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A B S T R A C T   

Vitamin D regulates homeostasis, anti-microbial response, and inflammation. The vitamin D receptors are 
expressed in the macrophages and other immune cells, regulating the transcription of many different genes, 
including those coding the anti-microbial peptides. One of the most severe complications of the SARS-CoV-2 
infection is the acute respiratory distress syndrome (ARDS) caused by the hyperinflammatory response 
(commonly called cytokine storm) of the lung macrophages. Studies showed that Vitamin D deficiency increases 
the severity of the ARDS in COVID-19 infection. We discuss here how the vitamin D supplementation may in-
fluence macrophage and myeloid-derived suppressor cells (MDSCs) inflammatory response, subdue the hyper-
inflammatory response, and lessen the ARDS in COVID-19 patients.   

1. Introduction 

COVID-19 pandemic has revived and increased interest in vitamin D 
as a potential modulator of the immune response in SARS-CoV-2 infec-
tion. As the macrophage immune response plays an important role in the 
severity of COVID-19, any factor modulating their functions is, 
currently, of the high interests. Besides macrophages, the myeloid- 
derived suppressor cells (MDSCs), which suppress T cells activity and 
attenuate the overall immune response, are also the target of Vitamin D. 
This indicates that Vitamin D may have therapeutic applications as an 
additive to conventional anti-viral therapies. 

Vitamin D (25 (OH)2 D) is a fat-soluble secosteroid (steroid with a 
“broken” ring) hormone that regulates absorption and homeostasis of 
magnesium, calcium and phosphate, and various aspects of human 
health, including mitochondrial integrity, systemic inflammation, and 
the anti-microbial immune response [1–2]. The active metabolite of 
vitamin D, the 1, 25 dihydroxy vitamin D (1,25 (OH)2D3) that circulates 
in the blood, functions through the binding to vitamin D receptor (VDR), 

also called the NR1I1 (nuclear receptor subfamily 1, group I, member 1), 
which is the member of the nuclear receptor family of transcription 
factors. The 1,25 (OH)2 D/VDR complex heterodimerizes with the 
retinoic-X receptor (RXR), causing nuclear translocation, and binding to 
the vitamin D response elements (VDREs) on DNA. This, in turn, disso-
ciates repressors, recruits the co-factors, and regulates the transcription 
of over 900 different genes (Fig. 1); [3–6]. Because the VDR is also 
abundantly expressed in the immune cells such as T cells, dendritic cells, 
and macrophages, many of these target genes have immune response- 
related functions [4]. For example, such targets are the cathelicidin, 
and defensin, genes that encode the anti-microbial peptides that reduce 
viral replication rate and promote chemotaxis of macrophages and other 
immune cells to the inflamed organs [3,7,8]. 

2. Macrophages and hyperinflammatory response in the lungs of 
COVID-19 patients 

One of the deadliest effects of SARS-CoV-2 infection is the acute 
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respiratory distress syndrome (ARDS) caused by the overdrive of the 
inflammatory response of lung macrophages (Fig. 2); [9–16]. There are 
two different (intrinsic and extrinsic) mechanisms inducing macrophage 
inflammatory response. In the intrinsic response, the alveolar macro-
phages, express the ACE2 (angiotensin-converting enzyme-2), which 
acts as the receptor recognizing spike proteins on the surface of SARS- 
CoV-2 and similar viruses (SARS-CoV, and NL63), and facilitates virus 
entry, are infected with the virus [17,18]. This, in turn, switches on a 
rapid and severe immune response flooding the lungs with the inflam-
matory cytokines and factors such as tumor necrosis factors (TNFs), IL-1, 
IL-6, IL-8, and IL-12, and many others [16,19], which affect B cells, 
neutrophils, basophils, and T cells, sending additional pro-inflammatory 
signals to macrophages and amplifying the inflammatory response [19]. 
In the extrinsic response, the macrophage immune response is induced 
by the incoming inflammatory signals from the lung epithelial cells (that 
also express ACE2 and are infected by the virus), macrophages in the 
pulmonary lymph nodes and spleen, or/and immune cells of other 
infected organs. The produced cytokines, and chemokines (cytokines 
which have a chemotactic function) can also recruit monocytes and 
additional macrophages to the lungs propagating further inflammatory 
response [19]. Some studies show that the effectiveness of the currently 
used anti-inflammatory therapies for the treatment of various diseases 
relies not only on the inhibition of cytokine production but also on the 
decrease of macrophage infiltration [15]. 

3. Molecular mechanisms of vitamin D effects on the 
hyperinflammatory response in COVID-19 

Recent analyses of COVID-19 patients’ data from Germany, UK, US, 

France, Spain, Italy, China, and South Korea showed that a severe 
vitamin D deficiency correlates with a high 

(C-Reactive Protein) CRP level in patients with COVID 19 infection 
[10]. As we described in previous sections, the ARDS is caused by the 
overdrive of the lung macrophage and other immune cells (B cells, 
neutrophils, basophils, and T cells) inflammatory response [19]. Here 
we discuss how vitamin D may be involved in the modulation/sup-
pression of macrophage response in the COVID-19 patients. Such a 
suppressing effect of vitamin D on the hyperinflammatory response was 
already suggested during the influenza pandemic in 1918–1919 [20]. 

4. Expression and role of vitamin D receptors 

The response to and modulation of immune cells activity by vitamin 
D depends on the vitamin D receptors expressed by these cells. One of 
the recently proven functions of VDRs is the prevention of the immune 
response of T cells and dendritic cells [4]. Mouse studies showed that 
VDR-KOs have more pro-inflammatory Th17 effector cells, which pro-
duce more IL-17 [4,21]. In contrast, the upregulation of VDR expression 
inhibits transcription of the IL-2 gene and prevents the immune system 
overdrive. Similarly, it has been shown that vitamin D, by promoting the 
development of tolerogenic dendritic cells and the suppressive iTregs 
involved in immune tolerance, prevents potential over-reaction of the 
immune system [4,22]. The VDR is also crucial for the integrity of 
mitochondria and prevents increased respiratory activity and produc-
tion of damaging reactive oxygen species (ROS) that are the important 
activators of pro-inflammatory signaling in the macrophages [23–25]. 

Already one hundred years ago, in the pre-antibiotic era, the increase 
of vitamin D by sun exposure or fish oil consumptions was used for the 

Fig. 1. Regulation of transcription and activities of immune cells by vitamin D. A) The hormonal metabolite of vitamin D, the 1,25-dihydroxyvitamin D (1,25 
(OH)2D3) is the ligand for the vitamin D receptor (VDR). In the absence of the 1,25(OH)2D3, the VDR is localized in the cytoplasm. Interaction of VDR with the 1,25 
(OH)2D3 causes heterodimerization with the retinoid X receptor (RXR). This complex translocates to the nucleus where it binds to the vitamin D responsive element 
(VDRE) of the vitamin D-responsive genes. Further recruitment of regulatory factors, dissociation of repressors, histone modification, and chromatin remodeling, 
induce RNA polymerase binding and activate transcription of the target gene(s). B) Reciprocal effect between the macrophages, T cells, and MDSCs. Inflammatory 
signaling from the macrophages mature and activate MDScs, and T cells regulate the activity of MDSCs [56]. The MDSCs may also suppress the function of T cells and 
this, in turn, indirectly, may suppresses the activity of other immune cells. Vitamin D affects transcription and protein expression in macrophages and MDSCs and 
modulates the inflammatory response. Although not shown here, the T cells also express VDR, and they are also directly affected by the vitamin D supplementation. 
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treatment of tuberculosis, and the vitamin D supplementation may still 
be considered today as a beneficial adjunct to the antibiotic therapy for 
pulmonary tuberculosis [26,27]. Recent studies showed that macro-
phages, including alveolar macrophages that are crucial for the devel-
opment of the hyperinflammatory response in the lungs of COVID-19 
patients, have an inducible expression of vitamin D 1α-hydroxylase 
Cyp27B1 that converts the inactive form of vitamin D to its active 
metabolite 1,25 (OH)2) D that binds macrophage VDRs [28]. Studies 
also showed that the genetic deletion of macrophage VDRs, which are 
activated either by the circulatory or macrophage-produced 1,25 (OH)2 
D, impairs the immune response to cutaneous injury in mouse wound- 
healing model [29]. Zhang et al. [30] showed that vitamin D treat-
ment increased the binding of the VDR to the vitamin D response 
element in the promoter of the mitogen-activated protein kinase 
phosphatase-1 (MKP-1) promoter. This caused the upregulation of MKP- 
1 expression, and, in turn, inhibited the production of pro-inflammatory 
IL-6 and TNF-α in the monocytes and macrophages. It is still unknown if 
in the response to vitamin D, the VDR receptors, which regulate gene 
transcription, become localized in the cell nucleus permanently or if 
they shuttle between the nucleus and cytoplasm [31]. Studies on the 
chronic inflammatory lung disease such as cystic fibrosis showed that 
vitamin D, acting through its receptors, upregulates transcription of the 
anti-inflammatory Dual specificity protein phosphatase 1 (DUSP1) gene, 
which down-regulates the expression of inflammatory chemokine IL-8 
produced by over-reactive (hyperinflammatory) macrophages [32]. 
This suggests a therapeutic potential of vitamin D for the treatment of 
inflammatory lung diseases. Also, a recent large-scale analysis of COVID- 
19 patients suggests that vitamin D activates the innate, and suppresses 
the adaptive immune response, which, by lowering the cytokine 
expression level may downregulate the hyperinflammatory response 
responsible for COVID-19 severity and mortality [10,33–35]. In line 
with these findings, the National Institute of Health posted on their 
ClinicalTrials gov. website, several clinical trials, which will assess the 
efficacy of vitamin D in the prevention and treatment of COVID-19. A 

recent studies by Rastogi and colleagues [36] show that a high dose of 
vitamin D supplementation by oral administration helped to achieve 
SARS-CoV-2 RNA negativity along with a significant decrease of the 
inflammatory markers (Fig. 1). Moreover, Maghbooli and co-authors 
[37] have shown very recently that the correct levels of 25-hydroxyvita-
min D reduce the risk of cytokin storm and the heavy course of COVID- 
19 in patients. 

5. Potential functions of myeloid-derived suppressor cells 
(MDSCs) in COVID-19 

The myeloid-derived suppressor cells (MDSCs) exit from the bone 
marrow as functionally immature cells. Depending on the signals from 
the microenvironment they mature into monocytic MDSCs (mMDSCs) 
and granulocytic MDSCs (gMDSCs). They suppress the T-cell cycle and 
immune checkpoints, downregulate T cell receptors, and recruit Tregs 
([38]). They also suppress the activity of other immune cells through the 
production of ROS, RNS, degradation of L-arginine, and the production 
of the anti-inflammatory factors, such as (TGF)-β and IL-10 [39] , 
(Fig. 1). 

Recent studies indicated that the granulocyte-colony-stimulating 
factor (G-CSF) granulocyte–macrophage colony-stimulating factor 
(GM-CSF), which are the main factors driving recruitment and differ-
entiation of MDSCs are abundant in the lungs of COVID-19 patients. 
Recent analyses of MDSCs in 128 SARS-CoV-2 infected patients, showed 
a very high frequency of MDSCs, especially in the intensive care pa-
tients. It is very plausible that the immunosuppressive function of 
MDSCs prevented virus elimination and increased the severity of the 
disease [40]. This suggests that the MDSCs may be a valuable target for 
therapeutic intervention in COVID-19 patients [41]. Like other immune 
cells, the MDSCs express Vitamin D receptors, and as such can be a target 
for vitamin D intervention [42]. Studies also show that the level of 
expression of VDRs correlates with the immunosuppressive activity of 
MDSCs and that the active form of vitamin D, 1,25(OH)2D, reduces the 

Fig. 2. Hyperinflammatory response induced by alveolar macrophages. Arrow 1. The SARS-CoV-2 virus infects, through the ACE2 receptors the alveolar macro-
phages and alveolar epithelial cells that induces the production of proinflammatory cytokines by the macrophages.The infected epithelial cells send the proin-
flammatory signals to the alveolar macrophages enhancing macrophage response and sending inflammatory signals to other immune cells. Arrow 2. The virus also 
infects the dendritic cells, which also produce proinflammatory cytokines and chemokines. Arrow 3. All these pro-inflammatory factors recruit monocytes, gran-
ulocytes, and various leukocytes from the circulation. The recruited immune cells produce more cytokines and chemokines amplifying the proinflammatory response. 
Arrow 4. Such an overdrive of the inflammatory response causes the hyperinflammatory response in the lungs and the acute respiratory distress syndrome (ARDS) in 
the COVID-19 patients. 
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suppressive activities of MDSCs by 70%, especially in the early stages of 
their maturation [42]. 

6. Vitamin D in COVID-19 pediatric patients 

It is now well established that children are less frequently infected 
with SARS-CoV-2 and are more often either asymptomatic or suffer less 
severe symptoms than adults [43–50]. The immune system of newborns 
and very young children is not yet fully developed [51] , and their innate 
immune response based on monocytes, macrophages, dendritic cells, 
and neutrophils seem to work differently than in the adults and is 
associated with clearly lower cytokine response. For instance, De Wit 
and coworkers showed impaired production of IL-12 and IFN- α and an 
increased synthesis of IL-10 in the neonatal cord blood after the expo-
sure to TLR-4 and TLR-3 ligands, in comparison to the adult blood, 
which may indicate an impaired anti-viral and anti-Gram-negative 
bacteria response in the neonates [52]. This under-responsiveness may 
protect, in part, SARS-CoV-2 infected children against the hyper-
inflammatory response. The immune response of children is also clearly 
different than in adults with respect to the production of the antibodies 
[53]. In short, adults produce anti-spike (S) IgG, IgM, and IgA anti-
bodies, and anti-nucleocapsid IgG antibody, while children have much 
lower levels of anti-SARS-CoV-2-specific antibodies, and predominantly 
generate IgG antibodies specific for the S protein, but not against the 
nucleocapsid proteins. Moreover, children‘s antibodies have much less 
pronounced neutralizing activity than the antibodies of adult patients. 
The authors concluded that children clear SARS-CoV-2 faster than 
adults, probably via more efficient and adequate innate immunological 
response due to macrophages involvement. 

Another important point is that in the developed countries the 
newborns receive vitamin D supplementation soon after birth, while in 
the subtropical and tropical countries babies and young children are 
exposed to the sunlight, which supplements them with vitamin D 
naturally. Another factor may be the presence of other respiratory vi-
ruses common in young children, which could competetively limit the 
growth of SARS-CoV2 [54]. A recent large non-pediatric study reveals 
the cross-reactivity between the SARS-CoV-2 antigens and the anti-
bodies presumably originating from the previous human coronaviruses 
infections [55]. As children get these diseases more often than adults 
and possibly had these infections not long before the COVID-19 
pandemic, they have statistically more chances to be protected by this 
cross-reactivity than adults. 

In summary, it seems that vitamin D supplementation should have 
beneficial effects by lessening the macrophage-dependent hyper-
inflammatory response in the lungs of COVID-19 patients. This supple-
mentation is of special interest in the northern hemisphere during the 
second wave of COVID-19 pandemic in winter 2020/2021. 
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