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Abstract

Interpreting Genome-Wide Association Studies (GWAS) at a gene level is an important step towards understanding the
molecular processes that lead to disease. In order to incorporate prior biological knowledge such as pathways and protein
interactions in the analysis of GWAS data it is necessary to derive one measure of association for each gene. We compare
three different methods to obtain gene-wide test statistics from Single Nucleotide Polymorphism (SNP) based association
data: choosing the test statistic from the most significant SNP; the mean test statistics of all SNPs; and the mean of the top
quartile of all test statistics. We demonstrate that the gene-wide test statistics can be controlled for the number of SNPs
within each gene and show that all three methods perform considerably better than expected by chance at identifying
genes with confirmed associations. By applying each method to GWAS data for Crohn’s Disease and Type 1 Diabetes we
identified new potential disease genes.

Citation: Lehne B, Lewis CM, Schlitt T (2011) From SNPs to Genes: Disease Association at the Gene Level. PLoS ONE 6(6): e20133. doi:10.1371/
journal.pone.0020133

Editor: Raya Khanin, Memorial Sloan Kettering Cancer Center, United States of America

Received November 22, 2010; Accepted April 26, 2011; Published June 30, 2011

Copyright: � 2011 Lehne et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by King’s College London (KCL) and the KCL Systems Biomedicine Graduate Program (SBGP). The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: thomas.schlitt@kcl.ac.uk

Introduction

Genome-Wide Association Studies (GWAS) link genetic vari-

ants to phenotypes. One common study design in human disease

genetics is to compare a group of diseased individuals (cases) to a

group of healthy individuals (controls) for a large number of Single

Nucleotide Polymorphisms (SNPs). The frequency of each allele is

compared between cases and controls using a x2 statistic, which

can be transformed into a measure for the probability of the data

arising under no association between disease and SNP (p-value).

Currently, GWAS are carried out using microarray technology,

genotyping up to one million SNPs in parallel. Because a statistical

test is performed for each SNP, careful multiple hypothesis testing

procedures are employed to ensure the identification of association

signals with genome-wide significance, typically with a p-value

p,5N1028 [1]. In most GWAS only a few SNPs pass this cor-

rection and although this approach has led to the discovery of

several novel disease-linked variants, it ignores thousands of SNPs

with ‘‘suggestive’’ p-values that fail to reach the stringent threshold

for genome-wide significance, but may reflect evidence for associa-

tion. Several approaches try to make use of these ‘‘suggestive’’

p-values through the incorporation of prior biological knowledge

[2,3,4,5,6,7,8,9,10,11,12]. The best known is Gene Set Enrich-

ment Analysis (GSEA) [3,13], which assesses whether predefined

sets of genes are overrepresented within a sample. Genes that are

members of the same gene-set are typically involved in a common

biological process as defined by e.g. the Gene Ontology [14] or

biological pathways as defined by databases such as KEGG [15].

In a similar way, protein networks have been consulted [10,11]

with the objective of identifying subnetworks of interacting pro-

teins. Individually none of the proteins within such a subnetwork

might be significantly associated, but overall a subnetwork might

show statistically significant association with a disease.

All of these studies face very similar methodological problems:

GWAS report association for individual SNPs, whereas functional

information typically exists for proteins or genes. Therefore SNPs

have to be assigned to genes and their individual association

signals combined. This can be done in different ways and one must

take into consideration that the number of SNPs per gene can vary

to a great extent. The most widely used approach is to take the

most significant p-value per gene [2,3,4,5,6,7,8]; however this can

introduce a substantial bias in the downstream analysis if the

number of SNPs per gene is not controlled for [9]. In this work we

systematically compare three methods to analyse GWAS data at

the gene level. We also propose a way to control for differences in

the number of SNPs per gene based on permutations of the disease

status and demonstrate its effectiveness. Based on GWAS data for

Crohn’s disease (CD) and Type 1 Diabetes (T1D) genotyped by

the Wellcome Trust Case Control Consortium [16], we evaluate

the performance of the different methods using sets of disease

genes that were identified and replicated by the most recent meta-

analyses [17,18].

Methods

Quality Control and Association Testing
GWAS of seven diseases have been performed by the WTCCC

[16]. Approximately 3,000 shared controls and 2,000 cases were

genotyped for seven diseases, including Crohn’s Disease (CD) and

Type 1 Diabetes (T1D), on the Affymetrix GeneChip 500K

Mapping Array Set. We re-analyzed the WTCCC I data using

PLINK v1.06 [19]. In addition to SNPs and individuals in the
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exclusion lists provided with the genotyping data, we applied more

stringent quality control criteria than the original study, because

our analysis includes moderate associations which are more sus-

ceptible to study biases. Based on the pooled case/control dataset

we excluded SNPs with Hardy-Weinberg equilibrium p,0.001, a

minor allele frequency of less than 0.01 or genotyping call-rates

of less than 0.97. Association testing was performed using the

Cochran Armitage trend test (1df). We manually checked the most

strongly associated SNPs for every disease to ensure consistency

with the original WTCCC I results. To take into account inflated

test statistics caused by population stratification we corrected test

statistics using the genomic control metric lmedian [20]. The

estimated lmedian (for simplicity denominated as l) for CD

(l= 1.12) and T1D (l= 1.06) are in good agreement with the

original values reported by the WTCCC (l= 1.11 and l= 1.05 for

CD and T1D, respectively). For both diseases, 500,000 permuta-

tions of the disease status were performed using the PLINK

max(T) permutation method and association p-values were cal-

culated. Table 1 summarises the GWAS data analysis for CD and

T1D.

To further assess the effect of population stratification on our

analyses we performed principal component analysis (PCA) of

the CD and T1D data using EIGENSTRAT [21]. We then

performed association testing using logistic regression to incorpo-

rate the first two principal components as covariates. For both

diseases, 1,000 permutations of the disease status were performed

using logistic regression and the PLINK max(T) permutation

method.

Gene to SNP assignment
A tab-delimited text-file (seq_gene.md) containing genomic

coordinates for all genes was downloaded from the NCBI ftp-

server [22] in November 2009. Only entries for the human

reference sequence (NCBI assembly GRCh37) and protein-coding

genes were retained. Genes mapping to sex-chromosomes, the

mitochondrial chromosome, unassembled contigs or alternative

haplotypes were discarded. SNPs on the GeneChip 500K Map-

ping Array Set were assigned to the remaining genes. Because this

genotyping platform is based on the previous assembly of the

human genome (NCBI 36) all SNP positions were converted to the

latest assembly using the ‘‘Lift-Over’’ tool on the GALAXY

website [23]. SNPs were assigned to a gene if they are located

within its primary transcript or 40 kilobases (kb) upstream or

downstream. These boundaries are chosen based on the dis-

tribution of association signal with respect to protein-coding genes

[24]. When a SNP could be assigned to multiple genes because of

overlapping flanking windows, the closest gene was chosen.

The WTCCC study found the strongest association signal for

Type 1 Diabetes (T1D) within the Major Histocompatibility

Complex (MHC) region on chromosome 6. The MHC region has

high levels of linkage disequilibrium (LD) and harbours many

genes. This causes the association signal to be spread over many

genes, thereby artificially inflating the number of genes with

associated SNPs. We therefore excluded the MHC region (chro-

mosome 6, position 25,930,839 to position 33,495,825, NCBI

assembly GRCh37) in all analyses of the T1D dataset, which

removed 1,473 SNPs and 185 genes. In total, approximately

290,000 SNPs were assigned to 17,000 protein coding genes.

Table 1 summarises the SNP to gene assignment for CD and

T1D.

Assessment of LD on SNP to gene assignment
In order to assess the effect of LD we repeat our analyses, but

take into account LD to extend the assignment of SNPs to genes.

We use PLINK v1.06 [19] to obtain a list of SNP pairs in LD

(r2.0.8) based on the GWAS data for CD and T1D [16]. SNPs

are added to the initial assignment if they are in LD (r2.0.8) with

a SNP in a gene or its 40 kb flanking windows, including SNPs

that have already been assigned to other genes. Taking into

account LD adds approximately 6,000 (2%) additional SNPs to the

analyses.

Deriving a gene-wide test statistic for each gene
Each gene has n SNPs assigned to it with n M N0. Let the test

statistics in the gene be Ti, i = 1, … n. Under the null hypothesis of

no association, Ti has a x1
2 distribution (x2 distribution with one

degree of freedom); high values of Ti indicate evidence for

association. To obtain a gene-wide test statistic, we use three

summary statistics for Ti:

1. maxT: the maximum value of Ti (maximum x1
2 value) for

each gene is chosen;

2. meanT: the arithmetic mean test statistic (mean x1
2 value) for

each gene is calculated;

3. topQ: the highest quartile of all test statistics Ti (highest

quartile of all x1
2 values) in a gene are selected and their mean

is calculated. If n is not a multiple of 4 the number of SNPs

considered for topQ is rounded up to the next integer (e.g. if a

gene has 5 SNPs the mean of the largest two test statistics is

calculated).

Deriving an empirical p-value (pemp) for each gene
We derive test statistics for each gene in the observed dataset

and in 500,000 randomised datasets derived from permutations of

the disease status. For each gene we tabulate the number of

permuted data sets in which we observe a higher gene-wide test

statistic than in the observed data set, thus deriving an empirical p-

value pemp.

Because we compare observed and permuted test statistics for

every gene, a significantly associated gene requires a pemp value that

is also controlled for the number of genes tested. Assuming there

are approximately 20,000 protein-coding genes in the human

genome, a Bonferroni correction requires a p-value threshold of

pemp = 0.0561/20,000 = 2.561026. In order to be able to obtain

Table 1. Overview statistics of the analysed GWAS datasets
and the gene to SNP assignment for Crohn’s Disease (CD) and
Type 1 Diabetes (T1D).

CD T1D

Number of cases before QC 2,009 2,000

Number of cases after QC 1,752 1,964

Number of controls before QC 3,004 3,004

Number of controls after QC 2,938 2,938

Genomic Control metric l 1.12 1.06

Protein-coding genes on chromosome 1–22 20,919 20,919

Protein-coding genes after SNP to gene assignment 17,006 17,006

Protein-coding genes after QC 16,326 16,146

SNPs on the Affymetrix GeneChip 500K Mapping Array Set 500,568 500,568

SNPs assigned to genes (chromosome 1–22) 290,571 289,098

SNPs assigned to genes after QC 227,418 225,973

doi:10.1371/journal.pone.0020133.t001
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p-values of that magnitude we perform 500,000 permutations of

the disease status. Empirical p-values are derived for each gene for

all three methods to derive gene-wide test statistics.

Uncontrolled vs. empirical p-value
To compare the different methods we rank genes for each gene-

wide test statistic method. This is done before and after deriving

pemp values (i.e. controlling for the number of variants per gene and

LD) resulting in six different sets of ranks. When pemp values are

identical for two or more genes we use the gene-wide test statistics

to resolve ties. Based on the ranks we calculate pairwise Spearman

rank correlation coefficients between all six sets for the top 500

genes: For each gene, we sum the ranks across all six gene sets, and

select the 500 genes with the highest summed ranks.

To analyse the effect of deriving pemp values for individual genes

we convert the gene-wide test statistics to p-values assuming test

statistics have a x1
2 distribution. For each gene the uncontrolled

p-value is plotted against the pemp value for all three methods.

Table 2. Replicated Disease Genes for Crohn’s Disease from [17] and their ranks for each method.

Rank of gene for

hgnc Number of SNPs per gene n rank maxT rank meanT rank topQ

NOD2 13 1 3 2

ATG16L1 11 2 1 1

IL23R 21 3 4 3

NKX2-3 26 5 5 5

PTPN2 20 7 11 10

IRGM 5 8 2 6

ZNF365 91 18 149 67

GCKR 6 31 81 76

CREM 12 34 59 46

C13orf31 6 43 136 78

IL12B 14 55 45 94

SP140 18 64 110 56

CDKAL1 127 83 486 248

C11orf30 22 336 164 180

VAMP3 1 357 356 348

CCR6 14 602 291 319

DNMT3A 9 612 667 399

MTMR3 23 827 788 715

FADS1 3 980 921 1002

NDFIP1 19 1020 754 506

TAGAP 4 1169 3445 1203

IKZF3 8 1192 4281 995

DENND1B 22 1337 3818 1855

THADA 59 1500 1157 1206

JAK2 17 2074 3065 3038

PTGER4 4 2620 4084 2622

PTPN22 4 3457 2465 3498

SMAD3 42 4071 11565 9918

CPEB4 21 4108 4080 3842

ICOSLG 5 6041 8465 6570

PRDM1 18 6151 4859 5241

IL2RA 20 6698 8568 5229

BACH2 49 8022 3687 2962

MAP3K7IP1 6 8040 6149 6685

PLCL1 56 8317 3347 3754

ICAM3 2 9345 9596 9415

UBE2D1 4 10217 12176 10212

TNFSF11 21 11858 9547 9927

ZMIZ1 72 14061 5704 9596

doi:10.1371/journal.pone.0020133.t002
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Performance
To assess the performance of the three methods for deriving pemp

values we calculate Receiver Operating Characteristic (ROC)

curves, which estimate the accuracy of a prediction by comparing

the True Positive Rate (TPR = True Positives/Positives) with the

False Positive Rate (FPR = False Positives/Negatives) [25]. In this

analysis we used as positives a list of successfully replicated disease

genes from meta-analyses of T1D [18] and CD [17]. We only

chose loci that either contain a single gene or a for which a unique

candidate gene has been proposed [17,18]. This results in 39 and

27 true positive genes for CD and T1D, respectively (Tables 2, S1

and S2). We assume that all other genes are negatives. We rank all

genes within both lists (positives and negatives) by their pemp values,

and used their gene-wide test statistics to resolve ties when pemp

values are identical for two or more genes. For each gene the

relative rank within the positives is plotted against the relative rank

within the negatives to derive the ROC curve, and the areas under

the curve (AUC) were calculated.

All scripts written for the analyses presented are available from

authors upon request.

Results

Number of SNPs per gene
The Affymetrix 500K GeneChip includes approximately

500,000 SNPs distributed over the whole genome. We assign

these SNPs to their closest protein-coding gene if a SNP is located

less than 40 kb from a gene. Approximately 290,000 SNPs were

assigned to genes, of which 227,000 were left after QC for specific

disease data sets (Table 1). Genes vary substantially in size, which

leads to different numbers of SNPs assigned to each gene (Figure 1).

Of 20,919 protein-coding genes 17,006 have at least one SNP

assigned; most of these genes (,77% or 13,083 genes) have fewer

than 10 SNPs; 6.5% (1,097 genes) have more than 50 SNPs. The

largest number of SNPs assigned to a single gene is 1,008 (CSMD1,

gene length: 818 kb).

We performed analyses of GWAS data for both Crohn’s Disease

(CD) and Type 1 Diabetes (T1D). In the following section we

present results for CD. Results for T1D are comparable and

presented in supplementary material.

Deriving a gene-wide test statistic for each gene
To measure association of a SNP with the disease we compare

genotype frequencies between cases and controls and calculate a

genomic control-corrected test statistic based on an Armitage

trend test for every SNP. To obtain a gene-wide measure of

association we first derive three summary statistics: maxT (the

maximum test statistic for each gene), meanT (the mean test

statistic for each gene), and topQ (the mean of the highest quartile

Figure 1. Distribution of the number of SNPs assigned to
genes. We assigned SNPs on the Affymetrix 500K genotyping array to
protein-coding genes. SNPs were assigned to a gene if they are located
within the transcribed region or within a 40 kilobase flanking window
around the transcribed region. Where flanking windows overlapped
SNPs were assigned to their closest gene only.
doi:10.1371/journal.pone.0020133.g001

Figure 2. Confounding effect of the number of SNPs per gene
(Crohn’s Disease). Multiple test statistics are combined for each gene
using three different methods (maxT, meanT, topQ). For each method,
the gene-wide test statistic is correlated with the number of SNPs per
gene. For these histograms, genes are binned according to their gene-
wide test statistic (left axis). The red dots show the mean number of
SNPs per gene for every bin (right axis).
doi:10.1371/journal.pone.0020133.g002
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of all test statistics in a gene). Here we illustrate how each

summary statistic is subject to confounding factors that have to be

controlled for. The gene-wide test statistic is correlated with the

number of SNPs per gene, n (Figures 2 and S1), as follows.

N For maxT the test statistic increases approximately linearly

with n (Pearson correlation coefficient r = 0.36). Even if there is

no association, genes with many SNPs assigned are more likely

to have a SNP with a high test statistic, by chance.

N A different effect occurs for meanT, whereby genes with

many SNPs tend to have gene-wide test statistics close to one,

whereas genes with few SNPs tend to be at the extremes of the

distribution, i.e. to have either very low or very high gene-wide

test statistics. Under the null hypothesis of no association, the

test statistic has a x1
2 distribution, with a mean of 1. When

calculating meanT, genes with more SNPs are therefore likely

to have gene-wide test statistics close to 1, whereas genes with

few SNPs are more affected by individual SNPs with extreme

test statistic.

N An effect similar to meanT is observed for topQ: Genes with

fewer SNPs tend to have extreme gene-wide test statistics

whereas genes with many SNPs tend to have a gene-wide test

statistic close to x2<3. This value is higher than for the meanT

method since only the top 25% of SNPs per gene are selected.

Deriving an empirical p-value for each gene
The distribution of the summary statistics for each gene is not

known and impossible to derive analytically, since it depends on

the pattern of LD within each gene. We therefore derive an

empirical p-value pemp for each gene from permuted datasets (see

Methods). By comparing the observed to the permuted test

statistics we maintain LD structure and account for differences in

the number of SNPs per gene. The observed pemp values are

appropriately controlled for the number of SNPs per gene; we

observe no correlation between the number of SNPs per gene and

the pemp value (Figures 3 and S2). For each of the three methods to

combine test statistics, the pemp values are approximately uniformly

distributed. The high proportions of very low pemp values (Figures 3

and S2) are likely due to true association signal.

Uncontrolled vs. empirical p-value
Although different methods yield different levels of association

for a given gene, the results are correlated. Between the three

methods to derive pemp values, we observe an average Spearman

rank correlation coefficient of 0.74 when considering the top 500

genes (Tables S1 and S2). The average Spearman rank correlation

coefficient between the three methods before deriving pemp values

(i.e. controlling for the number of variants per gene and LD) is

only 0.30, which reflects the different biases introduced by the

methods to derive gene-wide test statistics

The pemp values are controlled for the number of SNPs per gene

and the correlation structure, but how does the control affect

individual genes? To address this question, we convert the

combined test statistics to p-values assuming test statistics have a

x1
2 distribution. These uncontrolled p-values are plotted against

the pemp values for all three methods (Figures 4 and S3):

N For the maxT method, genes with many SNPs (large n) are

more likely to have a high test statistic and therefore a low

uncontrolled p-value. When deriving pemp values we control for

n. The control has very little impact on genes with n = 1 and in

that case the empirical and the uncontrolled p-values are very

similar (lying along the diagonal in Figures 4 and S3). For

genes with higher n the control is stronger and pemp values are

higher than the uncontrolled p-values.

N For meanT we observe a sigmoid-like distribution. That is

explained by the effect of varying n: We compare permuted to

observed test statistics. If there is no association the expected

test statistic is 1. Therefore the expected meanT values for the

permuted datasets are 1, i.e. with increasing n the permuted

meanT is more likely to be 1. For genes with large n this leads

to extreme pemp values when we compare observed to the

permuted meanT. As a result the distribution for genes with

large n shows a stronger curvature than for genes with small n.

When the observed meanT value is 1 (uncontrolled p-value

Figure 3. Distribution of empirical p-value (pemp) for Crohn’s
Disease from 500,000 permutations of the disease labels. Genes
were assigned to 50 bins according to their pemp. Histogram shows the
number of genes with pemp values (left axis). The red line shows the
mean number of SNPs per gene for every bin (right axis). In contrast to
the gene-wide test statistics we observe no correlation of the number
of SNPs per gene with pemp for any method. We observe an increase of
genes with very low pemp values caused by the actual association signal.
doi:10.1371/journal.pone.0020133.g003
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= 0.317) the control is (on average) not affected by n. Therefore

the points representing genes with different n overlap at

meanT = 1.

N The distribution for topQ is similar to maxT, but the gradient

for genes with many SNPs is less steep.

Performance
To assess the performance of the different methods of com-

bining test statistics we plot Receiver Operating Characteristic

(ROC) curves for CD and T1D (Figure 5) using two sets of

confirmed disease genes [17,18] under the assumption that all

other genes are not associated (see Methods). The known disease

genes are based on meta-analyses CD [17] and T1D [18]. Based

on genomic loci that successfully replicated the authors selected

the most likely candidate gene considering known involvement in

the immune system, association with other auto-immune disorders

and location of the most strongly associated SNP. Although the

resulting gene list may contain genes which are not associated with

the trait, it is the best currently available dataset to assess the

performance of our methods for measuring genetic association at

the gene-level.

All three pemp methods give considerably better results than

expected by chance. For both diseases the topQ method performs

slightly better than maxT and meanT, although all three methods

perform similarly with differences in the areas under the curve

(AUC) of less than 2%. The performance of the different methods

for the two diseases might depend on the number of SNPs assigned

to the known disease genes. For genes with many SNPs the

association signal can get diluted, as it is the case for the CD

disease gene ZNF365, which has 91 SNPs (Table 2). Its maxT is

23.74 which corresponds to pemp = 0.0001, but the meanT and

the topQ for this gene are 2.46 (pemp = 0.0041) and 8.32

(pemp = 0.0010), respectively. Consequently the performances

measured here by the AUCs depend on the properties of the

known disease genes and we can only assume that they are

characteristic for disease genes that have not been identified yet.

Several known disease genes were consistently ranked very low

by all three methods (Table 2). For some of these genes the

associated SNPs are over 40 kb from the gene (e.g. PTPN22), or

the associated SNP is located in the adjacent gene (e.g. ORMDL3).

Other confirmed disease genes were ranked low because the

associated SNP has not been genotyped by the WTCCC (e.g.

JAK2) or did not show any association (e.g. PLCL1).

Linkage Disequilibrium
Our analysis is influenced by linkage disequilibrium (LD) and

some of the top ranked genes (Table 3) are part of the same LD

region, reflecting the fact that a true association signal could

extend over a large region of the genome if it falls into a large LD

block. Most of the SNPs in such a region would appear to be

associated with the phenotype which can result in several genes

with significant empirical p-values. For example, CYLD and

SNX20 have pemp values smaller than 5.461025; they are located

upstream and downstream of NOD2 and are located in the same

Figure 4. Empirical p-values vs. uncontrolled p-values (Crohn’s
Disease). For each gene the pemp is plotted against the uncontrolled p-
value (based on the gene-wide test statistic). Each point represents a
gene and is coloured according to the number of SNPs assigned to a
gene (n). Genes with few SNPs have pemp values similar to the
uncontrolled p-value and therefore cluster along the diagonal. For
genes with higher number of SNPs the distribution depends on the
method to combine test statistics.
doi:10.1371/journal.pone.0020133.g004
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LD block as NOD2. Their association is most probably an artefact

of the confirmed association of the NOD2 gene [26,27,28]. To

further assess the impact of LD on our analyses we extended the

initial gene to SNP assignment. In addition to SNPs located within

the gene or a 40 kb flanking window we include SNPs in LD

(r2.0.8) with any SNP in this region. This increases the average

number of SNPs per gene to 15.5 (from 13.9) and the total number

of SNPs assigned to genes to over 296,000 (from 290,000) (Figure

S4). Including LD in the gene to SNP assignment has only a

moderate effect: Although AUC values show a small increase for

each method (,1.3%), only a small minority of genes is affected

(Figure S5). Gene ranks obtained with and without taking into

account LD are highly correlated (Spearman rank correlation

r = 0.98 for each method and disease). Only 3 genes out of the top

100 have a rank above 100 when including LD (maxT for CD)

and all genes discussed here and shown in the tables only

marginally change their rank or p-value.

Population Stratification
Our primary analysis method is testing for association with the

Cochran Armitage Trend Test, with genomic control correction for

population ancestry, as this makes performing large numbers of

permutations computationally tractable. To assess the effect of

population stratification on our analysis in more detail we per-

formed Principal Component Analysis [21] for both datasets. We

repeated association testing using logistic regression and adjusting

for the first two principal components (PC-correction). This reduced

the genomic control measure for CD from l= 1.12 to l= 1.08, with

no reduction observed for T1D (l= 1.06). Adjusting for up to 10

PCs did not reduce l any further. The correlation between gene

ranks of our primary analysis and after correction for population

stratification was high (CD-maxT R = 0.932, CD-meanT R =

0.942, CD-topQ R = 0.940, T1D-maxT R = 0.997, T1D-meanT

R = 0.998, T1D-topQ R = 0.998). Gene ranks for CD are more

affected than for T1D: out of the top 100 genes of our primary

analysis, 78 are within the top 100 genes after PC-correction, and all

100 are within the top 204 genes (maxT, Figure S6). For T1D, 86

out of the top 100 genes of our primary analysis are within the top

100 after PC-correction and all 100 are within the top 143 genes

(maxT, Figure S6). Correcting for two principal components only

marginally affects the performance of our methods: AUC values

increased by ,0.6% for both CD and T1D.

Associated Genes
All genes discussed here only marginally change their rank or p-

value after correcting for two principal components or when

considering LD for the SNP to gene assignment. For CD we find 7

out of 39 known disease genes (true positives) within the top 30

genes when we rank all genes based on pemp values (derived from

maxT). We use their gene-wide test statistics to resolve ties when

pemp values are identical for two or more genes (Table 3). The genes

STAT3 (maxT rank 27) and SBNO2 (maxT rank 26) are located

within known disease loci, but are not part of the true positive list

because the association signal extends over several genes [17].

Both loci did not reach genome-wide significance in the original

WTCCC study and their association was only confirmed in a

more recent large-scale meta-analyses. STAT3 and SBNO2 can be

linked to the IL10/STAT3 anti-inflammatory pathway [29], which

has been implicated with CD [2,17,30].

Another promising candidate for CD might be DAG1 (dystrog-

lycan 1), ranked 23rd for maxT. It is located within a large LD

block whose association has been replicated and that encompasses

about 35 genes [17]. DAG1 is a cell surface receptor which is used

by several known pathogens [31,32] and there has been spe-

culation about a role for DAG1 in the uptake of Mycobacterium avium

ssp. paratuberculosis and the aetiology of Crohn’s Disease [33].

For T1D five out of 27 known disease genes are within the top

30 (based on maxT, Tables S3 and S4). Of the top 30 genes, 14 fall

into a large LD region on chromosome 12 (position 111,348,628

to position 112,947,717), which contains 15 genes. According to

Todd et al. [34] the most probable causal gene for this region is

SH2B3. The authors detected a highly associated non-synonymous

SNP in exon 3 of SH2B3, which had not been genotyped in the

WTCCC study [16]. Two SNPs that were genotyped in the

WTCCC are assigned to SH2B3 and show moderate association

(p = 361025 and p = 761024). Since 40 other SNPs in the region

show stronger association, SH2B3 is only ranked 26 (by maxT).

Figure 5. Receiver Operating Characteristic (ROC) curves for Crohn’s Disease (CD) and Type 1 Diabetes (T1D). To assess the
performance of different methods to combine test statistics we plot the proportion of confirmed disease genes (True Positive Rate) against their rank
within the whole set of genes (False Positive Rate).
doi:10.1371/journal.pone.0020133.g005
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Discussion

Based on GWAS data for two common diseases we present

three different methods to combine individual test statistics at a

gene level. For all methods the gene-wide test statistic is correlated

with the number of SNPs per gene. Based on permutations of the

disease status we derive an empirical p-value for each gene and

show that it is controlled for the number of SNPs within the gene.

To assess the performances of the pemp methods we derive ROC

curves based on two sets of disease genes that were replicated

in the most recent meta-analyses [17,18]. The pemp methods

distinguish different genetic architectures underlying a disease: for

maxT a single mutation within a gene contributes to the disease

(i.e. one SNP within a gene shows association); for meanT muta-

tions spread all over the gene contribute to the disease (i.e. all or

many SNPs within a gene show association): in the case of topQ

only a few mutations within a gene contribute to the disease (i.e. a

subset of the SNPs within a gene show association). All three

methods performed substantially better than expected by chance

at identifying these genes, thus justifying our approach. The

performances of the three methods were similar, demonstrating

the robustness of the permutation approach. This is also reflected

by the correlations between empirical p-values for each method

for the top 500 genes. For some genes however, results can vary

across the methods, as illustrated by ZNF365 (Table 2). To

identify all potentially associated genes, results from all methods

should be considered. As the methods are correlated, integration

results in a moderate increase in the number of genes. For

example, the union of the top 500 genes for all three methods

consists of 678 genes.

In this work we perform gene-wide analyses on two indepen-

dent GWAS datasets. We observe the same overall properties for

gene-wide test statistics and pemp-values. Furthermore for both

datasets our methods successfully reproduced known disease asso-

ciations showing the robustness of our approach. In addition to the

methods presented here other methods have been proposed,

including multi-marker association tests [35,36,37,38] and varia-

tions [39,40,41] of Fisher’s method to combine p-values [42].

Recently, two studies proposed approaches to control for con-

founding factors (e.g. number of SNPs per gene) which do not

Table 3. The top 30 ranked genes for Crohn’s Disease (CD) using the maxT method.

HGNC symbol Chr location Region (Mb) n p-value maxT p-value meanT p-value topQ rank maxT rank meanT rank topQ

C1orf141 1p31 67.56-67.59 26 2.0E-06 8.7E-04 6.0E-06 9 60 9

IL23R 1p31 67.63-67.73 21 .2.0E-06 .2.0E-06 .2.0E-06 3 4 3

IL12RB2 1p31 67.77-67.86 17 6.0E-06 1.4E-03 6.8E-04 10 76 54

ATG16L1 2q37 234.16-234.20 11 .2.0E-06 .2.0E-06 .2.0E-06 2 1 1

USP4 3p21 49.31-49.38 5 2.1E-04 1.0E-04 1.1E-04 28 22 23

TCTA 3p21 49.45-49.45 2 1.1E-04 2.0E-06 1.1E-04 21 8 22

AMT 3p21 49.45-49.46 3 7.1E-05 2.0E-06 7.1E-05 19 7 17

DAG1 3p21 49.51-49.57 4 1.2E-04 2.4E-05 1.2E-04 23 14 24

BSN 3p21 49.59-49.71 13 1.6E-05 2.9E-04 1.6E-05 13 32 13

APEH 3p21 49.71-49.72 1 7.3E-05 7.3E-05 7.3E-05 20 19 18

IP6K1 3p21 49.76-49.82 1 2.2E-04 2.2E-04 2.2E-04 29 27 31

SLC22A5 5q31 131.71-131.73 9 1.4E-05 3.3E-04 1.4E-05 12 35 12

C5orf56 5q31 131.75-131.80 13 2.0E-05 4.0E-06 6.0E-06 15 10 8

IRGM 5q33 150.23-150.23 5 .2.0E-06 .2.0E-06 .2.0E-06 8 2 6

ZNF300 5q33 150.27-150.28 10 .2.0E-06 2.0E-06 .2.0E-06 6 9 7

TRIM10 6p21 30.12-30.13 2 1.9E-04 6.6E-04 1.9E-04 25 51 26

HLA-DQB1 6p21 32.63-32.63 11 2.8E-05 3.8E-04 2.1E-04 16 39 29

HLA-DQA2 6p21 32.71-32.72 29 1.1E-04 1.2E-05 1.6E-05 22 12 15

C7orf33 7q36 148.29-148.31 13 2.4E-04 4.6E-04 1.0E-04 30 42 21

LOC100130652 10p15 3.87-3.87 24 1.4E-04 8.8E-02 4.1E-02 24 1,600 809

ZNF365 10q21 64.13-64.43 91 5.8E-05 4.1E-03 9.6E-04 18 149 67

NKX2-3 10q24 101.29-101.30 26 .2.0E-06 .2.0E-06 .2.0E-06 5 5 5

SNX20 16q12 50.70-50.72 3 1.2E-05 5.4E-05 1.2E-05 11 17 11

NOD2 16q12 50.73-50.77 13 .2.0E-06 .2.0E-06 .2.0E-06 1 3 2

CYLD 16q12 50.78-50.84 16 .2.0E-06 .2.0E-06 .2.0E-06 4 6 4

STAT3 17q21 40.47-40.54 13 2.1E-04 2.0E-04 8.5E-05 27 26 19

PTPN2 18p11 12.79-12.88 20 .2.0E-06 7.9E-06 6.0E-06 7 11 10

SBNO2 19p13 1.11-1.17 3 2.0E-04 1.9E-04 2.0E-04 26 24 27

RSHL1 19q13 46.30-46.32 1 1.6E-05 1.6E-05 1.6E-05 14 13 14

ZGPAT 20q13 62.34-62.37 1 3.4E-05 3.4E-05 3.4E-05 17 15 16

Genes are ordered by chromosome and genomic position; n denominates the number of SNPs per gene. The last three columns show the corresponding ranks for the
three methods. italics: genes that are within the true positive list.
doi:10.1371/journal.pone.0020133.t003
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require genotyping data [12,43]. Further studies will be required

to determine how these methods compare.

An open problem that still has to be addressed is the effect of

LD. Correlation between the SNPs of a gene can impact the

combined test statistic for meanT and topQ method. Because

multiple associations can be caused by a single causal SNP a high

meanT or topQ might not reflect several independent associa-

tions. Correlation between the SNPs of a gene can therefore

change the nature of the method to combine test statistics.

Furthermore LD makes it difficult to allocate association signal to

the correct gene. A number of groups have proposed computa-

tional approaches to prioritize genes within LD blocks [6,44,45].

They have been shown to give reasonably good results and could

be combined with our approach.

Another approach is to use imputed genotypes, which will

increase the density of SNPs and therefore the proportion of genes

that are captured. Hong et al. [9] were able to include over 800

additional genes (5%) in their gene-wide analysis of GWAS data,

but levels of statistical significance for most other genes remain

unchanged compared to using genotyped SNPs only. Assigning

SNPs to genes is not straight forward as regulatory elements such

as enhancers can be many kilobases away from the transcribed

region. In addition some disease-associated variants are located in

so-called gene deserts that cannot be linked to protein-coding

genes or any other functional elements. Ultimately functional

studies are necessary to determine which gene is implicated in a

disease process. The methodology demonstrated here is instru-

mental in automatically identifying the relevant genes that might

be implicated in inherited disorders and provides an unbiased

ranked list of genes for experimental validation.

Currently GWAS are moving from microarray based technol-

ogy towards next-generation sequencing (NGS). NGS, in princi-

ple, allows for the identification of all genetic variants. As the

number of genetic variants in a given individual is far higher [46]

than the number of SNPs genotyped using microarray technology,

the number of tests is going to increase dramatically. There is a

need for new analytical methods that combine association signals

over several genetic variants or all variants within a gene, par-

ticularly for rare variants which may individually lack power to

show significant association. Testing for combined association of

all rare variants within a gene overcomes this problem, as

demonstrated for simulated data and sequence data of previously

known disease genes [47,48,49].

With the emergence of next-generation sequencing, GWAS will

increasingly be analysed on gene level. Gene-level association

measurements allow the application of gene-set enrichment analysis

and related methods, which will ultimately improve the under-

standing of the underlying molecular mechanism. The methods

proposed here provide an accurate and powerful approach to

summarise evidence for association within genes and could be used

to design functional follow-up studies.

Supporting Information

Figure S1 Confounding effect of the number of SNPs per
gene (Type 1 Diabetes). Multiple test statistics are combined for

each gene using three different methods (maxT, meanT, topQ). For

each method, the gene-wide test statistic is correlated with the

number of SNPs per gene. For these histograms, genes are binned

according to their gene-wide test statistic (left axis). The red dots

show the mean number of SNPs per gene for every bin (right axis).

(TIFF)

Figure S2 Distribution of empirical p-value (pemp) for
Type 1 Diabetes from 500,000 permutations of the

disease labels. Genes were assigned to 50 bins according to

their pemp. Histogram shows the number of genes with pemp values

(left axis). The red line shows the mean number of SNPs per gene

for every bin (right axis). In contrast to the gene-wide test

statistics we observe no correlation of the number of SNPs per

gene with pemp for any method. We observe an increase of genes

with very low pemp values caused by the actual association signal.

(TIFF)

Figure S3 Empirical p-values vs. uncontrolled p-values
(Type 1 Diabetes). For each gene the pemp is plotted against the

uncontrolled p-value (based on the gene-wide test statistic). Each

point represents a gene and is coloured according to the number of

SNPs assigned to a gene (n). Genes with few SNPs have pemp values

similar to the uncontrolled p-value and therefore cluster along the

diagonal. For genes with higher number of SNPs the distribution

depends on the method to combine test statistics.

(TIFF)

Figure S4 Distribution of the number of SNPs assigned
to genes. We assigned SNPs on the Affymetrix 500K genotyping

array to protein-coding genes. SNPs were assigned to a gene if they

are located within the transcribed region or within a 40 kilobase

flanking window around the transcribed region. In addition SNPs

in linkage disequilibrium (LD, r2.0.8) with these SNPs were

included.

(TIFF)

Figure S5 Effect of Linkage Disequilibrium (LD). Gene

ranks after assigning SNPs to genes based on genomic distance

only are plotted against gene ranks after assigning SNPs to genes

based on genomic distance and linkage disequilibrium (LD, r2.

0.8). The top 500 ranks are compared for CD and T1D and all

three methods to derive pemp-values.

(TIFF)

Figure S6 Effect of Population Stratification. Gene ranks

based on an armitage trend test are plotted against gene ranks

based on logistic regression and adjusting for two principal

components. The top 500 ranks are compared for CD and T1D

and all three methods to derive pemp-values.

(TIFF)

Table S1 Pairwise Spearman rank correlation for the
different methods to combine test statistics before and
after controlling for multiple hypothesis testing for
Crohn’s Disease. For the correlation the top 500 genes were

considered.

(DOC)

Table S2 Pairwise Spearman rank correlation for the
different methods to combine test statistics before and
after controlling for multiple hypothesis testing for Type
1 Diabetes. For the correlation the top 500 genes were

considered.

(DOC)

Table S3 Replicated Disease Genes for Type 1 Diabetes
(T1D) and their ranks for each method.

(DOC)

Table S4 The top 30 genes for Type 1 Diabetes (T1D)
ranked using the maxT method. Genes are ordered by

chromosome and genomic position; n denominates the number of

SNPs per gene. The last three columns show the corresponding

ranks for the three methods. italics: genes that are within the true

positive list.

(DOC)
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