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1. An introduction to artificial intelligence and machine
learning in healthcare

With the advancement of modern civilization, the need for improved basic amenities is

bound to increase dramatically. Healthcare facilities are no exception. In the present sce-

nario, when theworld is ground to a halt by a pandemic of biblical proportions, the health-

care sector has come under pressure that has never been seen before. The sheer number of

cases and patients that we are dealing with today has thrown an altogether new light on

the necessity of new and improved medical practices and innovations that need to be

made. Needless to say, medical practitioners, physicians, and all other healthcare sector

employees are in dire need of all the help that can be mustered—human or artificial.

Artificial Intelligence, or AI, has revolutionized all the fields that it has touched. In gen-

eral terms, AI can be defined as the simulation or modeling of intelligent, or even sentient

behavior in a nonnatural entity (a machine), with negligible or minimal human interven-

tion. It has the capacity to analyze complicated data, establish or deduce relationships

between numerous variables in a given data set, and even predict the future course of

the same. “Machine Learning” (ML), or “Deep Learning,” is nothing but the virtual coun-

terpart of AI. It can be represented by mathematical algorithms which can “learn” to

behave (or analyze and predict) when put in a training environment. The training is done

as the algorithm “experiences” a given data set. Naturally, this feature of an AI-based sys-

tem can be put into a diverse array of fascinating implementations in the field ofmedicine,

where it can be pivotal in revolutionizing diagnosis, prognosis, and treatment, and can

even be used to predict the odds of achieving success in individual cases. Thus, AI can
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enhance the credibility of a diagnosis, reinforcing therapeutic decisions, enabling patient

self-management and appropriate clinical interventions, and even predicting outcomes,

which will in turn increase the overall efficiency of the treatment provided.

At present, the application of Machine Learning models in the processing of biomed-

ical data, and for the development of predictive models, is rapidly gaining momentum.

With the recent breakthroughs in the fields of healthcare and information technology, a

convergence, which essentially redefines the relationships between the patients, doctors,

and pharmaceutical firms, has been set into motion. As more and more researchers look

toward big data for new breakthroughs in biomedical research, Machine Learning models

are being explored extensively. Big data in biomedical research solely aims at the realiza-

tion of the dreams of customizable, personalized healthcare tailored for the unique

requirements of each patient, which will dramatically revolutionize healthcare services.

The applications that these algorithms can be put to use may range from completely

autonomous ones like diagnosis to nonautonomous assistive functions like the prediction

of mortality in patients, so as to efficiently reallocate resources [1].

AI and Machine Learning based systems can prove to be instrumental in procuring,

analyzing, and solving complex clinical problems with ease. AI and ML-based algorithms

can be used to collect and analyze data from various other valuable sources like wearable

gadgets, implants, and other forms of data from electronic health records. There aremany

examples of the successful use of AI andMachine Learning in the field of biomedicine, and

many companies and start-ups are actively involved in the development ofML-based per-

sonal healthcare systems [2]. AI-based systems have recently been used to discover new

therapeutic targets using self-driven protein–protein interaction algorithms [3], in the

diagnosis of lung cancer tissue [4], for diagnosis and treatment in the field of neurology

[5], and even in the field of surgery as early as in the year 1976 [6]. Furthermore,

AI-based monitoring systems for medical conditions like diabetes are being approved

by authorities like the US Food and Drug Administration (USFDA) [7].

1.1 Types of machine learning algorithms

All biomedical detection algorithms are fundamentally directed to extract biomarkers so

as to form feature vectors, and then interpret them using a set of attributes called

“classifiers.” On the basis of the type of learning pattern used by an algorithm, Machine

Learning algorithms are of various types [8], which are as follows:

1. Unsupervised algorithms, which can find patterns among the recurring data sets.

They are providedwith both inputs and outputs at the time of training, and they “learn”

by adjusting the weights of the inputs to match the output of the algorithm with the

training output fed to the algorithm.

2. Supervised algorithms, which aremainly concernedwith the classification of data and

predicting trends based on previous examples encountered. In the training of these

algorithms, only input data is fed. The algorithm develops its own answers using
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techniques like clustering of input data, and using the same for the prediction of

underlying trends.

3. Semi-supervised algorithms, wherein the training data is a mixture of both labeled

and unlabeled data sets. The algorithm uses the labeled data sets to correct itself, while

also learning the trends from the unlabeled data.

4. Reinforcement learning algorithms, which need to be “taught” to behave in a desired

manner using a series of positive or negative feedback, without recommending any

improvements for the incorrect results.

5. Evolutionary learning algorithms, whichmimic the biological evolution by constantly

learning and “evolving” as per the trends of the data that is fed to them. These

algorithms, however, are more susceptible to biases and require regular checking.

6. Deep learning algorithms, which rely on a higher level of data abstraction and a

comparatively larger number of analytical layers for their learning and improvement

methods.

Fig. 1 shows the various kinds of ML algorithms. All of these algorithms require training

prior to being implemented, and to implement them in actual clinical conditions, actual

clinical data is required. This comes up as one of the prime hurdles in the development of

these technologies and has been discussed further in the chapter. There aremany popular

models that are developed based on these types of algorithms, among which, Artificial

Neural Networks (ANN), Fuzzy logic models, and Hybrid (also known as “Ensemble”)

models [9] (which are combinations of more than one type of algorithms) are the most

popular.
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FIG. 1 Different types of machine learning algorithms.
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ANNs are probably the most popular ML-based systems that are currently being used

in biomedicine. They consist of a complex network of highly interconnected processing

units, or “neurons,” that are able to process large amounts of complex data in parallel,

or synergistically. Thus, ANNs can safely be considered to be puny replicas of a living

brain, which can inherently analyze nonlinear data sets by reweighing and readjusting

them, gaining a learning experience in the process. ANNs can be applied to almost all

fields in biomedicine, including interpretation of data, analysis of images and waveforms,

and even clinical prognosis and diagnosis, with fairly high accuracy and sensitivity. This

has been explored in multiple studies, revealing various degrees of success in different

cases [10,11]. In some cases, ANN models have even been known to surpass consultant

surgeons in terms of prognosis [12]. Fig. 2 illustrates a schematic representation of an Arti-

ficial Neural Network.

Fuzzy logic based systems are a little more complex in their working, as they are

grounded in the fact that “nothing is an absolute certainty.” Unlike conventional binary

systems that discriminate completely between “true” and “false,” fuzzy logic works with

intermediates, thus yielding more accurate results. Since there is an inherent heterogene-

ity in biomedical data, fuzzy logic is more suitable for medical applications. Fuzzy logic

based systems have been known to work better with tumor marker profiles, resulting in

accurate deductions and even predicting the chances of survival of patients [13]. Some

algorithms have even been put to actual use for the administration of vasodilators and

anesthetics in pre-surgical settings [14].

Some models are known to perform better in particular cases as compared to others.

This, however, does not necessarily imply that a model is inferior [9]. All models, irrespec-

tive of build and functioning, follow a basic order of fundamental steps for their
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FIG. 2 Schematic representation of an artificial neural network.
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functioning. These steps aremeant to be followed in the training phase as well as the func-

tional phase, and have been described as follows:

1. Collection of input data: This step involves the use of various sensors (like infrared

sensors, pulse meters, oxymeters, etc.) and input devices (cameras, etc.) for the

collection of desired input data, which is to be analyzed by the algorithm. This is a

crucial step, as any errors in collection may lead to inaccurate outputs. This is the

reason why a higher sensitivity is desirable.

2. Preprocessing, enhancement, and quality check: The collected data is subjected to

preprocessing so as to enhance the quality. It is at this stage that improvizations are

made for missing values; if possible, otherwise the data is rejected. Preprocessing is

important for improving the quality of the data, so that feature selection can be

correctly done.

3. Extraction of features: Various algorithms (for example, the genetic algorithm, logistic

regression, etc.) are used at this stage for the selection of relevant attributes, or

“features,” for the diagnosis of the condition. In the training phase, this is when the

classifiers are constructed, and the model “learns” to look for a specific data trend

within the input values and constructs a database of information that will be used in

the functioning phase. In the functional stage, however, this is the point where the

model actually triangulates the attributes necessary for diagnosis.

4. Classification of data set using selected features: The data set is now classified after

the analysis of various criteria pertaining to the selected features. In this case, the data

setmay be classified into “healthy” or “diseased” categories, whichmay vary according

to the particular case.

5. Generation of results: The analyzed data is now displayed as a well-generated result,

which can be used to assess the situation further. In cases like prediction ofmortality or

the suggestion of prognosis, the results may not be absolute, but an elaborate

description of the same.

These steps may vary in different cases, for different models and purposes. However, the

fundamental flow of data remains the same. Figs. 3 and 4 illustrate the training and func-

tioning of a generic ML-based model schematically.

The training of an Artificial Neural Network is based on the adjustment and readjust-

ment of the “weights” of multiple input parameters and then comparing with a “global

solution” (which is a theoretical output with the minimum errors or deviation from the

actual output). This does not happen in a single run, which is why the phenomenon of

“backpropagation” occurs. In backpropagation, the errors in the output are communi-

cated in the reverse direction across the network, such that the weights are readjusted.

The process is repeated till the global solution is achieved. This is very much like the

tuning of a guitar, where the strings serve as input, the prongs as weights, and tightening

or loosening these prongs is comparable to readjustment of weights. The value of the

weights associated with a certain input value is a key factor in determining the strength

of the connection between successive neurons in the respective neural pathway [15].
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FIG. 3 Schematic representation of the steps involved in the training and validation of an ML model.
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The rate at which the current processed solution of a model proceeds toward the global

solution is called the “learning rate” of the model. Models with higher learning rates obvi-

ously train faster. However, it must be kept in mind that models with higher learning rates

may prove to be problematic in the case of constantly learning algorithms, because they

are more prone to biases as they learn the trends much faster.

It is needless to say that the complexity of Artificial Neural Networks is in no way com-

parable to that of the brain. However, a larger number of neurons and layers result in a
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higher resolution of weight readjustment. This in turnmeans that the precision of an ANN

is enhanced with an increase in the number of layers. Nevertheless, the number of neu-

rons and layers is majorly dependent on the complexity of the data being analyzed. There-

fore, it is imperative that an optimum number of neurons and layers be determined for a

complex operation [15].
2. Challenges and roadblocks to be addressed

In today’s scenario, healthcare services must not be centered on the traditional interac-

tions between the patients and the caregivers alone. In addition, large organizations

and cycles must also be included. Therefore, it is only natural to desire a system that

evolves constantly, learning from its own previous experiences, applying the same so as

to regularly improve the overall process. Not only this, the systemmust record the dynam-

ics of each and every patient, analyzing the effects of the treatments and medications

administered [16].

Thus, it can be said that ML-based systems fulfill all the prerequisites for being the

ideal upgrade to biomedical research. ML-based systems certainly show promise of high

accuracy and viability owing to the recent availability of biomedical data. However, there

are a lot of issues that need to be addressed before the full potential of this technology

can be harnessed. It goes unsaid that the basic ethical concerns that apply to other con-

ventional clinical practices and biomedical research also apply to these techniques by

extension [17]. Other issuesmay not be apparent to the researchers at first, butmay arise

later in the working of these models, making them even more difficult to eradicate. Fur-

thermore, there are some unique ethical issues that are raised in the wake of the devel-

opment of this technology [18–20], which have also been described in the forthcoming

sections.

The absence of a systematic approach for examining the development of these algo-

rithms makes the realization of these challenges a difficult task. Nevertheless, attempts

have been made to extensively follow the course of proceeding, and the challenges

encountered are described as follows:

2.1 Unreliability

As far as the potential of this technology is concerned, Machine Learning based tools are

immensely promising additions to biomedical research. Artificial Neural Networks largely

rely on the “layering” of their neurons for their computational capacity, learning, and

decision-making skills. However, the same layering also makes them rather obscure

and unclear for the investigators to understand. It is because of this reason, among others,

that the full utility of this technology in actual clinical scenarios has been validated only to

a limited extent [21]. There is already a prevalent trend of mistrust, owing to a growing

preoccupation with medication and side effects among the patients, who have the full

resources of the Internet at their beck and call, but lack a complete insight into the clinical

practices.



232 Predictive Modeling in Biomedical Data Mining and Analysis
Due to this obscurity surrounding this technology, it is often jestingly compared to

“black magic” by some authors, who also say that it needs a lot of contradictory factors

in harmony so as to function properly [22]. In the absence of the aforementioned har-

mony, there are increased chances of algorithms becoming prone to yielding false and

even useless results when processing actual biomedical data. It is completely possible that

the same algorithms may perform completely well with training data sets, a reason why

such errors may often be overlooked, earning the “black box” reputation [23].

2.2 Choice of attributes and overfitting

It is a fact that biomedical engineering analyses involve a rather small population of sub-

jects. Furthermore, the parameters that can be used to analyze these subjects are numer-

ous. An algorithm processes data by developing a “classifier,” which is a set of parameters

used to judge a data set and classify them. These classifiers are created by the algorithm in

the training phasewhen the data set provided shows a predefined number of “events” (sick

patients, in this case) that are to be recorded as “healthy” or “afflicted.” The classifiers

hence produced are then used by the algorithm for the functions it is meant for, like diag-

nosis and prediction. Also, some studies have revealed that in order to obtain an accept-

able predictive value from a classifier, at least 10 or more data points are required to

adequately calibrate it to the desired resolution while in the training phase [24].

Given all these conditions, one may feel tempted to assign a large number of polyno-

mials relative to the number of data points to be analyzed. This leads to the condition of

“overfitting,” due towhich the classifier would start learning the data, instead of capturing

the underlying trends that actually define the event as “healthy” or “afflicted.” Overfitting

is often the most common reason behind the loss of predictive value of most diagnostic

algorithms as shown in Fig. 5.

One of the primary reasons for overfitting is the use of training data sets with a small

number of samples. Because the sample count being very low as compared to the number

of attributes, high dimensionality and other characteristics prove to be suicidal to the

model, triggering overfitting [25]. It has been observed that the accuracy of predictive

models may show dramatic variations during the validation and functioning phases, sim-

ply because the number of samples is below a critical threshold. Furthermore, going over-

board with the sample count may increase the risk of biases along with overfitting [21]. In

order to prevent overfitting, it is imperative that the parameters/polynomials being used

are minimum relative to the data, and must obviously be relevant to the data being ana-

lyzed so as to capture the information to the fullest of their capacity. New methods to

counter overfitting are being developed [26].

2.3 Circularity and insufficient validation

In order to gain the maximum predictive value from an algorithm, it is important that the

pre-trained system is adequately validated by exposing it to a “test” data set. There are

various techniques by which the validation of an algorithm can be conducted, like the

hold-out method or the leave-one-out method. There are some techniques that merge
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FIG. 5 Graphical representation of the decline in accuracy of a machine learning model due to overfitting.
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the training and validation in the same step [27]. Since the basic, untrained ML-based

algorithms are commercially available, it is rather easy for many investigators to apply

and demonstrate their results by direct training and validation.

It must be ensured that the test set is completely independent of the data that is used in

training, failing which the validation will be “circular,” as the algorithm is bound to per-

form well due to correlation between input data and the training data. Such validation is

useless, leading to overly optimistic results. Most untrained researchers fail to pay suffi-

cient attention to this aspect, leading to apparently “formidable” systems which, in reality,

have inferior diagnostic or predictive values and are not credible or even usable [21].

It must be noted that biomedical data is not exactly black and white, as stated previ-

ously. This means that the diagnoses cannot be labeled definitively as correct or incorrect

with respect to the data that is ideally considered to be the “Gold Standard” [28]. In this

regard, the designer has to manage certain trade-offs so as to ensure accuracy. Further-

more, validation must be tailored to include not only standard data obtained from rigor-

ous research in ideal conditions but also the data collected from general patient

populations and actual clinical scenarios [17].

2.4 Data leakage

When known information or facts are used as unknown data, it leads to a condition called

“data leakage” [29]. Data leakage may lead to overoptimistic performance of the



234 Predictive Modeling in Biomedical Data Mining and Analysis
algorithms. Leakage may be outcome leakage, in which case the variables in the training

set may include elements that can lead to direct outcomes. It may also be at the validation

stage, wherein definitive data or “ground truths” used for validation of the algorithmmay

lead to apparently high-value results, which turn out to be not that well when applied to

actual scenarios.

2.5 Lack of transparency

The conception of this technology has a direct impact on multiple parties, including the

patients, doctors, pharmaceutical companies, computer scientists, engineers, entrepre-

neurs, and even the regulatory bodies concerned with the proper dispensing of healthcare

services.Withsomanybeneficiaries involved, the technologymustbecompletely transpar-

entandunderstandable tooneandall.However, the“blackbox” likeattributes [23], asmen-

tioned previously, make these algorithms rather inscrutable to the clinicians, investors,

patients, and sometimes even the investigators who developed them first-hand [17]. The

obscurity in turn gives rise to doubts as to whether or not the algorithms will achieve the

goals they are intended to achieve. This being the case, it becomes difficult for the stake-

holders todecide if theywant to throw in their support behind these algorithms.Therehave

been ample evidence of ANN-based systemsundergoing “catastrophic failures” and biases

due to insufficient transparency [30]. Such non-explainable, autonomous, biased systems

can pose a risk to the patients, raising the question about the accountability of the threat. It

is thus very important to clearly state the extent of autonomy that an algorithm has in the

very initial stages of development.

In order to overcome such issues, itmust be ensured that the algorithms be auditable at

all stages, keeping in mind the protection of the intellectual property of the researchers

involved. The application must be very easy to dismantle, so that the working of the indi-

vidual components may be understood with ease, and the results should be explainable,

the architecture inspired from cognitive decision-making, and grounded in clinical evi-

dence [17]. This will also yield the added advantage of easy debugging and fail-proofing

of the algorithm.

2.6 Occurrence of Bias and distributional shifts

It has often been experienced in the course of the development of many algorithms that

while in training, an algorithm may show a proclivity toward capturing certain trends

related to the training data (like the age, sex, ethnicity, or medical history of a patient),

which may or may not be directly relevant to the medical condition being diagnosed.

The capturing of such irrelevant trends may lead to a perpetual bias in the diagnosis,

which may even go unnoticed in the training and validation phases [31]. This tendency

is heightened in algorithms with higher learning rates, as they are quick at learning,

and may easily learn a wrong trend. The data used in training may sometimes not be

diverse enough to cover different scenarios that the algorithmmay encounter in an actual

clinical scenario. Also, data differs from person to person, varying with age, health status,
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or other factors. Furthermore, training data may be erroneous, noisy, or even incomplete,

which further decreases the functionality and accuracy of the system. This can result in

various inaccuracies, erroneous results, and even rather unpleasant occurrences of racial

discrimination in the diagnosis of some cases [32].

It has been observed that the training of a system with clinical data alone may result in

the perpetuation of such biases along with sub-optimal clinical practices, which defeats

the purpose of enhancing the healthcare services provided. On the contrary, training of the

algorithm solely with “ideal” research data results in a lack of valuable clinical insight and

relevance, which is yet again counterproductive [33].

Biases may also occur due to the algorithm learning new trends when exposed to new

clinical data that is different from the data sets encountered in the training and validation

phases. It is thus very necessary to clarify whether an algorithm is “locked” (which means

that it stops learning after the training and validation phases) or “constantly learning”

(which means that the system continuously learns from the data that it encounters) in

nature. Continuously learning systems, especially those with higher learning rates, are

prone to a phenomenon called “distributional shift.” In this phenomenon, the algorithm

learns the new trends according to the data that it encounters in clinical scenarios, result-

ing in a change in decision-making trends [34]. Distributional shifts may arise due to a

certain class of data outnumbering the other, hence resulting in the “underlearning” of

data trends that are less numerous. Thismay lead to the algorithms performing apparently

well, but yielding erroneous results when data of minority type is encountered.

Also, the evaluation of the efficacy, safety, and equity of continuously learning algo-

rithms is more tedious as compared to that of locked algorithms. In order to prevent loss

of accuracy due to distributional shifts, periodic re-evaluation of accuracy is necessary, so

that the benefits may be improved while simultaneously decreasing the harms. It must

also be noted that biased data is completely natural, and in no way incorrect. However,

its effect on the algorithm being trained is rather undesirable, and efforts must be taken

to analyze data, followed by semi-supervised learning (using many unlabeled samples

mixed with a few labeled samples for training) [35], so that biases are minimized.

Biasing of data may also occur due to training data or functions being different from

the target data, and due to difference in the sensors or environments, which may or may

not occur due to changes in trends as the algorithm learns. This can be removed by peri-

odic re-evaluation and updates [36].
2.7 Data outsourcing and breach of privacy

For the training, validation, and overall development of a functional algorithm with

acceptable sensitivity, accuracy, and a significantly high predictive value, voluminous

quantities of original biomedical data are required. This data can be collected from var-

ious sources like live clinical sources, medical records of patients, electronic health

records, various devices like smartphones and health-tracking wearable devices, IoT sen-

sors, web-based information, and even social media [37]. As of now, medical records are
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comparable to silos of wasted biomedical information, which cannot be adequately

sourced due to various shortcomings in record-keeping [16]. Furthermore, a single spec-

imen biomedical data can be as large as a few gigabytes, and is equally complex.

As of July 2020, there are about 7.8 billion people in the world, and out of them a large

number of people do not have access to basic healthcare amenities. Since the health con-

ditions, against which these algorithms are being developed, are quite rare, there is a

shortage of good quality biomedical data for training. Furthermore, it is very common that

the data collected may turn out to be incomplete due to improper handling or collection.

A way of dealing with this missing data is excluding it from the training set (which is

generally done if the reassembly is too tedious or expensive), but this can result in loss

of precious data, which is already less.

The data needed must be captured in real time so as to ensure maximum efficiency.

However, this extensive sourcing of data also involves some methods that may lie in

the ethical gray areas related to data privacy and ownership [38], and may even be con-

troversial, dwindling the boundaries of patient privacy and legal complexity. Issues related

to stealing of data have recently been highlighted, adding to the vulnerability of biomed-

ical data. In order to counter this,measures like differential privacy are beingworked upon

to yield detailed and informative results, without risking any breach in privacy [39].

Apart from these issues, there is a certain absence of computational infrastructure

which is essential for the generation, maintenance, transfer, and analysis of large-scale

biomedical data. The integration of these clinical data sets with other standard medical

databases thus becomes a daunting task. Furthermore, issues related to the handling, stor-

age, transfer, and security of data need to be addressed, and are not currently being paid

the requisite attention by most investigators [40]. Certain groups have even proposed

more reliable and secure healthcare information systems using a combination of various

tools like masking encryption, granular access control, and end-point validation, among

others [41]. Many novel applications are nowadays being developed to use cloud comput-

ing and big data based functional architectures [42].

Another challenge that hinders the efficient collection of data from IoT-based systems

and wearable gadgets is the energy constraint. Despite IoT-based systems now being an

integral part of personalized healthcare, the complexity and sensitive nature of clinical

and lifestyle-related biomedical data simply cannot be ignored. This inherent complexity

and sensitivity of biomedical data makes detection too computationally intensive, which

means that energy constraints can turn out to be a limiting factor, which must be consid-

ered for efficient collection of real-time data [43]. The use of polynomial kernels has been

explored by some groups as an alternative for low-energy collection and processing of bio-

medical data [44].
2.8 Other data-related challenges

Biomedical data is highly dimensional, heterogeneous, ambiguous, and sometimes

incomplete. It may additionally be noisy, contaminated with artifacts, which altogether
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gives rise to various complex issues [25,42,45]. In order to reduce noise and artifact con-

tamination of data, novel acquisition tools and techniques like PCA and ICA have been

used extensively [46]. Apart from these issues, there are still many diseases for which

we do not have adequate information, and still need to be worked upon. Some diseases

continually progress with time in a nondeterministic manner, due to which their attri-

butes keep changing [23]. Currently available ML-based algorithms are not exactly

equipped to evolve their diagnosis with these trends, and more novel solutions need to

be developed to counter the same. Some investigators have suggested that upgrades in

memory and attention mechanisms [47] are the next step in dealing with such time-

dependent cases. For diseases where adequate knowledge is lacking, clinical expertise

needs to be harnessed, so that expert knowledge may be incorporated into the learning

mechanism of the models [23]. Complex data can be processed by adding as many attri-

butes to the classifier as possible, without causing overfitting. Also, stacking of parallel

processing units is known to increase the efficiency of the prediction system.
2.9 Accountability and responsibility

When investigators and stakeholders promote an algorithm for use in the actual bio-

medical scenario, it is expected that the system performs according to the cardinal fea-

tures of safety, efficacy, and equity [17]. Even if the ML-based systems are made to yield

superior results by eradicating all the issues, the results can never be perfect, and some

or the other mistakes are bound to happen. In case of such an event, machine errors may

be judgedmore severely as compared to the case when the same errors are committed by

a human employee [48]. However, it must be remembered that the algorithm is a prog-

eny of human thought, which also raises the ethical question of accountability—who is

to be blamed in the event of an error, and how can the flaw be rectified? Furthermore, the

decisions made by a human involve factors like instinct and emotion, which can yet not

be simulated in an AI entity or amachine [37]. If these issues arise beyond a certain limit,

the functionality of the algorithm can be compromised despite all efforts of debugging

and validation.

It is due to all these challenges and issues that ML-based biomedical research and clin-

ical practices are still not able to achieve their full potential. Some researchers have sug-

gested that these challenges can be dealt with the help of the same tools that created

them—ML-based algorithms for the elucidation and investigation of the results [36],

which can produce a rationale for the predictions. Logical errors like confounding vari-

ables and causality also need to be addressed, so that the difference between the perfor-

mances in the training and application phases can be reduced. It goes unsaid that the

resolving of these issues will give rise to new challenges as well, which shows that the

improvements and upgrades that are to bemade are actually a constant work-in-progress.

However, wemust not forget that despite all the issues and hurdles in the realization of this

technology, the advantages certainly outweigh the issues. This surely is the reason that

makes it all worth the effort.
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3. The need to address these issues

In order to overcome the issues faced by this technology in the current scenario, it is

important to gain an understanding of the need for this technology, and the advantages

that it has to offer. Machine Learning based biomedical tools are aimed toward the devel-

opment and enhancement of biomedical services, which primarily involves clinical diag-

nostic algorithms and prediction algorithms, but there are also some other biomedical

applications of supreme importance. Themain reasons as towhy we need this technology

have been enlisted as follows:

• Machine Learning and deep learning models are the closest that we have gotten to

autonomous decision-making by machines. This can prove to be of great assistance to

the medical personnel and research investigators, they will increase work efficiency

and improve quality of the services provided.

• Biomedical data is extremely complex and requires skilled personnel to process it, as in

the case of clinical diagnosis [13]. In some cases like genetic data, data is almost

impossible to process manually and requires complicated tools [36]. AI-based systems

can not only be made to use these tools with ease but also yield more accurate and

precise results that may sometimes even surpass those produced manually.

• ML-based algorithms, when used in synchrony with various sensors, smartphones,

and health-monitoring devices, can be used for the development of fully customizable

personal healthcare systems that can greatly simplify and improve healthcare

practices [44].

• Well-calibrated prediction algorithms are essential for the efficient reallocation of

resources. This is a crucial advantage as it ascertains the best use of resources, and the

algorithms are improving by the day tomake evenmore precise predictions. Predictive

algorithms have great potential in both research [49] as well as clinical scenarios [50].

Given the advantages that ML-based systems have to offer, it would truly be a loss if we do

not even attempt to rectify these issues. ML and deep learning algorithms are promising

advancements in biomedical research, and attempts are already being made to improve

them.
4. Recommendations and guidelines for the improvement
of ML-based algorithms

Now that we have an understanding of the various challenges that are faced by AI- and

ML-based algorithms, all that remains is to figure out definitive ways to remediate them.

It must be understood that the task at hand is not a trivial one, and the altogether

sensitivity and efficiency of the system has to be improved keeping in mind its relevance

with respect to the patients it is meant to benefit. Needless to say, it is easier to nip these

evils in the bud than to deal with them when they appear in the later stages when the
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systems are actually supposed to work properly [21]. Extensive research have been con-

ducted toward the said aim, and there has been a general agreement among experts as to

the goals of the technology, along with the major hurdles and the ways to overcome

them [22].

In addition to Machine Learning based models, deep learning methods are being used

in combination with traditionalMachine Learning systems for added efficiency [23]. Deep

learning models can integrate complex heterogeneous data and process it with a great

degree of success, owing to their hierarchical learning structure [23], and can greatly rev-

olutionize biomedicine. Furthermore, the recent advancements that have been made in

the development of low-cost, small computing devices and sensors mean that the various

energy and sensitivity-related issues arising in smart wearable devices, health monitoring

gadgets, and smartphones can be dealt with [37]. Some studies have already demonstrated

the viability of kernel-energy trade-offs in wearable devices, furthering the cause of

energy-efficient data collection even more [44].

It is safe to assume that if these recommendations are followed, it will result in an

improvement in the application of ML-based systems in actual biomedical scenarios.

However, attention must be paid to the need of constant improvements, so as to ensure

the best application of the algorithms and predictive systems, which requires novel and

innovative measures. Some of the possible improvements have been described as follows:

4.1 Improvements related to data quality and quantity

Themany data-related issues like low availability, lack of complete and balanced data, etc.

are the main impediments in the training and validation of classifiers in almost all

ML-based models and prediction algorithms. Since the data mining algorithms first need

to procure the most relevant, effective, and robust attributes from the data available [23],

issues with data quality and quantity cripple many algorithms in the most initial stages.

Furthermore, lack of adequacy in correctly reporting data sources results in results that are

hard to interpret [22].

Distributed human intelligence has been shown to be a rather simple and efficient

solution for the low availability of data, with sufficiently comparable levels of accuracy

[51]. This is done by tasking untrained, random individuals with the labeling and prepro-

cessing of medical images that may otherwise require attention from skilled personnel,

thus reducing their burden.

The use of ensemble methods and learning tools, which are a combination of more

than one type of learning algorithm and data collection system, is now gaining momen-

tum as an effective solution to imbalanced data [52]. Also, some studies have suggested

the use of intuitive sampling techniques (like random undersampling, etc.), but they

are not as efficient as other solutions and may lead to multiple new complications [25].

Other solutions, like cost-sensitive learning methods, have been shown to be rather supe-

rior when compared with such methods [53]. The generation of synthetic data has also

been helpful in augmenting scarce data resources [54].
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To tackle the issue of missing values, some have suggested the use of various common

approaches like deletion of records or variables andmean/median/mode imputation [55]

along with nearest k-neighbor imputation. Also, multiple imputation method has been

shown to be an effective solution to reduce data-related bias in various fields of biomed-

ical research [56]. Already, novel tools have been used in some biomolecular [57] and ana-

tomical studies [58].

4.2 Data security enhancements

With the type and complexity of data involved in the operation of these systems, issues

related to data handling, security, and privacy are bound to arise. However, the potential

of various solutions is now being explored. Cloud computing has emerged to be the only

model that allows the flexibility required in handling such sensitive data. It is the only

technology that shows a potential rate of technological advancement to be greater than

Moore’s law, which is a limiting factor in many such cases [59]. In addition to this, the

greatest benefit that entails with this system is the broad platform that it has to offer,

which can be used for the development of new tools, sharing data, etc. Systems involving

a combination of various techniques like activity monitoring, masking encryption,

end-point validation, etc. have already been recommended as viable models for ensuring

security and privacy of data [41]. There are certain corporate firms that are commercially

offering such solutions for biomedical research purposes.

4.3 Calibration and eradication of biases

It is imperative that the developers and investigators try and incorporate the experts of the

relevant field, so as to counter the lack of understanding related to the diseases that are to

be investigated. Due to the temporality of the disease, care must also be taken that the

attributes selected are relevant and as constant as they can be. Also, since only a limited

number of attributes can be selected for building a classifier (so that overfitting can be

prevented), various other training approaches like decision trees and weight elimination

can be used [60]. It is also important that the entire process of building a classifier is taken

seriously, as an integral part of the experiment [21].

Some experts also believe that once the presence and nature of biases in an algorithm

have been identified and confirmed, ML-based algorithms can be used cyclically to iden-

tify and correct those biases without introducing any human biases, thus increasing

“algorithmic fairness” [61]. However, this approach may not go as planned in case the

assumptions considered initially are wrong, which will increase the risk of introducing

evenmore biases in the algorithm instead of eradicating the ones that were previously pre-

sent. Semi-supervised learning has instead been suggested as a promising approach in the

prevention of biases in these systems. Also, periodic checks in continuously learning algo-

rithmsmust be conducted regularly, so as to timely prevent the perpetuation of biases that

may be introduced in the later functional phases [17].
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4.4 Improving transportability

The problems related to the transportability of a diagnostic or predictive model, and the

reproducibility of results, are supposedly the simplest to deal with. Care must be taken

that the detailing of the types and exact model specifications of the various sensors

and equipment used in the training and validation of the system are reported with accu-

racy. This can easily help avoid the errors whichmay arise due to difference inmodels and

sensor specifications, and the subsequent differences in the work efficiency. After all, a

newly developed and supposedly accurate model is effectively useless if it cannot be used

by others [21]. Specifying these details can also help prospective operators tune the algo-

rithm as per the availability of devices and sensors that are accessible to them.

4.5 Suggestions regarding ethical aspects

As is common knowledge, the technologies and systems in question have a significant

impact on multiple parties, including the patients, the medical personnel, the investors,

andeven theauthoritiesconcernedwithensuringproperhealthcareservices.Thus, theeth-

ical aspects of the technologies need to be improved upon. There are a lot of conceptual

frameworks that have come up for the investigation of the ethical aspects of upcoming

novel technologies, and also for estimating the values that are inherent in various designing

approaches [62]. All these systemsmainly identify theprime considerationsout of adiverse

and all-encompassing assortment of possibilities, leaving out the exceptions, but simulta-

neously leaving space for novel exceptional considerations to be discovered.

In order to analyze every ethical aspect of the system being developed and the impacts

that it will have, it is important to have a complete and context-specific understanding.

Thus, the investigation essentially has to be interdisciplinary, so that expertise from all

the involved fields is put into the development and of the approach [17]. This would

not only increase the transparency and trustworthiness but also aid us to better under-

stand the obscurities of the techniques. At present, the need of the hour is to effectively

“dismantle the black box,” aiding further improvements in not only ethical but also other

aspects.

It is also important that “scouting” or exploratory investigations with inadequate val-

idations must be avoided. The investigators and developers must clearly state the purpose

of their research, so that there is no ambiguity in the functionality of the algorithms. In

case of predictive models in general, and for those meant to be used in medical scenarios

in particular, the algorithm must be sufficiently grounded in research and backed by

ample analysis, so that the predictive value obtained is the maximum.
5. Applications in the present scenarios

With such immense potential, and in full awareness of the challenges and roadblocks in

the current state of the technology, the application of ML-based models in various



242 Predictive Modeling in Biomedical Data Mining and Analysis
scenarios relevant to diagnosis and healthcare services has been worked upon extensively,

putting this technology to good use. Various techniques like spectroscopy, thermography,

and even common ones like videography are being coupled with a diverse range of algo-

rithms to make formidable ML models that are being put to use to enhance healthcare

services. A few interesting examples have been briefly discussed herein.

A study performed by El-Daw et al. showed the use ofML techniques in the diagnosis of

degenerative spondylolisthesis using photographic parameters like the shape of the pelvis

and lumbar region [63]. This was based on various previous works, which showed that

ML-based techniques can prove to be of use in describing posture-related anomalies

and other relevant diagnoses [64,65]. They used the SMOTE (Synthetic Minority Over-

sampling Technique) algorithm in this case, which showed a significant increase in accu-

racy, as compared to that recorded in traditional techniques [66]. Another group used a

Hopfield Neural Network model with retinal images as diagnostic input for the detection

of diabetic retinopathy [67]. Their model showed an accuracy of 99.25%, along with a

specificity index of 0.99, which is higher than most conventional methods used for the

same. Image inputs have also been used with Recurrent Convolutional Neural Network

(RCNN)models to diagnose various gastrointestinal conditions with a fairly high accuracy

of 99.13% [68]. Fig. 6 shows the detection of gastrointestinal ulcers using segmentation-

basedMLmodel. Various other studies have shown image input based models to be a via-

ble addition to ease clinical diagnosis [69–71].
Infrared Thermography, which is a common technique used in the diagnosis of numer-

ous medical conditions, is also being used to develop accurate testing models using

ML-based systems. A rather detailed study showed that 68 such models are already being

used for the diagnosis of various conditions like cancers, burns, diabetes, schizophrenia,

and even the state of drunkenness, with varying degrees of sensitivity and accuracy [72].

Some studies, like the ones led by Schaefer et al. [73] and Hernandez-Contreras et al. [74],

demonstrated significantly high levels of sensitivity and specificity.

Another study led by Banerjee et al. showed a detailed analysis of various ML-based

models for risk prediction in heart failure, acute coronary syndromes, and atrial fibrilla-

tion [75], based on the abundance of previous research [76–78]. However, it was observed

that most studies were geographically limited, andmany of them had limitations in devel-

opment due to a lack of standardization and definitive guidelines. This also reveals a

shortage of routinely usable ML-based models for the management of cardiovascular

diseases.

A certain study byFan et al. [79] shows the comparison of six differentML-basedmodels

that are used in the diagnosis or prediction of Carotid Atherosclerosis by combining elec-

tronic health record data, like ultrasonography [80], with ML algorithms like Logistic

Regression, RandomForest, DecisionTrees, etc. The analysis revealed that Logistic Regres-

sion showed the highest predictive ability, which was also verified by tenfold cross-

validation,whereas decision trees showed thepoorest predictive performance. Tobe exact,

Logistic Regression algorithm showed a predictive accuracy of 74.7%, which was found to

be higher than the other tools that are traditionally being used in neurology [81].
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FIG. 6 Segmentation-based detection of gastric ulcers using a Machine Learning model.
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In the case of Alzheimer’s disease, highly effective diagnostic techniques can be devel-

oped using spectroscopy (for the analysis of cerebrospinal fluid compositions) and

ML-based algorithms. These techniques can prove to be immensely useful, as preclinical

intervention is the only hope of preventing the onset of the disease. A certain group very

recently coupled near-infrared (NIR) Raman spectroscopy with classifiers made using

Genetic Algorithm to develop a system for this purpose [82]. The resultant ML model

achieved a remarkable 84% predictive accuracy in the diagnosis of Alzheimer’s disease.

Another group used Laser Induced Breakdown Spectroscopy (LIBS) with SelectKBest algo-

rithm to develop a system for the detection of ovarian cancer, using spectroscopic data of
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blood samples as input [83]. Themodel was developed using backpropagation neural net-

working and was validated using Chi-square test. The resultant model was fairly accurate,

showingmeager error rates of 1.9% for normal samples and 4.6% for cyst and cancer sam-

ples in ensemble. However, the model was not satisfactorily robust due to a shortage of

training data.

There has been a dramatic rise in advancements in healthcare relevant to the current

pandemic that the world is facing. Needless to say, AI and ML-based models have also

been tried to ease the pressure faced by the medical practitioners worldwide. It is specu-

lated that ML-based models may provide frontline workers with invaluable advantage,

with the opportunity to reduce morbidity with more targeted and efficient treatments

[84,85]. ADAM and Nesterov algorithms have been coupled with video cameras to analyze

the behavioral parameters exhibited by patients and even recently vaccinated candidates

to detect symptoms of Covid-19 infection [86]. However, the model showed some errors,

probably due to overfitting and biasing of training samples, which stabilized as long as the

input neurons were more numerous than the input parameters. This was further made

difficult due to the increase in errors when the number of input neurons was increased.

Regardless, the model showed fairly high accuracy, albeit with some discrimination,

which can be increased with the increase in training data. This, however, may result in

a decrease in accuracy.

Logistic Regression algorithm has been used in a lot of studies pertaining to Covid-19,

which even includes a simulation of the spread of the virus in China [87]. Another model

developed using Logistic Regression has been used for the prediction of mortality due to

Covid-19 infection [50], and validation has been done using Chi-square test. The model

predicted the death of patients with 100% accuracy, but showed a somewhat lesser

96% accuracy in predicting the survival chances.

It has also been observed that the severity of Covid-19 infection in adults has a direct

and bidirectional relationship with the occurrence and severity of circulatory and cardio-

vascular diseases [88]. A study led by Ehwerhemuepha et al. demonstrated the usage of

ensemble models in the prediction of Covid-19 severity among patients having cardiovas-

cular diseases, andmaybe even for the general population as well [89]. However, the study

was limited demographically due to the availability of only local data (namely, white

patients), which may have effects on the predictive accuracy of the model on a general

scale. The most promising algorithms were found to be the Super Learner and Lasso

Regression. Fig. 7 shows a schematic representation of a Super Learner algorithm. Despite

the shortcomings of the model, it may prove to be advantageous while planning a treat-

ment strategy in desperate times and has the potential to be life-saving.

6. Future prospects and conclusion

In conclusion, it can be stated that Artificial Intelligence based data research in the field of

biomedical sciences is the next step in the series. Algorithms based on techniques like

Machine Learning and even deep learning have been used in novel research-based areas
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like nano-biotechnology [49], and in crucial and important domains like the healthcare

sector, which has been explored in detail in the earlier sections. Machine Learning based

techniques have the potential to completely revolutionize biomedicine and healthcare,

but certain challenges, like data handling, security, unreliability of algorithms, and even

a certain lack of transparency are making it difficult for this technology to achieve its full

potential. In addition to these challenges, certain ethical issues have also come to the fore-

front, which need to be addressed so that more and more individuals can benefit from

the same.

In order to deal with these challenges, it is imperative that a cross-disciplinary

approach is adopted, so as to ensure a deep, contextual, and well-directed understanding

of the problematic scenarios is achieved. Once that has been done, various plans and

approaches need to be ascertained to ensure the overall improvement of the functionality

and accuracy of these techniques. It can be said that ML-based algorithms have a lot to

offer to biomedicine, in particular to the healthcare sector, but they also demand faith and

attention in return—as more and more patients embrace this eventuality, the fundamen-

tal challenge of the shortage of data can be easily overcome, which will in turn herald new

improvements in the technology.

It would be wrong to say that these technologies have not achieved any success in the

scenarios that they have been implemented in. Patient data analyzed using these
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algorithms has shown efficient detection and diagnosis, better response to healthcare

services, accompanied by the increase in clinical efficiency and resource reallocation

(especially in the case of predictive algorithms) [15,16]. Very recently, combinations of

ML-based algorithms with deep learning and ensemble systems have been successfully

implemented in the diagnosis and detection of various traditional diseases like cancer

and Alzheimer’s disease [63,72,75,79,82,83] and even in the case of Covid-19 [50,86,89],

which has been ravaging the world. Somemodels have also been used to study pathogen-

esis and other aspects of cellular biology [36]. It is expected that with further improve-

ments, more interactive tools such as caregiving “softbots” [90] and trainable “avatars”

[91] can be developed for the diagnosis and treatment of complex psychological and

psychosomatic disorders.

Thus, it can be said that with a proper understanding of the present situations, the

various hurdles that bar the progress of these technologies can be easily overcome.
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[15] F. Amato, A. López, E.M. Peña-M�endez, P. Vaňhara, A. Hampl, J. Havel, Artificial neural networks in
medical diagnosis, J. Appl. Biomed. 11 (2) (2013) 47–58. [Internet]. Available from: http://jab.zsf.jcu.
cz/doi/10.2478/v10136-012-0031-x.html.

[16] P. Hamet, J. Tremblay, Artificial intelligence in medicine, Metabolism 69 (2017) S36–S40. [Internet].
Elsevier Inc.; Available from https://doi.org/10.1016/j.metabol.2017.01.011.
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