome composition in ulcerative colitis-induced mice. (A) LEfSe analysis
the A. muciniphila FSDLZ20M4 group. DSS, dextran sulfate sodium.
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of A. muciniphila FSDLZ36M5, we found changes in the fecal
bacteria, such as increased Lactobacillus abundance and
decreased Enterobacteriaceae abundance. Specific species in the
Lactobacillus genus have been found to protect the gut from
inflammatory damage and augment the gut barrier (Simeoli
et al., 2015; Zhang et al., 2018; Li et al., 2020; Panpetch et al.,
2020). Certain Enterobacteriaceae species are enriched in mice
and in human patients with inflammatory bowel disease, and
Escherichia species have also been found in ileal biopsies of
patients with UC (Meng et al., 2018). Notably, augmented
Escherichia abundance may aggravate disease severity by
increasing gut permeability. We observed similar findings. In
previous studies, most of the regulatory effects of A. muciniphila
on UC were mainly found with the type strain ATCC BAA-835,
with some studies showing that gavage of A. muciniphila strain
ATCC BAA-835 effectively ameliorated the adverse effects of
DSS-induced colitis (Bian et al., 2019). However, in our study,
ATCC BAA-835 did not seem to have a significant therapeutic
effect. This result is consistent with that of a previous study by
Kang et al. (2013). We speculate that the number of strains, the
phase of colitis in mice and sex of the mice may influence the
effects of the A. muciniphila strain ATCC BAA-835. In our
experiment, the bacterial dose in the treated groups was 1 × 109
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
CFU/0.2 ml, whereas in previous studies, the dose was 1 × 109

CFU/ml, which may explain the differences in the UC-alleviating
effects in this study (Bian et al., 2019). A previous study also
reported that different doses of probiotics had significantly
different effects on reducing the colonization of Salmonella
enterica serovar Typhimurium in the intestine, with high doses
resulting in a significant decrease in S. enterica serovar
Typhimurium counts in the intestine relative to low doses,
thus protecting gut barrier function (Haghighi et al., 2008).
Further, the pathological characteristics of DSS-induced acute
UC and chronic UC are not the same, so the performance of
bacterial strains in these two models will also be different
(Persě 2012). Moreover, sex of the mouse models has been
revealed to affect the pathogenicity of DSS-induced colitis
(Wagnerova et al., 2017). Due to the different colonization
ability of intestinal microorganisms in the gastrointestinal
tract, their beneficial effects could be affected.

Finally, the potential genetic background of A. muciniphila
isolates can be explained by comparative genomic analysis.
Nineteen strain-specific COG categories were detected in the
strain that showed significant protective effects against colitis (A.
muciniphila FSDLZ36M5) but not in the strain that showed
negative effects (A. muciniphila FSDLZ20M4; Table 1).
A B

FIGURE 7 | Clusters of orthologous groups (COGs) repertoires (A) and carbohydrate-active enzyme (CAZy) families (B) of A. muciniphila FSDLZ36M5 and A.
muciniphila FSDLZ20M4.
TABLE 1 | Strain-specific orthologous groups (COGs) categories of Akkermansia muciniphila FSDLZ36M5 compared to A. muciniphila FSDLZ20M4.

Gene name COG ID Description COG type

metE COG0620 5-methyltetrahydropteroyltriglutamate–homocysteine methyltransferase E
rpsL COG0048 ribosomal protein S12 J
rpmB COG0227 50S ribosomal protein L28 J
arsR ENOG411226U transcriptional regulator ArsR family K
mod COG2189 site-specific DNA-methyltransferase L
cas2 COG3512 cRISPR-associated endoribonuclease Cas2 L
dcm COG0270 DNA (cytosine-5-)-methyltransferase L
csd1 ENOG410ZVNC CRISPR-associated protein, Csd1 family L
cwlK ENOG4111NIG peptidase M15B and M15C DD-carboxypeptidase VanY/endolysin M
cysNC COG2895 sulfate adenylyltransferase P
cysD COG0175 sulfate adenylyltransferase subunit 2 P
cheY COG0784 response regulator T
kdpD COG2205 two-component sensor histidine kinase T
res COG3587 type III restriction endonuclease subunit R V
cpt COG3896 chloramphenicol phosphotransferase V
hsdR COG4096 Type I site-specific restriction-modification system, R (restriction) subunit and related helicases V
secE ENOG410Y6UA preprotein translocase subunit SecE U
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Among these genes, res, cpt, and hsdR have been reported to be
involved in immune defense mechanisms that help bacterial
strains develop self-defense in harsh environments, thus giving
them a colonization advantage (Kholodii et al., 1995; Ferri et al.,
2010; Morash et al., 2010). A previous study found that certain
adverse conditions can induce the expression of several key
stress and resistance genes/proteins in bacteria, including
chloramphenicol phosphotransferase encoded by cpt, which can
help bacteria colonize and develop resistance in adverse ecological
environments (Hassan et al., 2019). It has been reported that the
adaptability of probiotics to environmental conditions in the
gastrointestinal tract is important to their residence time and
survival rate (Saulnier et al., 2011). This property is consistent with
probiotic performance in DSS-induced colitis. The gene metE
detected in A. muciniphila FSDLZ36M5 is responsible for
methionine formation, an essential amino acid that supports
protein synthesis and the regulation of the gut mucosal immune
response and barrier function (Bauchart-Thevret et al., 2009). This
specific gene is also present in Lactobacillus helveticus MTCC
5463, and can protect against oxidative stress induced by
macrophages and prevent intestinal mucosal cell damage (Senan
et al., 2015). In agreement with this finding, supplementation with
A. muciniphila FSDLZ36M5 in this study significantly increased
the MUC2 content and decreased the expression of inflammatory
cytokines compared with the other test strains (P < 0.05,
Figure 4D). Our results suggest that the integration of key
phenotypic and genotypic characteristics of strains may be an
effective method to screen for strains that are adapted to specific
functions that could be clinically exploited. In addition, it has been
reported selective colonization ability of human fecal microbes in
different mouse gut environments.

CONCLUSIONS

Overall, our study confirms that the beneficial effects of A.
muciniphila in DSS-induced UC are strain specific. Among the
four A. muciniphila strains used in the animal study, A.
muciniphila FSDLZ36M5 showed a positive effect on UC
symptoms, but the other tested strains failed to show such
effects. Firstly, on physiological indicators including colon
length and body weight, A. muciniphila FSDLZ36M5 showed
significant improvement compared with those of the untreated
DSS group. Besides, In vivo, we observed a decreased
concentration of FITC-dextran in the blood and increased
MUC2 content in the colon tissue of mice due to A.
muciniphila FSDLZ36M5 supplementation, which indicated
decreased permeability and restored gut barrier function.
Moreover, after treatment with A. muciniphila FSDLZ36M5,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
all cytokine indicators (TNF-a, IL-1b and IL-6) significantly
improved. Furthermore, notably, the gut microbiota of the group
supplemented with the A. muciniphila FSDLZ36M5 strain was
similar to that of the control group. We have added related
contents in the Discussion section. In addition, comparative
genome analysis detected a series of specific genes related to
immune defense mechanisms and methionine transport and
metabolism that have been reported to regulate the mucosal
immune response and protect the intestinal epithelial barrier,
and thus play a positive role in alleviating UC.
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