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Simple Summary: Two-thirds of breast cancer patients present an estrogen receptor–positive tumor
at diagnosis, and the main treatment options for these patients are endocrine therapies such as
aromatase inhibitors, selective modulators of estrogen receptor activity or selective estrogen receptor
down-regulators. Although endocrine therapies have high efficacy in early-stage breast cancers, the
failure of the therapeutic response to these hormonal treatments remains the major clinical challenge.
Recently, extracellular vesicles (EVs) have emerged as a novel mechanism of drug resistance. Indeed,
EVs isolated from tumor and stromal cells act as key messengers in intercellular communications
able to propagate traits of resistance and/or educate the microenvironment to sustain a breast
cancer resistant phenotype. Understanding the EV-mediated molecular mechanisms involved in
hormonal resistance can provide the rationale for novel and effective treatment modalities and allow
for the identification of potential biomarkers to monitor therapy response in ER-positive breast
cancer patients.

Abstract: Breast cancer is the most common solid malignancy diagnosed in females worldwide,
and approximately 70% of these tumors express estrogen receptor α (ERα), the main biomarker of
endocrine therapy. Unfortunately, despite the use of long-term anti-hormone adjuvant treatment,
which has significantly reduced patient mortality, resistance to the endocrine treatments often
develops, leading to disease recurrence and limiting clinical benefits. Emerging evidence indicates
that extracellular vesicles (EVs), nanosized particles that are released by all cell types and responsible
for local and systemic intercellular communications, might represent a newly identified mechanism
underlying endocrine resistance. Unraveling the role of EVs, released by transformed cells during
the tumor evolution under endocrine therapy, is still an open question in the cancer research area
and the molecular mechanisms involved should be better defined to discover alternative therapeutic
approaches to overcome resistance. In this review, we will provide an overview of recent findings on
the involvement of EVs in sustaining hormonal resistance in breast cancer and discuss opportunities
for their potential use as biomarkers to monitor the therapeutic response and disease progression.

Keywords: breast cancer; endocrine resistance; extracellular vesicles; exosomes; targeted therapies

1. Introduction

Breast cancers are heterogeneous and dynamic diseases classified into molecularly
distinct subtypes based on the expression of estrogen receptor (ER), progesterone receptor
(PR) and human epidermal growth factor receptor 2 (HER2), which influence the clinical
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outcomes and the therapeutic approaches [1]. Approximately two-thirds of all breast
cancers express the ER (ER-positive) and depend on its functionality for their proliferation
and survival. ER is a member of the nuclear hormone receptor superfamily that, as a
ligand-activated transcription factor, regulates the expression of target genes by binding
with specific estrogen response elements (EREs), termed “classical” genomic activity [2].
However, estrogen binding to the receptor can also activate different molecular mecha-
nisms termed “nonclassical” ER-mediated transcriptional regulation [3–5]. This occurs via
ERE-independent signaling in which ER interacts with other transcription factors, such as
activator protein-1 (AP-1), specificity protein 1 (Sp1) and nuclear factor-κB (NF-κB), thus
modulating downstream gene expression [3,4]. Moreover, ER activity can be mediated in
a ligand-independent manner by a functional cross-talk with growth factor (GF) signal-
ing pathways able to induce post-transcriptional ER modifications (e.g., phosphorylation,
acetylation, methylation) that in turn regulate receptor activity [6–8]. Considering the
crucial role of the estrogen/ER axis in breast cancer biology, the endocrine-based thera-
pies are currently the primary treatment used in ER-positive breast cancer patients. The
therapies include inhibitors of the aromatase enzyme (AIs, e.g., anastrozole, letrozole
and exemestane), selective ER modulators (SERMs, e.g., tamoxifen and raloxifene) or
selective ER downregulators (SERDs, e.g., fulvestrant) [9,10]. Endocrine therapies have
high efficacy in early-stage breast cancers, and clinical benefit is achieved in about 50%
of metastatic tumors [11,12]. However, despite the high sensitivity of ER-positive breast
cancer subtypes to endocrine therapies, a large number of patients result resistant to these
therapeutic interventions, experiencing disease recurrence either during or after comple-
tion of treatments [10]. Although several mechanisms have been proposed to contribute
to the emergence of resistant phenotypes, the complete characterization of the drivers of
endocrine resistance in breast cancer is still an open question to explore [13].

Recently, it has become apparent that secreted extracellular vesicles (EVs), as key
determinants of cell-to-cell communication, play a pleiotropic role in a wide variety of
physiological and pathological processes, including carcinogenesis. EVs are nanosized
particles, enclosed within a phospholipid bilayer membrane, that based on their size
and cellular origin can be divided into subgroups of “small” vesicles, called exosomes,
vesicles that are slightly larger (microvesicles/ectosomes) and apoptotic bodies [14,15].
EVs, released both by normal and neoplastic cells are able to modulate the phenotypic
behavior of recipient cells by transferring their genetic and molecular cargo. Current
research reported that EVs regulate the complex intercellular pathways involved in breast
cancer tumorigenesis from tumor initiation and progression towards metastatic disease
and drug resistance [16]. Indeed, data from pre-clinical and clinical specimens’ studies
indicate that EVs secreted from both tumor and stromal cells through their functional cargo
(proteins, mRNAs, miRNAs, DNAs) contribute to breast cancer drug resistance, regulating
several processes, including cell survival, epithelial–mesenchymal transition, a stem-like
phenotype, education of the tumor microenvironment and drug metabolism [17,18]. There-
fore, understanding the EV-mediated molecular mechanisms and signaling pathways that
promote therapy resistance and identifying potential biomarkers to predict and monitor
the therapeutic response are necessary for a more effective breast cancer treatment.

Here, we will review the emerging data in understanding the role of EVs in the
mechanisms of resistance to endocrine manipulation and to the alternative strategies
implemented to overcome endocrine resistance in ER-positive breast cancer. Given the lack
of standardized nomenclature and isolation protocols for a large family of vesicles, we will
use the term EVs to refer to this heterogeneous population throughout this review.

2. Overview of Extracellular Vesicles

Extracellular vesicles (EVs) are multi-signal messengers naturally released by all cell
types into the extracellular space that can be recovered from common biological fluids, such
as blood, urine, breast milk, seminal fluids, saliva and malignant effusion [19–24]. Initially
observed in plasma by Chargaff and West in 1946 as platelet-derived particles and then
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described by Wolf in 1967 as “platelet dust”, the EVs are now well recognized as key players
in intercellular communication in both physiological and pathological conditions. The
generic name “extracellular vesicles” defines a large population of lipid bilayer-enclosed ex-
tracellular structures that can be classified on their physical and biochemical characteristics,
cellular source and biogenesis pathways. Based on the “Minimal Information for Studies of
Extracellular Vesicles” (MISEV) guidelines [15,25], the EV population can be divided into
subgroups of “small” vesicles/exosomes, microvesicles/ectosomes and apoptotic bodies.
Particularly, microvesicles (MVs) and exosomes are the two major subtypes of EVs that
have received considerable attention in recent years for their ability to induce phenotypic
reprogramming in recipient cells [26]. MVs or ectosomes represent the larger EV popula-
tion (100–1000 nm in diameter) that bud directly from the plasma membrane. Exosomes,
the smallest subtype of EVs (30–150 nm in diameter) generated within endocytic compart-
ments, are secreted into the extracellular space after the fusion of multivesicular bodies
(MVBs) with the plasma membrane. Exosome biogenesis can be driven by the activity of
the Endosomal Sorting Complex Required for Transport (ESCRT) machinery [27,28], and
many pieces of evidence also suggest the existence of an ESCRT-independent pathway that
involves tetraspanins, lipids and RabGTPases [29]. The mechanism of EV biogenesis can
be modulated by different extracellular conditions, such as hypoxia, the Ca2+-dependent
pathway, growth factors and adipokines [30–33]. EV cargo is composed of a common
subset of proteins involved in membrane transport and fusion processes, such as Rab
GTPases, annexin, tetraspanins (CD9, CD63, CD81), integrins, adhesion molecules, heat
shock proteins, enzymes, matrix metalloproteinases, glycoprotein receptors and immune
regulator molecules (MCH-I and -II), but also includes selected proteins, lipids and nucleic
acids that reveal the unique molecular signature of the cells of origin [29,34].

The release of EVs is increased in cancer [35,36]. Particularly, it has been reported in
breast cancer that the secretion of EVs was significantly higher in transformed cells than in
normal mammary epithelial cells [37]. Similarly, analysis of particle concentration revealed
an increase in EV number in the plasma of patients with stage I-IV breast cancer compared
to healthy control subjects, while no significant differences were found between the EV
number of “in situ” breast cancer and the control group [38]. More recently, Stevic et al.
reported an increased amount of vesicles in blood samples of women with Triple Nega-
tive Breast Cancer compared to the number of vesicles in plasma samples from healthy
women [39]. Overall, these findings suggest the possibility that more aggressive breast
cancers could release a large amount of vesicles, but the comparison between the amounts
of circulating EVs at different stages of disease should be better defined and deserves
more investigations. Breast tumor-derived EVs have been reported to have a role in all
cancer hallmarks controlling a wide range of pathways and regulating gene expression
by transferring their intra-vesicular content (proteins, lipids, enzymes, metabolites, DNA,
mRNA, miRNA, long and short non-coding RNA) into recipient cells [40]. In addition
to regulating invasion, vessel formation, pre-metastatic niche preparation, and immune
surveillance escape, the bioactive molecules carried by EVs have been proposed as impor-
tant players in the mechanisms of resistance to therapeutic treatments [41,42] and might
represent promising candidate biomarkers for breast cancers [43,44].

3. EVs and Therapeutic Resistance in ER-Positive Breast Cancer

Endocrine-targeted treatments represent the mainstay of the standard care both in
the adjuvant and recurrent settings of ER-positive breast cancer patients. However, the
reduction in the effectiveness of endocrine regimens is one of the major obstacles to suc-
cessful treatment and still represents an essential clinical challenge for the management of
ER-positive disease. Commonly, resistance has been classified into primary (or “de novo”
resistance), where insensitivity already exists before treatment, and secondary (or acquired
resistance) that develops in patients initially responding to endocrine therapy. The mecha-
nisms of endocrine resistance in breast cancer are very complex and a plethora of molecules
and escape signaling pathways have been involved [45,46]. Endocrine insensitivity due
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to the loss of ER expression has been reported in less than 20% of metastatic breast can-
cers [47,48], while the majority of endocrine-resistant tumors still retain the ER expression
and activity during the development of resistance [49,50]. Indeed, ER signaling primarily
mediated by ligand-independent receptor activation [51], remains crucial in mediating
resistance. Several mechanisms are responsible of sustaining ER activity in resistance
including: (i) an increased expression of the receptor itself [52]; (ii) the gain of function
mutations in ESR1 gene [53–58]; (iii) an altered interaction of the receptor with coregula-
tors (coactivators and/or corepressors) [59–61]; (iiii) an increased bidirectional cross-talk
between ER and growth factor receptor/oncogenic kinase signaling pathways [62]. In
addition, growth factor signaling can contribute to the transcriptional repression of ER
gene expression resulting in endocrine resistance [63–65]. The main described mechanisms
involved in these molecular events are summarized in Figure 1.

Furthermore, resistance to endocrine therapies could be associated with the develop-
ment of cellular characteristics similar to those of cells undergoing epithelial-to-mesenchymal
transition (EMT) [66], with cells expressing a cancer stem-like phenotype [67,68], or remain-
ing dormant in a quiescence state for a long time in the body before re-awakening [69].
Indeed, it has been demonstrated that dormant cells express features that support their
survival despite anti-proliferative endocrine therapy [70]. Moreover, a growing amount
of evidence supports the concept that extrinsic resistance might arise from the interplay
between tumor cells and several components of the tumor microenvironment, including
cancer-associated fibroblasts (CAFs), inflammatory and immune cells, extracellular ma-
trix (ECM), soluble factors and EVs [71–73]. Despite the advances in the knowledge of
resistance mechanisms, recently the clinic-genomic characterization of endocrine-resistant
advanced breast cancer revealed the lack of a known mechanism of resistance to hormonal
therapy in 60% of analyzed tumors [13]. Nowadays, it has become increasingly clear
that EV-mediated cell communication represents a new identified mechanism underlying
endocrine resistance. The key findings outlined by the current literature in this field are
summarized in Table 1.

Table 1. Mechanisms underlying endocrine resistance in breast cancer mediated by extracellular vesicles (EVs).

Source of EVs EV Types Molecules Type of Resistance Effects Ref.

MCF-7 cells Exosomes Unknown Tamoxifen Decreased ERα activity, increased of
Akt, AP-1, NF-kB and SNAIL1 activity [74,75]

MCF-7-LTED cells Exosomes Unknown Aromatase inhibitors Increased exosome release from
resistant cells [76]

TAMR-MCF-7 cells Exosomes miR-221/222 Tamoxifen Decreased P27 and ERα expression [77]

CAFs MVs miR-221 Fulvestrant Increased CSC population [78]

LCC2 cells Exosomes lncRNA UCA1 Tamoxifen Increased cell viability, reduced
apoptosis [79]

TAMR-MCF-7 cells sEVs Unknown Tamoxifen Increased cell migration [80]

CAFs EVs mtDNA Fulvestrant
Promoted escape from metabolic

quiescence, increased CSC
self-renewal

[81]

BT474 cells
Serum of BC patients Exosomes Unknown Trastuzumab Reduced HER-2 monoclonal antibody

bioavaibility [82]

Serum of HER-2-positive
BC patients EVs TGF-β1, PD-L1 Trastuzumab Increased immune evasion [83]

Serum of BC patients Exosomes lncRNA SNHG14 Trastuzumab Reduced apoptosis [84]

BT474-TR cells Exosomes lncRNA
AGAP2-AS1 Trastuzumab Inhibited trastuzumab-induced cell

cytotoxicity [85]

BT474-TR cells Exosomes lncRNA
AFAP1-AS1 Trastuzumab Increased ERBB2 gene translation [86]

BT474 cells Exosomes miR-567 Trastuzumab Reversed trastuzumab resistance [87]
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Table 1. Cont.

Source of EVs EV Types Molecules Type of
Resistance Effects Ref.

MCF-7 cells T47D cells Exosomes miR-432-5p Palbociclib Promoted suppression of TGF-β
pathway [88]

EVs, extracellular vesicles; MVs, microvesicles; sEVs, small extracellular vesicles; ERα, estrogen receptor α; AP-1, activation protein-1; NF-
kB, nuclear factor-κB; SNAIL1, snail homolog 1; MCF-7-LTED, MCF-7 long-term estrogen-deprived; P27, cyclin-dependent kinase inhibitor
P27; TAMR-MCF-7, tamoxifen-resistant MCF-7; CSCs, cancer stem cell-like; CAFs, cancer-associated fibroblasts; LCC2, tamoxifen-resistant
subline of the MCF-7 human breast cancer cell; BC, breast cancer; lncRNA UCA1, long non-coding RNA urothelial cancer associated 1;
mtDNA, mitochondrial DNA; TGF-β1, transforming growth factor beta 1; PD-L1, programmed death-ligand 1; SNHG14, small nucleolar
RNA host gene 14; AGAP2-AS1, AGAP2- antisense RNA1; AFAP1-AS1, actin filament-associated protein 1 antisense RNA1; ERBB2, human
epidermal growth factor receptor 2; miR, microRNA; BT474-TR, BT47D trastuzumab resistant.

3.1. EVs and Hormonal Resistance

Semina et al. initially found that co-culturing estrogen-dependent MCF-7 breast cancer
cells with the MCF-7 cell line resistant to tamoxifen (MCF7/T) induced horizontal hormone
resistance in hormone-sensitive cells as a result of intercellular interaction, suggesting the
possible involvement of EVs in the progression of hormonal resistance [74]. More recently,
the same authors demonstrated that long-term treatment of MCF-7 breast cancer cells
with EVs from MCF7/T caused the partial resistance of sensitive cells to this antiestrogen.
These effects were associated with a decreased ERα activity along with an activation of
transcriptional factors involved in growth, apoptosis and EMT processes, such as AP-1,
NF-κB and SNAIL1 in both the primary resistant cells and the cells with the EV-induced
resistance. Besides, a marked increase in the expression and activity of Akt in all of the
resistant cells compared to the parental MCF-7 cells was shown, and exposure to a PI3K
inhibitor prevented the EV-induced resistance, highlighting the involvement of PI3K/Akt
signaling in the EV-transferring resistance [75]. Recently, it has been shown that in the
MCF-7-LTED (Long-Term Estrogen-Deprived) subline, modelling resistance to Aromatase
Inhibitors (AIs) is associated with an enhanced EV production, which appears to be related
to an increased Rab GTPase expression. Quantitative proteomic analysis showed an
enrichment of proteins frequently identified in vesicles in MCF-7-LTED compared to MCF-
7 cells. Interestingly, the most up-regulated proteins in MCF-7-LTED cells belong to the
Rab GTPase family, important regulators of vesicle biogenesis and secretion in cancer [76].

EVs, released by both tumor and stromal cells, can confer resistance to therapy-
sensitive cancer cells by transmitting miRNAs, and small non-coding post-transcriptional
regulators of gene expression miRNAs can accumulate in EVs, where they are protected
from cleavage by RNAses in the blood [89]. EVs released from tamoxifen-resistant MCF-
7 cells by transferring miR-221/222 have been reported as a mechanism of tamoxifen
resistance. It has been demonstrated that the crucial vesicle component miR-221/222
can effectively reduce expression of their target genes P27 and ERα, leading to enhanced
tamoxifen resistance [77]. More recently, Sansone et al. demonstrated that CAF-derived
EVs, by transferring miR-221 to breast cancer cells, lead to an expansion of the cancer stem
cell-like population promoting hormone therapy resistance (HTR). Indeed, they found in
patients with HTR metastatic disease a higher expression of miR-221 in circulating EVs
compared with healthy controls. Mechanistically, they reported that autocrine IL6/Stat3
signaling contributes to the proliferation of CAFs and to the biogenesis of oncomiR-221hi

EVs. Interestingly, the depletion of murine CAFs in patient-derived xenografts from
breast cancer bone metastases restored sensitivity to HT associated with a reduction in
the cancer stem cell-like phenotype. On the contrary, in HT-sensitive cancer cells, both
murine and human CAFs induced “de novo” HT resistance through the induction of the
Notch-mediated breast cancer stem cell-like phenotype that expressed low levels of ER [78].
The EV-mediated transfer of long non-coding RNA (lncRNA) has been demonstrated as an
additional mechanism of tamoxifen resistance. Xu et al. found increased levels of lncRNA
urothelial cancer-associated 1 (UCA1) in the tamoxifen-resistant variant of MCF-7, termed
LCC2, and also in EVs released from these cells. MCF-7 cells pretreated with EVs/LCC2
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exhibited, after tamoxifen treatment, an enhanced cell viability, a reduced expression of
cleaved caspase-3 and a lower ratio of apoptosis. Knockdown of UCA1 in LCC2 cells clearly
indicated that this lncRNA plays a crucial role in inducing tamoxifen-resistance. Indeed,
vesicles from UCA1-knockdown LCC2 cells showed a significantly reduced capability to
promote tamoxifen resistance in MCF-7 cells [79].

Figure 1. Representation of the main mechanisms sustaining endocrine resistance mediated by estrogen receptor α (ERα).
The structural domains of ERα contain the ligand-independent activation function (AF-1) in the amino-terminal region, a
DNA-binding domain (DBD), and a carboxy-terminal hormone-binding domain (HBD), containing the ligand-dependent
activation function (AF-2). In the classical ERα activation, estradiol binds to its cognate receptor in the cytoplasm, leading to
dimerization, nuclear translocation and interaction with specific DNA sequences (ERE, estrogen responsive element) in
target genes (ligand-dependent activation). The ERα can also bind to transcription factors such as activation protein 1 (Ap1)
and specificity protein 1 (Sp1) activating gene target transcription (non-classical activation). ERα signaling activation can
also occur through second messengers downstream of growth factor signaling pathways (ligand-independent activation).
(a) Altered ERα expression including either loss of ERα or increased ERα expression. (b) Gain of function mutations in
the ESR1 gene. The most characterized mutations within ERα were reported. The K303R somatic mutation, in the hinge
domain, allows ERα to be more highly phosphorylated by Protein Kinase A (PKA) and Protein Kinase B (PKB/Akt),
while the Y537N, Y537S, and D538G mutations, in the HBD/AF-2 domain, allow the receptor to be phosphorylated by
Mitogen-activated protein kinase (MAPK), resulting in a ligand-independent constitutive activation of the receptor. (c) An
increased bidirectional cross-talk between wild-type or mutated ERα and growth factor receptors (epidermal growth factor
receptor-EGFR, the human epidermal growth factor receptor 2-HER2, the insulin-like growth factor receptor 1-IGFR 1)
induces several downstream phosphorylation events that affect ERα activation, and an altered interaction of ER with
coregulators affects ER transcriptional activity in a ligand-independent manner sustaining endocrine resistance. Growth
factor signaling can also contribute to endocrine resistance diminishing ESR1 gene expression.
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Several findings have shown that EVs are able to modulate the key steps of the
metastatic process [14]. A recent work reported a link between EVs and the P2X puri-
noreceptor 7 (P2X7) proposing a new mechanism of metastasis in tamoxifen-resistant
(TAMR) breast cancer cells. P2X7, a ligand-gated ion channel receptor activated by ATP,
is over-expressed in several tumors, including breast cancer, where it is involved in tu-
mor development and metastasis [90–92]. The authors reported that EVs isolated from
TAMR-MCF-7 cells increased their own migratory capabilities in a concentration-dependent
manner. Moreover, P2X7 antagonist decreased the number of secreted EVs and the protein
levels of CD63 in TAMR-MCF-7 cells, highlighting the crucial role of P2X7 in influencing
the EV production [80]. Sansone et al. have provided data supporting the hypothesis
that the horizontal transfer of mitochondrial DNA (mtDNA) from EVs regulates escape
from dormancy in hormonal therapy (HT)-resistant breast cancer leading to metastatic
progression. They found the full mitochondrial genome packaged in CAF-derived EVs
and in circulating EVs from patients with HT-resistant metastatic disease. Specifically,
CAF-derived EVs induced an escape from metabolic quiescence in both HT sensitive cells
or HT metabolically dormant populations. The horizontal transfer of mtDNA was observed
in cancer stem-like cells and associated with an increased self-renewal potential leading to
endocrine therapy resistance [81].

3.2. EVs and Therapeutic Strategies to Overcome Endocrine Resistance

Mechanisms of endocrine resistance involve extensive cross-talk between ER and
tyrosine kinase growth factor receptors and their downstream signaling pathways. Genetic
or epigenetic alterations in various components of the signaling pathways, such as over-
expression of human epidermal growth factor receptor 2 (HER2) and aberrant expression
of cell-cycle regulators, have been reported. Indeed, it is well established that ongoing
endocrine treatment can induce adaptive changes in breast cancer cells resulting in an
aberrant activation of growth factor-mediated proliferative and survival pathways such as
PI3K (Phosphoinositide 3-Kinase) Akt/mTOR (mechanistic target of rapamycin) and Rat
sarcoma viral oncogene (RAS)/Mitogen-activated kinase kinase (MEK)/MAPK which in
turn are able to induce an estrogen-independent receptor activation [93]. The benefit of
combining endocrine therapy with molecular targeted agents and signal transduction in-
hibitors has been the major focus of clinical trials to overcome or delay endocrine resistance
in ER-positive breast cancer [45].

3.2.1. EVs and HER2 Targeted Therapy

Multiple clinical and experimental observations have largely associated the high
expression and activation levels of epidermal growth factor receptor family signaling path-
ways, especially of the HER2, with lower therapeutic efficacy of endocrine therapy [94–97].
The membrane tyrosine kinase ERBB2 gene has been found amplified in ~25% of ER-
positive breast cancer, and clinical evidence revealed that these HER2-positive tumors
display the more aggressive behavior of the disease, resistance to hormonal therapy and
shorter overall survival [98–101]. These well-established contributions of epidermal growth
factor receptor signaling pathways in the development of resistance to endocrine therapies
represent the rationale behind combined treatments with endocrine therapy and selective
target inhibitors of growth factor signaling pathways [10,102]. Although treatment with
the anti-HER2 monoclonal antibody trastuzumab results in a good clinical response in
breast cancer patients, not all HER2-overexpressing tumors respond to these therapies and
many of these that initially respond later acquire resistance.

Some studies reported the involvement of EVs in promoting resistance to targeted
therapy. An initial study demonstrated the possibility that EVs affect sensitivity to HER2-
targeted therapy “in vitro” and “in vivo”. Particularly, it has been found that EVs isolated
either from the ER-positive BT474 cell line overexpressing HER2 or in breast cancer patients’
serum can directly bind to the anti-HER2 monoclonal antibody trastuzumab and reduce its
bioavailability [82]. Another study showed that HER2-targeted drug resistance is correlated
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with an increased amount of transforming growth factor beta 1 (TGF-β1) and programmed
death-ligand 1 (PD-L1) and resistance to the anti-tumor immune response. EVs carrying
these molecules can transfer phenotypic traits of cells of origin to drug-sensitive cells,
further promoting immune evasion. Moreover, in HER2-positive breast cancer patients,
EV-associated TGF-β1 levels correlate with response to HER2-targeted therapy, proposing
TGF-β1 as an EV-associated biomarker to monitor the treatment response [83].

EV transmitted non-coding RNAs may also contribute to the trastuzumab resistance. It
has been demonstrated that lncRNA small nucleolar RNA host gene 14 (SNHG14) was up-
regulated in trastuzumab-resistant ER-positive breast cancer cells. Extracellular lncRNA-
SNHG14 was able to be incorporated into vesicles, transferred to sensitive cells and induce
trastuzumab resistance by targeting Bcl-2/Bax signaling and thus inhibiting cell apoptosis.
Furthermore, the expression level of SNHG14 in circulating EVs was increased in patients
who exhibited resistance to trastuzumab, compared with those exhibiting a response,
suggesting lncRNA-SNHG14 in serum vesicles as a potential diagnostic biomarker for
breast cancer [84]. It has also been shown that an enhanced expression of lncRNA AGAP2
antisense RNA 1 (AGAP2-AS1) in transtuzumab-resistant ER-positive breast cancer cells
promotes resistance of recipient cancer cells through packaging into vesicles [85]. Similarly,
it has been evidenced that IncRNA actin filament-associated protein 1 antisense RNA 1
(AFAP1-AS1) induces trastuzumab resistance through binding with AU-binding factor 1
(AUF1) protein which enhanced the translation of the ERBB2 gene [86]. Moreover, Han et al.
utilizing publicly available miRNA expression profiling data of breast cancer, identified
miR-567 among the dysregulated miRNAs in trastuzumab-resistant cells. They found
that an increased miR-567 expression inhibited autophagy by targeting a key autophagy-
related protein (ATG5), thus reversing trastuzumab resistance of breast cancer, while the
knockdown of miR-567 expression induced resistance to anti-HER2 targeted therapy. In
addition, extracellular miR-567 is also able to reverse the trastuzumab resistance of recipient
cells [87].

3.2.2. EVs and CDK4/6 Inhibitors

Since the aberrant expression of cell-cycle regulators that contribute to the loss of cell
cycle control [103–106] has been reported as a mechanism of endocrine resistance, the highly
selective cyclin-dependent kinases 4/6 (CDK4/6) inhibitors (e.g., palbociclib, ribociclib
and abemaciclib) have emerged as powerful agents to overcome endocrine resistance and
have been approved in the metastatic setting for ER-positive/HER2-disease [107]. Despite
their clinical benefits, the useful biomarkers able to predict the response to these agents
are still lacking. Del Re et al. reported that mRNA expression of thymidine kinase 1 (TK1),
CDK4, 6 and 9 in plasma-derived vesicles of ER+/HER2-advanced breast cancer patients
can predict sensitivity to CDK inhibitor treatments. Particularly, they found that high
CDK4 mRNA levels in EVs are associated with the response to combined treatment of
palbociclib plus fulvestrant, while high mRNA levels of TK1 and CDK9 in plasma-derived
EVs are associated with resistance to palbociclib treatment [108]. Recently, a role for EVs in
mediating CDK4/6 therapy resistance has also been reported [88]. It has been demonstrated
that increased CDK6 expression is a hallmark of acquired resistance to CDK4/6 inhibitors
and that resistance is conferred through extracellular signalling mediated by EVs. At the
molecular level, the authors found that miR-432-5p in EVs transferred from resistant cells to
neighboring cells increases CDK6 levels by suppressing the transforming growth factor-β
pathway via SMAD4 knockdown, allowing cells to overcome G1 arrest [88]. The modalities
by which EVs may influence the therapeutic response in ER-positive breast cancers are
summarized in Figure 2.
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Figure 2. The proposed function of EVs secreted by breast cancer or stromal cells in endocrine treatment resistance. EVs,
by transferring their cargo in sensitive breast cancer cells, can confer traits of hormonal resistance by inducing signaling
pathways involved in survival, migration, invasion, epithelial mesenchymal transition (EMT), in sustaining the cancer
stem cell-like (CSC) phenotype and escape from dormancy. EVs can reduce the bioavailability of anti-HER2 mAb and
immune evasion promoting resistance to targeted therapy to overcome endocrine therapies’ failure. Finally, evaluation
of the molecular cargo of circulating EVs has promising value to discover potential biomarkers to predict the therapeutic
response in ER-positive breast cancer patients.

4. Conclusions

The occurrence of resistance to endocrine therapy in ER-positive breast cancer patients
still represents the major clinical failure. Considerable evidence suggests that EVs generated
from tumor cells in response to stress conditions such as therapeutic treatments might
communicate pro-survival messages into recipient cells transferring the ability to escape
endocrine treatment. Monitoring the changes in the bioactive molecule profiles of the tumor-
derived EVs during the adaptation to the treatment has the unique potential to depict in
real-time the dynamic plasticity of tumor evolution during the acquisition of a resistant
phenotype. Thus, increasing our understanding of EV-mediated hormonal resistance in ER-
positive breast cancers and the translation of these findings to the clinical application can
provide a novel and effective treatment modality for future cancer management. Moreover,
EVs seem to have high prospects as a potential liquid biopsy and hold great promise
for early diagnosis and staging of breast cancer. However, although the high potential
for the clinical use of EVs as molecular markers of disease has been suggested, some
issues for routinely working with them still persist due to their high variability in the
biological samples, which makes it difficult to establish a clinical cut-off, and the lack of a
highly sensitive analytical platforms able to avoid interference from contaminating factors.
Thus, to fully translate EV research into clinically reliable tools for cancer therapeutic
applications, the development of highly sensitive single tumor-EV detection methods are
still necessary. In addition, future pre-clinical studies are required to prove the “in vivo”
transfer of resistance by EVs to breast cancer cells along with clinical studies to validate
the putative EV markers associated with the endocrine-resistant phenotype. For instance,
to address this latter issue, longitudinal evaluation of circulating EVs in a larger set of
pre-and post-therapeutic intervention samples may help to define the useful biomarker
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to monitor the evolution of sensitivity to endocrine therapies in women with ER-positive
breast cancer.

Given the mounting evidence for the role of EVs in many aspects of breast cancer,
biology efforts in this field of cancer research hold great promise.

5. Review Criteria

Original articles published in the last two decades have been searched in PubMed,
using the following search terms: “extracellular vesicles and breast cancer”, “extracellular
vesicles and endocrine resistance”, “extracellular vesicles and tamoxifen resistance”, “ex-
tracellular vesicles and aromatase inhibitor resistance”, “extracellular vesicles and estrogen
receptor down regulators”. A similar search was performed using the term exosome in-
stead of extracellular vesicles. Furthermore, additional relevant original articles related to
the endocrine resistance mechanisms in breast cancer have been selected. All the articles
selected were English-language full-text papers.
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