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Abstract

A diverse panel of condensed tannins was used to resolve the confounding effects of size and

subunit composition seen previously in tannin-protein interactions. Turbidimetry revealed that

size in terms of mean degree of polymerisation (mDP) or average molecular weight (amw)

was the most important tannin parameter. The smallest tannin with the relatively largest effect

on protein aggregation had an mDP of ~7. The average size was significantly correlated with

aggregation of bovine serum albumin, BSA (mDP: r = -0.916; amw: r = -0.925; p<0.01; df =

27), and gelatin (mDP: r = -0.961; amw: r = -0.981; p<0.01; df = 12). The procyanidin/prodel-

phinidin and cis-/trans-flavan-3-ol ratios gave no significant correlations. Tryptophan fluores-

cence quenching indicated that procyanidins and cis-flavan-3-ol units contributed most to the

tannin interactions on the BSA surface and in the hydrophobic binding pocket (r = 0.677;

p<0.05; df = 9 and r = 0.887; p<0.01; df = 9, respectively). Circular dichroism revealed that

higher proportions of prodelphinidins decreased the apparent α-helix content (r = -0.941;

p<0.01; df = 5) and increased the apparent β-sheet content (r = 0.916; p<0.05; df = 5) of BSA.

Introduction

Condensed tannins (CT, syn. proanthocyanidins, Fig 1) occur as polyphenolic oligomers and

polymers in many fruits and in some vegetables [1], medicinal plants [2] and forage legumes

[3]. Some CT can have positive impacts on animal nutrition, health and welfare [3], and there

is now also considerable interest in their anthelmintic effects against gastrointestinal nema-

todes [4–9]. Recent research has shown that the integrity of the parasitic nematode cuticle

becomes distorted after exposure to CT [10]. This cuticle is largely composed of collagen-like

proline-rich proteins and structural proteins (cuticlins) [11, 12]. CT have a high affinity to pro-

line-rich proteins [13], which may explain the effect of CT on nematode cuticles.

Several different techniques exist for studying CT-protein interactions [14, 15] and each

probes different aspects. The initial molecular interactions can be assessed for example by
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nuclear magnetic resonance spectroscopy, electrospray ionisation mass spectrometry (ESI-

MS) or isothermal titration calorimetry (ITC) for hydrogen bonding, hydrophobic interac-

tions or for aromatic stacking [14, 15]; and as CT crystal structures are not yet available [16]

molecular modelling has also been employed to explore CT-protein interactions [17]. Subse-

quent cross-linking of these initial CT-protein complexes and their aggregation can be studied

by nephelometry, dynamic light scattering and turbidimetry; and precipitation by protein pre-

cipitation methods. In addition, the following parameters can be obtained: stoichiometry of

binding by ITC and MS [15], changes to protein structure by circular dichroism (CD) [17],

and binding affinity and accessibility to fluorophores such as tryptophan by fluorescence

quenching [18].

Despite a large number of previous studies on CT-protein interactions, it is still not clear,

which particular CT features contribute most to complex formation. One reason for this is the

presence of confounding effects within CT mixtures that can be found in plants. For example,

CT fractions isolated from sainfoin, a forage legume, yielded a positive correlation between the

mean degree of polymerisation (mDP) and the molar percentage of prodelphinidins (PD),

which prevented identification of the key factor(s) responsible for saturating the available

binding sites of bovine serum albumin (BSA) and gelatin [19]. According to another study,

mDP affected BSA and alfalfa leaf protein precipitation; however, this work used only PD-rich

Fig 1. Examples of condensed tannins and a galloylated flavan-3-ol. (A) a B-type condensed tannin; (B)

an A-type condensed tannin, epicatechin(4ß!8, 2ß!O!7)-epicatechin; and (C) a flavan-3-ol monomer,

epicatechin gallate.

doi:10.1371/journal.pone.0170768.g001
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fractions from white clover flowers and big trefoil leaves [20]. Other studies used a series or

mixtures of oligomeric procyanidins (PC) from cocoa beans composed of epicatechin units

only and showed that size was an important factor in CT-BSA precipitation [21] and binding

[22]. It has similarly been reported that binding to elastase increased with the size of PC oligo-

mers from grape seeds [17]. However, nephelometric studies on BSA, α-amylase and proline-

rich proteins showed that aggregation increased not only with increasing degree of polymeri-

sation [23] but also with galloylation of PC [13]. Some reports indicated that flavan-3-ol mono-

mers with galloyl groups [13, 24] or trans stereochemistry had higher affinity towards proline-

rich proteins [13]. In contrast, other studies could not correlate CT features with protein pre-

cipitation [25, 26].

Therefore, the aim of this work was to establish, which CT parameters contributed most to

aggregation upon binding to proteins. A large panel of CT was isolated in order to feature a

wide range of average sizes, PC/PD ratios and cis-/trans-flavan-3-ol ratios. Two model proteins

were used for the interaction studies; i.e. BSA, which is a relatively rigid globular protein; and

gelatin, which is a highly flexible proline-rich protein. Turbidimetry is particularly suited for

screening a large number of CT samples and can thus be used to investigate structure-activity

relationships [15]. In turbidimetry, the reduction in light transmission is measured, when a

stable, cloudy haze is formed [15] at the time of reaction. Here, we used turbidimetry in com-

bination with curve fitting to systematically explore the effect of a large number of CT samples

on protein aggregation. In addition, complementary studies used fluorescence quenching and

CD spectroscopy to assess the CT-BSA interactions. These techniques are commonly used to

study ligand-protein interactions [27–29].

Materials and Methods

Materials

Sephadex LH-20 was obtained from GE Healthcare (Little Chalfont, UK); acetone (analytical

reagent grade), acetonitrile (HPLC grade), dichloromethane (laboratory reagent grade), hex-

ane (GLC, pesticide residue grade) and methanol (HPLC grade) were from ThermoFisher Sci-

entific (Loughborough, UK). Bovine serum albumin (BSA, heat shock fraction, protease free,

fatty acid free, essentially globulin free,�98%, 66 kDa), gelatin (from bovine skin, Type B,

BioReagent, suitable for cell culture, ~225 g Bloom), citric acid monohydrate, trisodium citrate

dehydrate, BIS-TRIS (�98%), Tricine (�98%), sodium phosphate monobasic dihydrate and

polyvinylpolypyrrolidone (PVPP, ~110 μm particle size) were purchased from Sigma-Aldrich

(Poole, UK) and disodium hydrogen phosphate dihydrate from Fluka (Sigma-Aldrich, Poole,

UK). Deionised water was purified in an Option 3 water purifier (ELGA Process Water, Mar-

low, UK) and ultrapure water (MQ H2O) in a Milli-Q Plus system (Millipore, Watford, UK).

Plant Materials

Samples of medicinal plants and herbal products were obtained and prepared as described before

[2]: blackthorn flowers (Pruni spinosae flos), hawthorn flowers (Crataegi inflorescentia), heather

flowers (Callunae vulgaris flos), hop strobile (Lupuli flos),Tilia flowers (Tiliae inflorescentia), pine

buds (Pini gemmae), bilberry leaves (Myrtilli folium), birch leaves (Betulae folium), blackcurrant

leaves (no. 1) (Ribis nigri folium), cowberry leaves (Vitis idaeae folium), great water dock roots

(Hydrolapathi radix) and willow bark (Salicis cortex) were from Flos (Mokrsko, Poland); walnut

leaves (Juglandis folium) were from Kawon (Gostyń, Poland); and white clover (Trifolium repens)
flowers were from Zioła z Kurpi (Jednorożec, Poland) [2]. Flowering aerial parts of sainfoin

(Onobrychis viciifolia, var. Esparsette) were provided by Peter Davy (Barham, UK), hazelnut

(Corylus avellana) pericarps were supplied by Société Inovfruit (Musidan, France), blackcurrant
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(Ribes nigrum) leaves (no. 2) and redcurrant (Ribes rubrum) leaves were collected from Hildred’s

Pick-Your-Own Farm (Goring-upon-Thames, UK) [7]. Yellow iris (Iris pseudacorus) leaves were

collected in Bookham (Surrey, UK), cider apple beverage (‘Three Countries, premium strong dry

cider’, 5.5% alcohol) was obtained from Aston Manor Brewery Co Ltd (Aston, UK) and dried

cider apple powder (‘the original prestige cider kit’) was obtained from Gert Strand AB (Sweden).

Sainfoin was wilted overnight, freeze-dried and ground [2] to successively pass 8, 5 and 1 mm

sieves; hazelnut pericarps were ground to pass a 1 mm sieve; redcurrant and blackcurrant (no. 2)

leaves were air-dried and then ground to pass 5 and 1 mm sieves, yellow iris leaves were freeze-

dried and ground to pass 5 and 1 mm sieves. All plant materials were stored at room temperature

in the dark. CT from other plant materials were extracted, fractionated, analysed and character-

ised as already described: shea (Vitellaria paradoxa) meal was provided by AarhusKarlshamn

Sweden AB (Sweden) [4], cinnamon (Cinnamomum verum) bark was obtained from Dary

Natury (Grodzisk, Poland) [9], cocoa (Theobroma cacao) beans were obtained from Detox Your

World (RawCreation Ltd, Norfolk, UK) [7] and lespedeza (Lespedeza cuneata) pellet (leaf meal)

was from Sims Brothers Seed Company (Union Springs, AL, USA) [30].

CT Extraction

Hazelnut pericarps, pine buds and walnut leaves were de-fatted with hexane prior to extraction

[7]. Acetone/water (70% aqueous acetone, 250–500 mL) was used to prepare extracts from

plant materials (20–50 g) [2]. After evaporation of acetone, the aqueous extracts were frozen

overnight at -20˚C.

CT Fractionation

Aqueous extracts were fractionated on Sephadex LH-20 by gravity flow [7]. In brief, on the

day of fractionation the aqueous extracts were thawed, centrifuged for 3 min at 4500 rpm

(Jouan CR3i Multifunction Centrifuge, Thermo Electron Corporation, Basingstoke, UK) to

remove insoluble particles. The aqueous extract was applied to the resin, followed by a rinse

with H2O to remove sugars, flavanol monomers and other contaminants. CT fractions were

then eluted using acetone/water (30, 50 and 80% aqueous acetone) to obtain three CT frac-

tions: fraction 1 (F1), fraction 2 (F2) and fraction 3 (F3), respectively. Acetone was removed

on a rotary evaporator with a water bath at 35˚C and the remaining aqueous fractions were

freeze-dried. Hawthorn and blackthorn flowers were fractionated as described before [9].

The commercial cider (12 L) was degassed by stirring with a magnetic stirrer for 1 h, fol-

lowed by ethanol evaporation and sample concentration on a rotary evaporator and partially

freeze-dried due to the high sugar content. The sample was diluted in 10 L H2O prior to loading

on the Sephadex LH-20 resin, fractionated, freeze-dried and the fractionation was repeated.

CT Analysis

The CT fractions were derivatised with benzyl mercaptan, the thiolysis reaction products were

identified by LC-MS and quantified by RP-HPLC-DAD [2]. Due to low yields, F3 fractions

were analysed by RP-HPLC-DAD only. The great water dock root F1 and hazelnut pericarp F1

were also assayed in triplicates for free flavan-3-ols [2]. No free flavan-3-ols were detected in

F2 samples.

Calculation of CT Parameters

The mDP-values, PC/PD ratio and cis-/trans-flavan-3-ol ratio, molar percentages of A-type

linkages and galloylation and relative molar percentages of flavan-3-ol subunits were
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calculated as described [2]. Average molecular weight (amw) was calculated [31] for all sam-

ples using the following equation (% refers to molar percentages of flavan-3-ol subunits):

amw ¼ mDP�
%PC
100
� 290:26

� �

þ
%PD
100
� 306:27

� �

þ
%galloylation

100
� 152:12

� �� �� �

� mDP� 2 � 2ð Þ �
%A � type

100
� 2

� �

�
%galloylation

100
� 1

� �

Turbidimetry: CT-BSA

Measurements were performed in citrate buffer (50 mM, pH 6) as described before [32] with

the following changes. Each CT fraction (200 L, 3 mg/mL for F2 samples and 10 mg/mL for F1

samples) was titrated as a sequence of 5 μL aliquots (10 μL for cocoa bean F2 and blackthorn

flower F2) into a BSA solution (2 mL, 5 μM) within 15 min at room temperature. The measure-

ment interval was 20 s. At the end of the titration the formation of a stable hazy solution was

observed. Typically, CT were studied with three replicate titrations. Absorbance readings were

acquired in triplicate with 3 s intervals at 400 nm using a JASCO V-530 spectrophotometer

(JASCO UK Ltd, Essex, UK) in a 1 cm polystyrene cuvette and buffer was used as the blank.

Absorbances were averaged and converted to % transmission (%T). The concentration (μM

or mg/mL) of ligands was corrected for dilution and a graph was created of %T versus [CT]/

[protein]. The titration data from each replicate were averaged and fitted to a single sigmoid

function using Pro-Data™ Software Suite version 4.4.2.0 (Applied Photophysics Ltd, Leather-

head, UK). The CT/protein concentration ratio, expressed either on a molar (M/M) or a mass

basis [(mg/mL)/(mg/mL)], at half maximum (i.e. 50% transmission) of the function was used

as an indicator of the efficacy of CT on protein aggregation, henceforward referred to as half

maximal effective ratio (ER50). All reported turbidimetry data were corrected for protein dilu-

tion and CT content (g CT/100 g of fraction) as measured by thiolysis.

Turbidimetry: CT-Gelatin

Gelatin was solubilised by heating to 40˚C in 50 mM BIS-TRIS/HCl buffer at pH 7. Measure-

ments were performed as above by titrating a CT fraction (400 μL, 3 mg/mL) in a sequence of

10 μL aliquots into a gelatin solution (2 mL, 1 mg/mL, i.e. ~20 μM [33]) in duplicates. The data

were fitted to a single exponential function using Microsoft Excel to calculate ER50 values.

Turbidimetry: pH Effect

The influence of pH on the efficacy of CT-protein aggregation was measured as outlined above

by titration of the sainfoin F2 sample into BSA with the following buffers at 50 mM: pH 3, 4, 5

and 6 –citrate buffer; pH 6 and 7 –BIS-TRIS/HCl and pH 8 –Tricine/KOH. Typically, triplicate

points of titration were averaged and data were fitted to a single sigmoid function.

Circular Dichroism

A CT fraction (15 μL, 3 mg/mL in 5 mM sodium phosphate buffer at pH 6) was added to

BSA (0.4 mL, 2.5 μM in 5 mM sodium phosphate buffer at pH 6) and measured within 30 s.

There was no visible aggregation present before and after the measurement. CD spectra were

recorded at 180–300 nm with a 1 nm bandwidth on a Chirascan™-Plus CD Spectrometer with

the Pro-Data™ Software Suite (both Applied Photophysics Ltd, Leatherhead, UK) in a 0.1 cm

path length quartz cuvette (birefringence minimised) with acquisition of 3 CD spectra at room

temperature. The contribution of CT fractions to the BSA CD spectra was removed by sub-

traction of the spectrum of the CT fraction alone in buffer. The CD difference spectra were
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calculated by subtracting the ‘CT only’ CD spectra (CDCT) and the ‘BSA only’ CD spectra

(CDBSA) from the spectrum recorded with the CT and BSA mix (CDBSA_CT): ΔCD = CDBSA_CT -

(CDCT + CDBSA). Differences in CD spectra were quantified using qBiC Biocomparability Suite

version 1.0.1 (Applied Photophysics Ltd, Leatherhead, UK). An averaged CD spectrum of

ligand-free BSA was set as a reference. CD spectra were normalised to absolute area and

weighted spectral differences were calculated. Properties of the secondary structure were

calculated with DichroWeb [34, 35] using the Contin-LL method (Provencher & Glockner

Method) with a reference dataset of SMP180 (optimised for 180–240 nm) [36] and the ‘clos-

est matching solution with all proteins’ was chosen. The CDSSTR method gave similar

results (data not shown).

Fluorescence Quenching Measurements

Measurements were performed using a dilution series of the CT fractions in 50 mM citrate

buffer at pH 6. Seven additions of 10 μL at 0 mg CT/mL into BSA (2 mL, 5 μM) were used for

the initial equilibration, followed by 10 additions of 5 μL of each of the following concentra-

tions 0.09, 0.19, 0.38, 0.75, 1.5 and 3 mg CT/mL. Each titration was carried out within 40 min

with a 30 s delay between each addition and measurement. The fluorescence intensities were

recorded on a Varian Cary Eclipse fluorescence spectrophotometer with a Cary temperature

controller and stirrer control (Agilent Technologies Ltd, UK) in a 1 cm path length quartz

cuvette with a micro magnetic stirrer at 25˚C. The excitation wavelength was 295 nm, excita-

tion and emission bandwidths were 5 nm, and the emission spectrum was recorded between

300 and 500 nm. Only those CT fractions that did not exhibit any fluorescence at concentra-

tions of ~0.14 and ~0.27 mg/mL in buffer were used. Typically, CT were studied with three

replicate titrations (with 60 data points each). The intensities recorded at 340 nm were used

for the generation of Stern-Volmer plots. The Stern-Volmer quenching constant (KSV) was cal-

culated from a linear regression [37] in the initial linear part of the graph. That graph was com-

posed of a ratio of fluorescence intensities, before (F0) and after addition of quencher (F),

versus quencher concentration (CT in this study), i.e. F0/F versus [CT]. Data were calculated

using the Stern-Volmer equation [37]:

F0

F
¼ 1þ kqt0 Q½ � ¼ 1þ Ksv Q½ �

where: F0 –fluorescence intensity in the absence of quencher; F–fluorescence intensity in the

presence of quencher; kq−bimolecular quenching constant; τ0 –the lifetime of the fluorophore

in the absence of quencher; Q–quencher; KSV−Stern-Volmer constant. All data from the fluo-

rescence studies were corrected for BSA dilution and CT content (g CT/100 g fraction).

Statistical Analyses

In general, Dancey and Reidy’s categorisation [38] was used to indicate the degree of correla-

tion; i.e. perfect, strong, moderate, weak or zero; of the data in the plots. The Shapiro-Wilk test

of normality was used to test for normally distributed data (p>0.05). To test for statistical signif-

icance Pearson’s correlation coefficient was used for normally distributed data (r, 2-tailed test;

p<0.05 or 0.01, where indicated) and Spearman’s rho was used for not normally distributed

data (rs, 2-tailed test; p<0.05 or 0.01, where indicated). Only statistically significant evaluations

are noted in figure captions and throughout the text. Shapiro-Wilk test, Pearson’s correlation

and Spearman’s rho were performed using the IBM1 SPSS1 Statistics version 21 software.

Turbidimetry study: all variables (CT characteristics and ER50 values) were not normally

distributed. Variables were transformed to normality with the natural logarithm, although PC

CT Structural Features and Protein Aggregation
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(%) and cis-flavan-3-ols (%) remained not normally distributed. Therefore, Pearson’s correla-

tion and Spearman’s rho were used accordingly.

CD study: variables without natural logarithm transformation (α-helix and β-sheet content,

molar percentages of PC and mDP-values) were subjected to Pearson’s correlation.

Fluorescence study: variables without natural logarithm transformation (mDP-values,

amw, molar percentages of PC and ER50 values) were subjected to Pearson’s correlation. Then

all variables (including not normally distributed molar percentages of cis-flavan-3-ols) were

subjected to Spearman’s rho.

Results and Discussion

CT Composition

To probe CT-protein aggregation, we isolated and characterised CT fractions from 23 different

plant materials [2, 4–9, 30, 39]. Most of these fractions had CT with B-type linkages and a wide

range of PC/PD and cis/trans-flavan-3-ol ratios; six fractions also had CT with galloylated fla-

van-3-ol subunits and another six fractions had CT with A-type linkages (Fig 1, Table 1 and S1

Table). The average molecular weights of these CT varied from 1028 to 7580 Da, PC/PD ratios

from 100:0 to 1:99, cis-/trans-flavan-3-ol ratios from 99:1 to 12:88, the molar percentages of

galloylation from 0 to 54% and A-type bonds from 0 to 21% (Table 1). Among these 35 sam-

ples, there was no obvious correlation among CT characteristics (S1 Fig) despite statistically

moderate correlations between PD and mDP, and between PD and cis-flavan-3-ols (S1A and

S1C Fig). However, this moderate correlation between mDP and PD was not present (p>0.05)

for CT fractions that were chosen for the CT-gelatin aggregation and corresponding CT-BSA

aggregation by turbidimetry or tryptophan fluorescence quenching. Therefore, this diverse CT

panel was suitable for testing the mDP and PD effects separately.

Effect of pH on CT-BSA Aggregation by Turbidimetry

There are many factors that can impact on CT-protein interactions and pH is one of them

[14]. Therefore, we performed an initial evaluation of the effect of pH on the efficacy of sain-

foin aerial part F2 CT to precipitate BSA by turbidimetry between pH 3 to 8. The results were

as follows: ER50 was 7.3 at pH 3, 1.0 at pH 4, 2.1 at pH 5, 3.4 at pH 6 (for 2 different buffers)

and 9.8 for pH 7 (Fig 2). ER50 at pH 8 was not determined as aggregation was not observed. As

expected, the lowest ER50 values were measured at pH 4 and 5, which are close to the pI of

BSA, i.e. is 5.3 for fatty acid depleted BSA [40] and agreed with the literature, as maximum pre-

cipitation tends to occur at pH values close to the pI [41]. Therefore, these experiments showed

the same trend and validated a different technique. They also demonstrated that turbidimetry

could be applied over a wide range of pH values and even outside the pI of the protein.

CT-BSA Aggregation by Turbidimetry

For each CT-protein mixture, turbidity was measured at increasing CT/protein ratios. The

example in Fig 3 shows the change in turbidity during a typical CT-protein titration experi-

ment. Turbidimetry data were plotted as %T versus the concentration ratio of ligands, i.e.

[CT]/[protein], in order to calculate the efficacy (ER50) of different CT types to aggregate the

protein (Fig 3A). This approach was used here to transform the qualitative turbidimetry results

[15] into a quantitative value to enable comparison of the different CT samples.

In order to establish, which structural features of CT were most important for protein

aggregation, we plotted the ER50 values on a molar basis (M/M; Table 2) against the CT param-

eters (Table 1). All samples with>50 g CT/100 g fraction gave strong significant correlations
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between ER50 versus mDP or amw (Fig 4A and 4B). Fig 4A reveals that the molar ratio of CT:

BSA needed to aggregate BSA decreases with increasing mDP. For example, 20 moles of CT

from the cocoa bean F2 (mDP = 5.4, 1567 Da) were required to reduce light transmission at 400

nm by 50% compared to just 1 mole of CT from the Tilia flower F3 (mDP = 20.9, 6043 Da);

Tables 1 and 2. When fractions with lower CT contents were also included, these correlations

Table 1. Condensed tannin (CT) contents, mean degrees of polymerisation (mDP), average molecular weights (amw), procyanidin/prodelphinidin

(PC/PD) and cis-/trans-flavan-3-ol ratios, molar percentages of galloylation and A-type linkages in fractions isolated from various plant materials.

Note: Results from a few of these fractions were reported previously [4–9, 39] and are included here for clarity purposes.

CT fraction CT (g/100 g) mDP amw (Da) b PC / PD cis / trans % galloylation ref.

Great water dock root F1 a 31.9 (±0.6) 3.0 (±0.1) 1028 100.0 / 0.0 (±0.1) 85.3 / 14.7 (±0.1) 34.6 (±0.1)

Great water dock root F2 63.7 (±1.7) 5.1 (±0.1) 1906 88.6 / 11.4 (±0.1) 95.6 / 4.4 (±0.1) 54.3 (±0.1) [39]

Great water dock root F3 48.9 (±2.1) 14.4 (±0.0) 4989 66.9 / 33.1 (±0.1) 94.7 / 5.3 (±0.0) 34.0 (±0.0)

Hazelnut pericarp F1 a 64.5 (±2.3) 4.7 (±0.0) 1366 91.2 / 8.8 (±0.0) 39.8 / 60.2 (±0.1) 1.6 (±0.0)

Hazelnut pericarp F2 68.6 (±5.0) 10.5 (±0.1) 3102 88.0 / 12.0 (±0.1) 54.2 / 45.8 (±0.1) 3.7 (±0.1)

Shea meal F2 44.9 (±0.8) 4.1 (±0.1) 1519 27.5 / 72.5 (±0.1) 59.8 / 40.2 (±0.1) 46.1 (±0.2) [4, 5]

% A-type bond

Bilberry leave F2 63.2 (±2.7) 9.5 (±0.0) 2732 97.3 / 2.7 (±0.0) 96.6 / 3.4 (±0.0) 5.7 (±0.0)

Blackthorn flower F2 33.0 (±5.8) 4.1 (±0.1) 1176 100.0 / 0.0 (±0.1) 72.8 / 27.2 (±0.1) 21.3 (±0.1)

Cinnamon bark F2 55.0 (±0.9) 7.0 (±0.1) 2019 100.0 / 0.0 (±0.0) 85.9 / 14.1 (±0.1) 18.0 (±0.1) [9]

Cowberry leaf F2 68.1 (±2.7) 8.7 (±0.0) 2495 100.0 / 0.0 (±0.0) 72.1 / 27.9 (±0.0) 17.2 (±0.0)

Heather flower F2 67.2 (±1.7) 8.2 (±0.0) 2372 89.3 / 10.7 (±0.0) 88.0 / 12.0 (±0.0) 7.9 (±0.0)

Heather flowerF3 54.6 (±1.3) 25.5 (±0.0) 7403 88.1 / 11.9 (±0.0) 95.1 / 4.9 (±0.0) 1.3 (±0.0)

Birch leaf F2 63.6 (±2.5) 8.3 (±0.1) 2464 41.1 / 58.9 (±0.1) 70.7 / 29.3 (±0.1) nd [5, 8, 39]

Birch leaf F3 53.2 (±1.8) 17.7 (±0.1) 5289 37.8 / 62.2 (±0.0) 80.3 / 19.7 (±0.0) nd

Blackcurrant leaf (no. 1) F2 77.1 (±3.9) 11.8 (±0.1) 3591 4.7 / 95.3 (±0.0) 18.8 / 81.2 (±0.1) nd [5, 6, 8, 39]

Blackcurrant leaf (no. 2) F2 86.6 (±2.7) 7.8 (±0.2) 2364 5.1 / 94.9 (±0.0) 12.0 / 88.0 (±0.1) nd [39]

Blackcurrant leaf (no. 2) F3 69.9 (±0.9) 16.6 (±0.1) 5025 5.6 / 94.4 (±0.1) 19.8 / 80.2 (±0.1) nd [39]

Cider apple beverage F2 35.9 (±2.7) 7.5 (±0.1) 2218 61.0 / 39.0 (±0.1) 87.6 / 12.4 (±0.1) nd

Cider apple powder F2 37.4 (±1.1) 6.8 (±0.0) 1954 100.0 / 0.0 (±0.0) 96.3 / 3.7 (±0.0) nd

Cocoa bean F2 75.5 (±2.9) 5.4 (±0.1) 1567 100.0 / 0.0 (±0.0) 96.3 / 3.7 (±0.1) nd [5, 7, 39]

Hawthorn flower F2 48.8 (±1.6) 10.7 (±0.0) 3087 100.0 / 0.0 (±0.0) 98.5 / 1.5 (±0.0) nd

Hop strobile F2 66.6 (±1.7) 10.6 (±0.0) 3106 75.0 / 25.0 (±0.0) 75.5 / 24.5 (±0.2) nd

Lespedeza pellet F3 69.7 (±1.7) 25.0 (±0.3) 7580 5.6 / 94.4 (±0.0) 80.8 / 19.2 (±0.1) nd

Pine bud F2 93.7 (±2.5) 10.5 (±0.1) 3146 36.2 / 63.8 (±0.1) 70.7 / 29.3 (±0.1) nd

Pine bud F3 72.7 (±4.9) 17.6 (±0.1) 5240 44.2 / 55.8 (±0.1) 83.8 / 16.2 (±0.1) nd

Redcurrant leaf F2 91.5 (±4.2) 11.0 (±0.1) 3350 7.5 / 92.5 (±0.0) 65.3 / 34.7 (±0.1) nd [39]

Sainfoin aerial part F2 82.6 (±2.0) 12.5 (±0.1) 3733 31.7 / 68.3 (±0.1) 82.6 / 17.4 (±0.1) nd [39]

Tilia flower F2 91.7 (±3.8) 7.9 (±0.1) 2270 99.1 / 0.9 (±0.1) 95.6 / 4.4 (±0.1) nd [5, 6, 8, 39]

Tilia flower F3 58.1 (±7.0) 20.9 (±0.2) 6043 98.6 / 1.4 (±0.2) 99.0 / 1.0 (±0.2) nd

Walnut leaf F2 69.0 (±1.7) 12.3 (±0.1) 3617 69.1 / 30.9 (±0.0) 76.3 / 23.7 (±0.0) nd [5, 8]

Walnut leaf F3 64.6 (±6.5) 18.8 (±0.1) 5594 43.4 / 56.6 (±0.1) 76.8 / 23.2 (±0.1) nd

White clover flower F2 82.4 (±2.0) 12.7 (±0.0) 3875 1.2 / 98.8 (±0.0) 61.8 / 38.2 (±0.0) nd [5, 6, 8, 39]

Willow bark F2 83.3 (±0.6) 9.9 (±0.0) 2865 94.0 / 6.0 (±0.0) 78.1 / 21.9 (±0.0) nd [5, 8]

Willow bark F3 67.4 (±0.7) 15.0 (±0.1) 4352 95.1 / 4.9 (±0.1) 83.9 / 16.1 (±0.1) nd

Yellow iris leaf F2 85.1 (±2.8) 9.2 (±0.1) 2703 69.8 / 30.2 (±0.1) 63.3 / 36.7 (±0.1) nd [39]

a data were corrected for free flavan-3-ols.
b data were not reported previously; nd not detected; CT content has been reported [6] (calculated with mass response factor); standard deviation in

parentheses.

doi:10.1371/journal.pone.0170768.t001
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had a slightly lower magnitude: ER50 versus mDP-values (r = -0.793; p<0.01; df = 33) and ER50

versus amw (r = -0.813; p<0.01; df = 33). Very strong significant correlations were observed if

the ER50 values of only the B-type CT samples were plotted against mDP (r = -0.941; p<0.01;

df = 19) or amw (r = -0.940; p<0.01; df = 19), which suggests that 2 to 46% galloylation or 1 to

21% A-type linkages were not important drivers of CT-BSA aggregation.

As shown in Fig 4A and 4B, CT average size is strongly correlated with CT-protein interac-

tions and interestingly the same trend was found in ITC studies, which explored the interac-

tions of B-type CT fractions from sainfoin (at pH 6) [19] and purified PC oligomers from

cocoa (at pH 4) [22] with BSA. The stoichiometric ratios from ITC give an excellent overlay

with the turbidimetry data when the ITC data are divided by 3 (Fig 5) and show a consistent

trend across two different experimental techniques. This might be explained by differences in

the experimental method such as fast stirring during ITC experiments that would break up

large aggregates and lead to an overall larger surface area. The turbidimetry measurements

were carried out in 20 s intervals between additions, whereas the ITC was set up to wait for

thermal equilibrium up to 360 s prior to the next addition [19]. Therefore, the CT and protein

have more time to bind to each other. It is possible that these variations in the experimental

procedure may have been enough to result in the systematic difference in the stoichiometry

between the ITC and turbidimetry data.

Only moderate correlations were found when ER50 was expressed on a mass basis [(mg/

mL)/(mg/mL)] versus mDP or amw (Fig 4E and 4F). By plotting the ER50 values of just the B-

type CT samples against mDP (r = -0.723; p<0.01; df = 19) or amw (r = -0.716; p<0.01;

df = 19) a strong correlations were obtained. These results can be explained by the fact that

mass-based plots make no allowance for polymer size and this thus also supports the finding

that size (average molecular weight) was the most important CT feature across all tannin types

whether B-type, A-type or galloylated CT. The other CT characteristics, such as percentages of

PC or cis-flavan-3-ols within CT, gave no significant correlations whether expressed on a

molar (Fig 4C and 4D) or a mass basis (Fig 4G and 4H).

Fig 2. The effect of pH on condensed tannin (CT) efficacy to aggregate BSA. ER50 is the half maximal

effective ratio (values were corrected for CT content): 7.3 (±0.2) at pH 3, 1.0 (±0.0) at pH 4, 2.1 (±0.0) at pH 5,

3.4 (±0.0) at pH 6 (for citrate and BIS-TRIS buffer), 9.8 (±0.3) at pH 7, and no aggregation was observed at pH

8. The values in parentheses and error bars indicate the estimated error of the fit of the titration data for ER50

(after averaging experimental data points, typically n = 3 replicates).

doi:10.1371/journal.pone.0170768.g002
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Insoluble CT fractions may have a stronger effect on CT-BSA aggregation. In turbidimetry

experiments with BSA and CT there was a significant correlation between ER50 and mDP for

both, soluble and insoluble samples (>50 g CT/100 g fraction). However this correlation was

stronger for insoluble samples (r = -0.938 and rs = -0.923, p<0.01, df = 13) than for soluble

samples (r = -0.889 and rs = -0.917, p<0.01, df = 14). This supports recent findings that insolu-

ble PC-salivary protein complexes bind more strongly to oral cells than soluble complexes

with PC of lower mDP [42].

Fig 3. Experimental turbidimetry data obtained by adding condensed tannins (CT, Tilia flower F2

sample) to BSA. (A) estimation of half maximal effective ratio (ER50) by a single sigmoid fit; (B) controls (CT

addition to buffer/BSA, buffer addition to BSA).

doi:10.1371/journal.pone.0170768.g003
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CT-Gelatin Aggregation by Turbidimetry

Next, a subset of the most representative CT samples was titrated into gelatin solutions. Very

significant correlations were also observed between ER50 (M/M) versus mDP or amw (Fig 6A

and 6B). As seen with BSA, a larger number of small CT molecules were needed to aggregate

gelatin compared to large CT molecules. For example, the CT:gelatin ratio was 3.3:1 with

cocoa bean F2 (mD = 5.4), 1.1:1 with willow bark F2 (mDP = 9.9) and 0.3:1 with willow bark

Table 2. Half maximal effective ratio (ER50) from condensed tannins (CT)-protein aggregation studies by turbidimetry.

CT fraction ER50

[CT]/[BSA] (M/M) [CT]/[BSA] [(mg/mL)/(mg/mL)] [CT]/[gelatin] (M/M) d [CT]/[gelatin] [(mg/mL)/(mg/mL)] d

Great water dock root F1 a, c 5.4 (±0.7) 0.08 (±0.01) 4.3 & 4.0 0.09 & 0.08

Great water dock root F2 5.5 (±0.1) 0.15 (±0.00) 1.7 & 1.6 0.06 & 0.06

Hazelnut pericarp F1 a, b 24.5 (±0.4) 0.51 (±0.01) - -

Hazelnut pericarp F2 b 3.2 (±0.0) 0.15 (±0.00) - -

Shea meal F2 b, c 5.8 (±0.1) 0.11 (±0.00) - -

Bilberry leaf F2 b 4.2 (±0.0) 0.17 (±0.00) - -

Blackthorn flower F2 b, c 14.6 (±0.1) 0.26 (±0.00) - -

Cinnamon bark F2 b 4.6 (±0.1) 0.14 (±0.00) - -

Cowberry leaf F2 b 5.2 (±0.0) 0.19 (±0.00) - -

Heather flower F2 b 4.4 (±0.1) 0.15 (±0.00) - -

Heather flower F3 b 1.0 (±0.0) 0.09 (±0.00) - -

Birch leaf F2 4.2 (±0.1) 0.15 (±0.00) 1.5 & 1.5 0.07 & 0.07

Blackcurrant leaf (no. 1) F2 3.1 (±0.0) 0.16 (±0.00) 0.5 & 0.6 0.04 & 0.04

Blackcurrant leaf (no. 2) F2 7.6 (±0.1) 0.28 (±0.00) - -

Blackcurrant leaf (no. 2) F3 2.3 (±0.0) 0.17 (±0.00) - -

Cider apple beverage F2 c 1.5 (±0.1) 0.05 (±0.00) - -

Cider apple powder F2 c 4.1 (±0.2) 0.09 (±0.00) - -

Cocoa bean F2 19.6 (±0.2) 0.46 (±0.00) 3.3 & 3.3 0.10 & 0.10

Hawthorn flower F2 c 2.7 (±0.0) 0.13 (±0.00) - -

Hop strobile F2 b 2.7 (±0.1) 0.12 (±0.00) - -

Lespedeza pellet F3 1.2 (±0.0) 0.14 (±0.00) - -

Pine bud F2 3.9 (±0.1) 0.18 (±0.00) - -

Pine bud F3 2.1 (±0.0) 0.16 (±0.00) - -

Redcurrant leaf F2 4.4 (±0.1) 0.22 (±0.00) - -

Sainfoin aerial part F2 3.4 (±0.0) 0.18 (±0.00) 0.7 & 0.6 0.05 & 0.05

Tilia flower F2 7.7 (±0.1) 0.26 (±0.00) 1.3 & 0.9 0.06 & 0.04

Tilia flower F3 b 1.2 (±0.0) 0.08 (±0.00) - -

Walnut leaf F2 b 2.2 (±0.1) 0.10 (±0.00) 0.5 & 0.5 0.04 & 0.04

Walnut leaf F3 b 1.8 (±0.0) 0.13 (±0.00) 0.3 & 0.3 0.03 & 0.03

White clover flower F2 3.1 (±0.0) 0.17 (±0.00) 0.5 & 0.6 0.04 & 0.04

Willow bark F2 b 5.5 (±0.1) 0.23 (±0.00) 1.0 & 1.1 0.06 & 0.06

Willow bark F3 b 2.4 (±0.0) 0.16 (±0.00) 0.3 & 0.6 0.03 & 0.05

Yellow iris leaf F2 7.4 (±0.1) 0.29 (±0.00) - -

a data corrected for free flavan-3-ols.
b fraction in suspension during measurement, assumption was made that all CT were dissolved.
c samples with CT <50 g/100 g of fraction were not included in Fig 4.
d n = 2;—not measured. The values in parentheses indicate the estimated error of the fit of the titration data for ER50 (after averaging the experimental data

points, typically n = 3 replicates), i.e. great water dock root F1 has an ER50 for [CT]/[BSA] of 5.4 (±0.7).

doi:10.1371/journal.pone.0170768.t002
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F3 (mDP = 15); Tables 1 and 2. This also means that much less CT molecules were needed to

aggregate gelatin compared to BSA; e.g. the ER50 for cocoa was 3 for gelatin, but 20 for BSA.

However, there was one noticeable difference between the BSA and gelatin results. CT-gela-

tin aggregation also revealed a strong positive correlation on a mass basis between ER50 [(mg/

mL)/(mg/mL)] versus mDP or amw (Fig 6E and 6F). As before, the molar percentages of PC

or cis-flavan-3-ols showed almost zero correlations (Fig 6C, 6D, 6G and 6H).

The CT fractions had a stronger tendency to interact with the proline-rich gelatin than with

the globular BSA as was observed previously with sorghum PC by ITC [43]. Fig 6A shows that

the correlations between ER50 (molar basis) and mDP or amw (Fig 6E and 6F) were much

stronger during the CT-gelatin complexation, than in the BSA study (mDP: r = -0.704; amw:

r = -0.758; p<0.05; df = 12). Therefore, the influence of mDP on the ER50 is much higher for

the proline-rich gelatin than the globular BSA. This is likely to be due to the higher affinity of

CT to the more flexible gelatin. Proline-rich proteins possess randomly coiled structures that

offer more binding sites than the globular BSA, which lacks proline on the surface [13].

CT-BSA Interactions by Circular Dichroism

CD measurements were carried out to investigate how binding of CT to BSA influences its sec-

ondary structure. The CD spectra of BSA at pH 6 in the absence of CT showed two negative

Fig 4. Influence of condensed tannin (CT) characteristics on aggregation of BSA. ER50 –half maximal effective ratio; mDP–mean degree of

polymerisation; amw–average molecular weight of CT; PC–procyanidins; cis–cis-flavan-3-ols.,● –B-type CT, ▲ –B-type galloylated CT, ■ –B-type

with A-type linkages. Values corrected for CT content; CT fractions of >50 g CT/100 g of fraction; error bars are depicted, for more detail see Table 2;

(A, B, E, F) fitted to power function; (A) ER50 [CT]/[BSA] (M/M) versus mDP, R2 = 0.84 (r = -0.916; p<0.01; df = 27; and rs = -0.926; p<0.01; df = 27);

(B) ER50 [CT]/[BSA] (M/M) versus amw (kDa), R2 = 0.86 (r = -0.925; p<0.01; df = 27; and rs = -0.925; p<0.01; df = 27); (C) ER50 [CT]/[BSA] (M/M)

versus PC (%); (D) ER50 [CT]/[BSA] (M/M) versus cis (%); (E) ER50 [CT]/[BSA] (mg/mL)/(mg/mL) versus mDP, R2 = 0.44 (r = -0.664; p<0.01; df = 27;

and rs = -0.526; p<0.01; df = 27); (F) ER50 [CT]/[BSA] (mg/mL)/(mg/mL) versus amw (kDa), R2 = 0.45 (r = -0.674; p<0.01; df = 27 and rs = -0.521;

p<0.01; df = 27); (G) ER50 [CT]/[BSA] (mg/mL)/(mg/mL) versus PC (%); (H) ER50 [CT]/[BSA] (mg/mL)/(mg/mL) versus cis (%).

doi:10.1371/journal.pone.0170768.g004

Fig 5. Turbidimetry data from the condensed tannin-BSA study overlaid with published isothermal

titration calorimetry (ITC) results: ● –turbidimetry data fitted to a power function,Δ –ref. [19], and U –

ref. [22]; Note: the stoichiometric number (n) from ITC was divided by 3; ER50 –half maximal effective

ratio; mDP–mean degree of polymerisation; DP–degree of polymerisation of oligomers.

doi:10.1371/journal.pone.0170768.g005
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minima at ~209 nm and ~222 nm and a positive maximum at ~191 nm (Fig 7A), and were

similar to reported CD spectra at pH 7.7 [44]. A slight qualitative change in the protein CD

spectra was reported during PC oligomer-elastase interactions at pH 7 [17], and for human sal-

ivary protein fragment IB714 upon binding to catechin-4α,8-catechin at pH 3.5 in the presence

of ethanol [45]. In the current study, slight changes were also observed in the CD spectra after

addition of CT fractions, with the most pronounced differences at 190 nm (Fig 7B). Here, we

quantified these slight changes (Table 3): the weighted spectral difference mode of the qBiC

software weights the comparison of the CD spectra with higher sensitivity at positive or nega-

tive CD peaks [46]. Identical spectra would have a weighted spectral difference score (Z-score)

of zero. The statistical analysis indicated that all our samples had Z-scores >2 (Table 3), which

demonstrated that the CD spectra were clearly different. There were no obvious explanations

for the magnitude of these Z-scores in terms of mDP, PC/PD or cis-/trans-flavan-3-ol ratios.

Therefore, although the BSA spectra showed clear differences after adding a range of CT frac-

tions (Fig 7A), the overall amplitude of these differences when measured as weighted spectral

differences could not be directly correlated to CT structural characteristics.

The analysis of the CD spectral data shows that the secondary structure of BSA consists of

54.6% (Table 3) α-helix, which is in agreement with results from the literature that were per-

formed at neutral pH with de-fatted BSA [47] (average 53.4%). The addition of CT caused

apparent conformational changes of the BSA secondary structure. Blackcurrant leaf (no. 1) F2

generated the largest change in the calculated α-helix content i.e. from 54.6% to 47.8% and this

was accompanied by an increase in the β-sheet content from 7.0% to 12.2% (Table 3). It can be

seen that the calculated content of α-helices was higher after addition of PC-rich CT fractions

(e.g. 54.4% for Tilia flower F2) than with PD-rich CT fractions (e.g. 49.9% for lespedeza pellet

F3) or with galloylated CT fractions (e.g. 51.6% for great water dock root F2). The apparent α-

helix content decreased (r = -0.941; p<0.01; df = 5) and the apparent β-sheet content increased

(r = 0.916; p<0.05; df = 5) as the molar percentage of PD increased. An increase in β-sheet for-

mation has been observed previously during thermal denaturation of BSA by FTIR, which was

linked to intermolecular interaction between protein molecules [48]; it also showed a concom-

itant loss of α-helix content during unfolding in a surfactant study by CD [44]. These results

indicate a link between molecular conformation and aggregation. The CT in concentrations

used at measurement conditions in this study do not show a direct effect on the apparent per-

centage of unordered secondary structure of the globular BSA (Table 3). However, there is

some evidence that CT can stabilise collagen matrices [49] and this can be seen even at the

molecular level, where a reduction of conformational disorder was calculated for a proline-

rich peptide [45].

Both galloylated samples (great water dock leaf F1 and F2) induced a slight loss of α-helix

and slight increase in β-sheet contents in BSA, as was also found in the human serum albu-

min-epigallocatechin gallate complex, where slight changes were observed to the secondary

structure, i.e. α-helix content decreased from 57 to 54% at a 1:3 molar ratio [50]. In agreement

with the literature, where PC size did not change the secondary structure of globular elastase

[17], mDP had no effect on BSA conformation (data not shown), Table 3 also shows that the

Fig 6. Influence of condensed tannin (CT) characteristics on gelatin aggregation. ER50 –half maximal effective ratio, mDP–mean degree of

polymerisation, amw–calculated average molecular weight of CT, PC–procyanidins, cis–cis-flavan-3-ols; ● –B-type CT, ▲ –B-type galloylated CT. Values

corrected for CT content; CT fractions of >30 g CT/100 g of fraction; all data points are shown on the graph (for more details see Table 2); (A, B, E, F) fitted

to power function for one replicate; (A) ER50 [CT]/[gelatin] (M/M) versus mDP, R2 = 0.92 (r = -0.961; p<0.01; df = 12 and rs = -0.951 p<0.01; df = 12); (B)

ER50 [CT]/[gelatin] (M/M) versus amw (kDa), R2 = 0.96 (r = -0.981; p<0.01; df = 12 and rs = -0.958; p<0.01; df = 12); (C) ER50 [CT]/[gelatin] (M/M) versus

PC (%); (D) ER50 [CT]/[gelatin] (M/M) versus cis (%); (E) ER50 [CT]/[gelatin] (mg/mL)/(mg/mL) versus mDP, R2 = 0.77 (r = -0.861; p<0.01; df = 12 and rs =

-0.854; p<0.01; df = 12); (F) ER50 [CT]/[gelatin] (mg/mL)/(mg/mL) versus amw (kDa), R2 = 0.83 (r = -0.897; p<0.01; df = 12 and rs = -0.879; p<0.01;

df = 12); (G) ER50 [CT]/[gelatin] (mg/mL)/(mg/mL) versus PC (%); (H) ER50 [CT]/[gelatin] (mg/mL)/(mg/mL) versus cis (%).

doi:10.1371/journal.pone.0170768.g006
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changes in the α-helix and β-sheet contents were not correlated with CT concentrations and

this agrees with the literature, where similar molar ligand ratios had been used for BSA-flavo-

nol binding in the presence of ethanol [51].

Fig 7. Condensed tannin (CT) interactions study with BSA by circular dichroism (CD). (A) Normalised

CD spectra from qBiC software of BSA (reference in dark blue) and of BSA upon interactions with CT fractions

(see legend in B); (B) CD difference spectrum of BSA treated with CT fractions calculated by subtracting the

‘CT only’ CD spectra (CDCT) and the ‘BSA only’ CD spectra (CDBSA) from the spectrum recorded with the CT

and BSA mix (CDBSA_CT): ΔCD = CDBSA_CT - (CDCT + CDBSA).

doi:10.1371/journal.pone.0170768.g007

Table 3. Changes in BSA secondary structure upon binding of condensed tannins (CT).

BSA ± CT fraction % BSA secondary structure Weighted spectral

difference

Ratio a

α-helix β-sheet Turn Unordered NRMSD b Similarity Z-score [CT]/[BSA] (M/

M)

[CT]/[BSA] [(mg/mL)/ (mg/

mL)]

BSA 54.6 7.0 11.6 26.8 0.029

Tilia flower F2 + BSA 54.4 7.5 11.5 26.6 0.087 0.00085210 11.9 18.2 0.63

Cocoa bean F2 + BSA 54.0 8.1 11.7 26.2 0.071 0.00089605 12.6 21.7 0.51

Birch leaf F2 + BSA 52.2 8.5 11.8 27.6 0.084 0.00069890 9.2 11.7 0.44

Lespedeza pellet F3 + BSA 49.9 11.7 11.2 27.2 0.079 0.00101430 14.7 4.3 0.49

Blackcurrant leaf (no. 1) F2

+ BSA

47.8 12.2 11.9 28.1 0.071 0.00065412 8.4 9.7 0.53

Great water dock root F1

+ BSA

50.9 11.3 11.7 26.1 0.086 0.00125030 18.9 15.1 0.23

Great water dock root F2

+ BSA

51.6 10.1 11.6 26.8 0.092 0.00108090 15.9 15.9 0.46

a corrected for CT content (g CT/100 g fraction).
b normalised root mean square deviation (i.e. goodness of fit).

doi:10.1371/journal.pone.0170768.t003
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CT-BSA Interactions by Tryptophan Fluorescence Quenching

Measurements of fluorescence quenching have been used to explore tannin-protein interac-

tions [52]. The fluorescence of BSA has been attributed to Trp 134 in the surface region of sub-

domain IB and to Trp 213 in the hydrophobic binding pocket, the Suldow I site in subdomain

IIA [53] due to the indole group of tryptophan that absorbs at ~280 nm and emits at ~340 nm.

Since it was reported that PC trimers do not exhibit fluorescence [54], all 35 CT fractions were

first screened for any fluorescence and then only the 9 non-fluorescent CT samples were used.

Stern-Volmer plots, F0/F versus [CT], gave a concave deviation towards the y-axis, which is

generally interpreted as the presence of dynamic and static quenching [37]. The use of the ini-

tial linear part of the graph resulted in Stern-Volmer plots of good linear fits (e.g. F0/F versus

[CT] (M), R2 = 0.99–1.00, S2 Fig). In general, diffusion-controlled quenching in aqueous solu-

tion has an apparent bimolecular quenching constant (kq
app) of�1010 M-1 s-1 for tryptophan

[37]. In the present study, blackcurrant leaf F2 (no. 2) showed the lowest quenching ability,

KSV = 0.3×105 M−1 (Table 4) and gave a calculated kq
app of 6×1012 M-1 s-1, which indicates a

static quenching. This is in line with the literature on epicatechin-BSA interactions [18].

The KSV values (Table 4) were then plotted against the different CT characteristics

(Table 1). There was a very significant strong correlation between KSV values and PC contents

when the KSV calculations were based on mass concentration [55] (Fig 8G); however, this cor-

relation was not observed when expressed on a molar basis (Fig 8C). However, the three PC-

rich CT were also the only three samples that contained galloyl groups and it is, therefore, pos-

sible that these galloyl groups may have contributed to this strong correlation between KSV val-

ues and PC contents. In fact, another study also found that galloyl groups enhanced the

binding affinity of PC to human salivary α-amylase as determined by fluorescence quenching

[56]. However, a closer look revealed that the PC-rich sample with the highest percentage of

galloylation (54%, great water dock root F2) did not have the highest affinity to BSA, i.e. KSV =

127.2 (mg/mL)−1; the highest affinity was instead observed with great water dock root F1,

which had 34% of galloylation and gave KSV = 224.2 (mg/mL)−1. This suggested that the pres-

ence of PC rather than galloyl groups played a crucial role in the affinity towards the subdo-

main IB and subdomain IIA of BSA.

There was a strong, significant correlation between KSV expressed on a mass basis and cis-
flavan-3-ol content (Fig 8H). KSV expressed on a molar basis and cis-flavan-3-ol content were

Table 4. Estimated quenching parameters, Stern-Volmer constant (KSV), for the interactions of con-

densed tannins (CT) with BSA.

CT fraction KSV n

(M−1) [(mg/mL)−1]

Great water dock root F1 a 1.3×105 (±6.0×103) 224.2 (±21.3) 3

Great water dock root F2 2.4×105 (±3.9×103) 127.2 (±2.1) 3

Great water dock root F3 a 4.5×105 & 4.5×105 90.6 & 91.4 2

Birch leaf F2 1.8×105 (±5.7×103) 73.1 (±2.3) 3

Birch leaf F3 3.9×105 & 3.7×105 73.9 & 70.1 2

Blackcurrant leaf (no. 2) F2 0.3×105 (±0.5×103) 12.2 (±0.2) 3

Blackcurrant leaf (no. 2) F3 1.4×105 (±13.0×103) 26.9 (±2.5) 3

Pine bud F2 0.9×105 (±1.7×103) 27.3 (±0.5) 3

Pine bud F3 2.1×105 39.5 1

a <50 g CT/100 g fraction; n–number of replicates (the average presented for n = 3, standard deviation in

parentheses).

doi:10.1371/journal.pone.0170768.t004
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Fig 8. Fluorescence quenching of tryptophan in BSA in relation to condensed tannin (CT) characteristics. KSV−Stern-Volmer quenching constant, i.e.

slope obtained from linear part of Stern-Volmer plot fitted to linear regression: F0/F versus [CT]; mDP–mean degree of polymerisation; amw–average
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moderately correlated (Fig 8D). No correlations could be found between CT average size and

KSV (Fig 8A, 8B, 8E and 8F). It is interesting that these CT yielded KSV values (0.3 to 4.5×105

M−1; Table 4) that were similar to values obtained for pure ellagitannins [52] (0.4 to 3.1×105

M−1) with BSA in the same buffer. Although, ellagitannin dimers had higher KSV values than

monomers [52], no clear size effect could be detected here with this CT panel (Fig 8).

A bathochromic shift of the tryptophan fluorescence was observed with the galloylated CT;

for example, the great water dock root F2 sample contributed to a shift of λem max from ~350

nm to ~380 nm. A red shift has also been observed for epigallocatechin gallate-human serum

albumin interactions [50]. This shift indicated that the surrounding environment of trypto-

phan became more polar, possibly due to the unfolding of BSA [32]. No bathochromic shift

was observed for non-galloylated samples (data not shown).

Conclusions

A large panel of CT with different structural features was isolated from a diverse set of plants

in order to cover a wide range of average oligomer/polymer sizes and structures. The mean

degree of polymerisation and average molecular weight correlated very significantly to the effi-

cacy of CT to aggregate BSA and gelatin in a turbidimetry study. The average size of the CT,

rather than the hydroxylation pattern or stereochemistry of the flavan-3-ol subunits, was most

important for aggregation. The data can be approximated with two linear fits, which inter-

sected at an mDP of ~7 or ~2000 Da. This means that the smallest CT with the relatively largest

effect on protein aggregation would have an mDP of ~7. A similar trend was observed in a pro-

cyanidin-BSA study by ITC where a CT hexamer of 1721 Da had an optimal binding stoichi-

ometry [22]. Interestingly, the greatest effect on bioactivity was also observed at around ~2000

Da in two unrelated studies. Immunological effects of CT showed that mDP of 6.5 and 9.1 had

the greatest effect on the activation of porcine γδ T-cells compared to CT of lower mDP values

[57]. Similarly, the highest inhibition of Hepatitis C virus RNA expression was observed with

mDP 7.7 in tests that had explored mDP values from ~1 to 14 [58]. It remains to be seen what

the mechanisms are behind this tannin threshold and whether this applies more widely across

different biological systems. This type of information may also prove helpful for breeding new

plant varieties with highly active CT as nutraceuticals [59].

The molar percentage of procyanidins and cis-flavan-3-ols was positively correlated to the

Stern-Volmer quenching constant that was obtained from tryptophan fluorescence quenching.

However, pyrogallol groups of prodelphinidins (i.e. B-ring of flavan-3-ol subunits) or esterified

galloyl groups appeared to slightly change the apparent α-helix and β-sheet contents in a circu-

lar dichroism study. Taken together, these results indicated that the interaction between CT

and BSA was most sensitive to the presence of procyanidins, whereas the secondary structure

of BSA was most influenced by the presence of prodelphinidins. Protein aggregation was solely

affected by CT average size.

Supporting Information

S1 Fig. Lack of observed correlation between condensed tannin (CT) characteristics among

all CT. mDP–mean degree of polymerisation, PD–prodelphinidin, cis–cis-flavan-3-ols; ● –B-

molecular weight of CT; PC–procyanidins, cis–cis-flavan-3-ols; ● –B-type CT, ▲ –B-type galloylated CT. Values corrected for CT content, error bars indicate

the standard deviation of n = 3 replicates (if n<3, all data points are shown; for more details see Table 4); (A) KSV (mM-1) versus mDP; (B) KSV (mM-1) versus

amw (kDa); (C) KSV (mM-1) versus PC (%); (D) KSV (mM-1) versus cis (%), R2 = 0.39, (rs = 0.678; p<0.05; df = 9); (E) KSV [(mg/mL)-1] versus mDP; (F) KSV

[(mg/mL)-1] versus amw (kDa); (G) KSV [(mg/mL)-1] versus PC (%), R2 = 0.81 (r = 0.899; p<0.01; df = 9); (H) KSV [(mg/mL)-1] versus cis (%), R2 = 0.34, (rs =

0.887; p<0.01; df = 9).

doi:10.1371/journal.pone.0170768.g008
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type CT, ▲ –B-type galloylated CT, ■ –B-type with A-type linkages; (A) PD (%) versus mDP,

(rs = 0.434; p<0.01; df = 35); (B) cis (%) versus mDP; (C) cis (%) versus PD (%),(rs = -0.619;

p<0.01; df = 35).

(PDF)

S2 Fig. Fluorescence quenching of tryptophan in BSA by condensed tannins (CT), as Stern-

Volmer plots. Error bars indicate standard deviation of repeats; data corrected for CT content;

(A) titration points of aliquots with increasing CT concentration (M); (B) titration points of ali-

quots with increasing CT concentration (M) at linear part of the plot (up to F0/F�2.2) fitted to

linear regression, all R2 = 0.99–1.00; (C) titration points of aliquots with increasing CT concen-

tration (mg/mL); (D) titration points at linear part of the plot (up to F0/F�2.2) fitted to linear

regression, all R2 = 0.99–1.00.

(PDF)

S1 Table. Composition of condensed tannins in terms of flavan-3-ol terminal and exten-

sion units (as molar percentages). Note: A few of these fractions were reported previously [4,

9] and are included for clarity purposes.

(PDF)
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17. Brás NF, Gonçalves R, Fernandes PA, Mateus N, Ramos MJ, de Freitas V. Understanding the binding

of procyanidins to pancreatic elastase by experimental and computational methods. Biochemistry.

2010; 49: 5097–5108. doi: 10.1021/bi100410q PMID: 20481639

18. Papadopoulou A, Green RJ, Frazier RA. Interaction of flavonoids with bovine serum albumin: a fluores-

cence quenching study. J Agric Food Chem. 2005; 53: 158–163. doi: 10.1021/jf048693g PMID:

15631523

19. Dobreva MA, Stringano E, Frazier RA, Green RJ, Mueller-Harvey I. Interaction of sainfoin (Onobrychis

viciifolia) condensed tannins and proteins. XXVIth International Conference on Polyphenols; 2012; Flor-

ence, Italy: Polyphenol Communications 2012.

20. Zeller WE, Sullivan ML, Mueller-Harvey I, Grabber JH, Ramsay A, Drake C, et al. Protein precipitation

behavior of condensed tannins from Lotus pedunculatus and Trifolium repens with different mean

degrees of polymerization. J Agric Food Chem. 2015; 63: 1160–1168.

21. Harbertson JF, Kilmister RL, Kelm MA, Downey MO. Impact of condensed tannin size as individual and

mixed polymers on bovine serum albumin precipitation. Food Chem. 2014; 160:16–21. doi: 10.1016/j.

foodchem.2014.03.026 PMID: 24799203

22. Kilmister RL, Faulkner P, Downey MO, Darby SJ, Falconer RJ. The complexity of condensed tannin

binding to bovine serum albumin–An isothermal titration calorimetry study. Food Chem. 2016; 190:

173–178. doi: 10.1016/j.foodchem.2015.04.144 PMID: 26212957

23. de Freitas V, Mateus N. Nephelometric study of salivary protein–tannin aggregates. J Sci Food Agric.

2002; 82: 113–119.

24. Poncet-Legrand C, Edelmann A, Putaux JL, Cartalade D, Sarni-Manchado P, Vernhet A. Poly(l-proline)

interactions with flavan-3-ols units: Influence of the molecular structure and the polyphenol/protein ratio.

Food Hydrocolloids. 2006; 20: 687–697.

CT Structural Features and Protein Aggregation

PLOS ONE | DOI:10.1371/journal.pone.0170768 January 26, 2017 21 / 23

http://dx.doi.org/10.1021/acs.jafc.5b00831
http://dx.doi.org/10.1021/acs.jafc.5b00831
http://www.ncbi.nlm.nih.gov/pubmed/26066999
http://dx.doi.org/10.1186/s13071-014-0518-2
http://dx.doi.org/10.1186/s13071-014-0518-2
http://www.ncbi.nlm.nih.gov/pubmed/25406417
http://dx.doi.org/10.1371/journal.pone.0097053
http://www.ncbi.nlm.nih.gov/pubmed/24810761
http://dx.doi.org/10.1017/S0031182015001912
http://www.ncbi.nlm.nih.gov/pubmed/26888630
http://dx.doi.org/10.1038/srep14791
http://www.ncbi.nlm.nih.gov/pubmed/26420588
http://dx.doi.org/10.1016/j.exppara.2012.11.024
http://dx.doi.org/10.1016/j.exppara.2012.11.024
http://www.ncbi.nlm.nih.gov/pubmed/23246590
http://www.wormbook.org
http://www.ncbi.nlm.nih.gov/pubmed/8484203
http://www.ncbi.nlm.nih.gov/pubmed/11262053
http://dx.doi.org/10.1080/10408398.2010.499808
http://dx.doi.org/10.1080/10408398.2010.499808
http://www.ncbi.nlm.nih.gov/pubmed/22214442
http://dx.doi.org/10.1021/acs.jafc.5b01173
http://www.ncbi.nlm.nih.gov/pubmed/26281949
http://dx.doi.org/10.1021/bi100410q
http://www.ncbi.nlm.nih.gov/pubmed/20481639
http://dx.doi.org/10.1021/jf048693g
http://www.ncbi.nlm.nih.gov/pubmed/15631523
http://dx.doi.org/10.1016/j.foodchem.2014.03.026
http://dx.doi.org/10.1016/j.foodchem.2014.03.026
http://www.ncbi.nlm.nih.gov/pubmed/24799203
http://dx.doi.org/10.1016/j.foodchem.2015.04.144
http://www.ncbi.nlm.nih.gov/pubmed/26212957


25. Naumann HD, Hagerman AE, Lambert BD, Muir JP, Tedeschi LO, Kothmann MM. Molecular weight

and protein-precipitating ability of condensed tannins from warm-season perennial legumes. J Plant

Interact. 2013; 9: 212–219.

26. Lorenz MM, Alkhafadji L, Stringano E, Nilsson S, Mueller-Harvey I, Udén P. Relationship between con-

densed tannin structures and their ability to precipitate feed proteins in the rumen. J Sci Food Agric.

2014; 94: 963–968. doi: 10.1002/jsfa.6344 PMID: 23934572

27. Chamani J, Tafrishi N, Momen-Heravi M. Characterization of the interaction between human lactoferrin

and lomefloxacin at physiological condition: Multi-spectroscopic and modeling description. J Lumin.

2010; 130: 1160–1168.

28. Chamani J, Vahedian-Movahed H, Saberi MR. Lomefloxacin promotes the interaction between human

serum albumin and transferrin: A mechanistic insight into the emergence of antibiotic’s side effects. J

Pharm Biomed Anal. 2011; 55: 114–124. doi: 10.1016/j.jpba.2010.12.029 PMID: 21273024

29. Pasban Ziyarat F, Asoodeh A, Sharif Barfeh Z, Pirouzi M, Chamani J. Probing the interaction of lyso-

zyme with ciprofloxacin in the presence of different-sized Ag nano-particles by multispectroscopic tech-

niques and isothermal titration calorimetry. J Biomol Struct Dyn. 2014; 32: 613–29 doi: 10.1080/

07391102.2013.785919 PMID: 23659247

30. Kommuru DS, Barker T, Desai S, Burke JM, Ramsay A, Mueller-Harvey I, et al. Use of pelleted sericea

lespedeza (Lespedeza cuneata) for natural control of coccidia and gastrointestinal nematodes in

weaned goats. Vet Parasitol. 2014; 204: 191–198. doi: 10.1016/j.vetpar.2014.04.017 PMID: 24857771

31. Karonen M, Leikas A, Loponen J, Sinkkonen J, Ossipov V, Pihlaja K. Reversed-phase HPLC-ESI/MS

analysis of birch leaf proanthocyanidins after their acidic degradation in the presence of nucleophiles.

Phytochem Anal. 2007; 18: 378–386. doi: 10.1002/pca.992 PMID: 17624904

32. Dobreva MA, Frazier RA, Mueller-Harvey I, Clifton LA, Gea A, Green RJ. Binding of pentagalloyl glu-

cose to two globular proteins occurs via multiple surface sites. Biomacromolecules. 2011; 12: 710–715.

doi: 10.1021/bm101341s PMID: 21250665

33. SIGMA-ALDRICH®. Product Information. Available from: http://www.sigmaaldrich.com/content/dam/

sigma-aldrich/docs/Sigma/Product_Information_Sheet/2/g9382pis.pdf (Accesed on 03/07/15).

34. Whitmore L, Wallace BA. Protein secondary structure analyses from circular dichroism spectroscopy:

Methods and reference databases. Biopolymers. 2008; 89: 392–400. doi: 10.1002/bip.20853 PMID:

17896349

35. Whitmore L, Wallace BA. DICHROWEB, an online server for protein secondary structure analyses from

circular dichroism spectroscopic data. Nucleic Acids Res. 2004; 32(suppl 2): W668–W673.

36. Abdul-Gader A, Miles AJ, Wallace BA. A reference dataset for the analyses of membrane protein sec-

ondary structures and transmembrane residues using circular dichroism spectroscopy. Bioinformatics.

2011; 27: 1630–1636. doi: 10.1093/bioinformatics/btr234 PMID: 21505036

37. Lakowicz JR. Topics in Fluorescence Spectroscopy. New York: Plenum Press; 1991. Vol. 2. pp.277–

292.

38. Dancey C, Reidy J. Statistics without maths for psychology: using SPSS for Windows. London: Pren-

tice Hall; 2004.

39. Ropiak HM, Desrues O, Williams AR, Ramsay A, Mueller-Harvey I, Thamsborg SM. Structure-activity

relationship of condensed tannins and synergism with trans-cinnamaldehyde against Caenorhabditis

elegans. J Agric Food Chem. 2016; 64: 8795–8805. doi: 10.1021/acs.jafc.6b03842 PMID: 27796095

40. Foster JF, Kaplan LJ. Isoelectric focussing behavior of bovine plasma albumin, mercaptalbumin, and β-

lactoglobulins A and B. Biochemistry. 1971; 10: 630–636. PMID: 5101633

41. Hagerman AE, Butler LG. Protein precipitation method for the quantitative determination of tannins. J

Agric Food Chem. 1978; 26: 809–812.

42. Soares S, Ferrer-Galego R, Brandão E, Silva M, Mateus N, de Freitas V. Contribution of human oral

cells to astringency by binding salivary protein/tannin complexes. J Agric Food Chem. 2016; 64: 7823–

7828.

43. Frazier RA, Deaville ER, Green RJ, Stringano E, Willoughby I, Plant J, et al. Interactions of tea tannins

and condensed tannins with proteins. J Pharm Biomed Anal. 2010; 51: 490–495. doi: 10.1016/j.jpba.

2009.05.035 PMID: 19553056

44. Gospodarczyk W, Szutkowski K, Kozak M. Interaction of bovine serum albumin (BSA) with novel gemini

surfactants studied by synchrotron radiation scattering (SR-SAXS), circular dichroism (CD), and nuclear

magnetic resonance (NMR). J Phys Chem B. 2014; 118: 8652–8661. doi: 10.1021/jp5047485 PMID:

25000531

45. Simon C, Barathieu K, Laguerre M, Schmitter J- M, Fouquet E, Pianet I, et al. Three-dimensional struc-

ture and dynamics of wine tannin−saliva protein complexes. A multitechnique approach. Biochemistry.

2003; 42:10385–10395. doi: 10.1021/bi034354p PMID: 12950165

CT Structural Features and Protein Aggregation

PLOS ONE | DOI:10.1371/journal.pone.0170768 January 26, 2017 22 / 23

http://dx.doi.org/10.1002/jsfa.6344
http://www.ncbi.nlm.nih.gov/pubmed/23934572
http://dx.doi.org/10.1016/j.jpba.2010.12.029
http://www.ncbi.nlm.nih.gov/pubmed/21273024
http://dx.doi.org/10.1080/07391102.2013.785919
http://dx.doi.org/10.1080/07391102.2013.785919
http://www.ncbi.nlm.nih.gov/pubmed/23659247
http://dx.doi.org/10.1016/j.vetpar.2014.04.017
http://www.ncbi.nlm.nih.gov/pubmed/24857771
http://dx.doi.org/10.1002/pca.992
http://www.ncbi.nlm.nih.gov/pubmed/17624904
http://dx.doi.org/10.1021/bm101341s
http://www.ncbi.nlm.nih.gov/pubmed/21250665
http://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Product_Information_Sheet/2/g9382pis.pdf
http://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Product_Information_Sheet/2/g9382pis.pdf
http://dx.doi.org/10.1002/bip.20853
http://www.ncbi.nlm.nih.gov/pubmed/17896349
http://dx.doi.org/10.1093/bioinformatics/btr234
http://www.ncbi.nlm.nih.gov/pubmed/21505036
http://dx.doi.org/10.1021/acs.jafc.6b03842
http://www.ncbi.nlm.nih.gov/pubmed/27796095
http://www.ncbi.nlm.nih.gov/pubmed/5101633
http://dx.doi.org/10.1016/j.jpba.2009.05.035
http://dx.doi.org/10.1016/j.jpba.2009.05.035
http://www.ncbi.nlm.nih.gov/pubmed/19553056
http://dx.doi.org/10.1021/jp5047485
http://www.ncbi.nlm.nih.gov/pubmed/25000531
http://dx.doi.org/10.1021/bi034354p
http://www.ncbi.nlm.nih.gov/pubmed/12950165


46. Dinh NN, Winn BC, Arthur KK, Gabrielson JP. Quantitative spectral comparison by weighted spectral

difference for protein higher order structure confirmation. Anal Biochem. 2014; 464: 60–62. doi: 10.

1016/j.ab.2014.07.011 PMID: 25051254

47. Sogami M, Foster JF. Isomerization reactions of charcoal-defatted bovine plasma albumin. The N-F

transition and acid expansion. Biochemistry. 1968; 7: 2172–2182. PMID: 5690710

48. Green RJ, Hopkinson I, Jones RAL. Unfolding and intermolecular association in globular proteins

adsorbed at interfaces. Langmuir. 1999; 15: 5102–5110.

49. Han B, Jaurequi J, Tang BW, Nimni ME. Proanthocyanidin: A natural crosslinking reagent for stabilizing

collagen matrices. J Biomed Mater Res A. 2003; 65A: 118–124.

50. Maiti TK, Ghosh KS, Dasgupta S. Interaction of (-)-epigallocatechin-3-gallate with human serum albu-

min: fluorescence, fourier transform infrared, circular dichroism, and docking studies. Proteins. 2006;

64: 355–362. doi: 10.1002/prot.20995 PMID: 16705651

51. Rawel HM, Meidtner K, Kroll J. Binding of selected phenolic compounds to proteins. J Agric Food

Chem. 2005; 53: 4228–4235. doi: 10.1021/jf0480290 PMID: 15884865

52. Dobreva MA, Green RJ, Mueller-Harvey I, Salminen J- P, Howlin BJ, Frazier RA. Size and molecular

flexibility affect the binding of ellagitannins to bovine serum albumin. J Agric Food Chem. 2014; 62:

9186–9194. doi: 10.1021/jf502174r PMID: 25162485

53. Li M, Hagerman AE. Role of the flavan-3-ol and galloyl moieties in the interaction of (−)-epigallocatechin

gallate with serum albumin. J Agric Food Chem. 2014; 62: 3768–3775. doi: 10.1021/jf500246m PMID:

24712545

54. Cai X, Yu J, Xu L, Liu R, Yang J. The mechanism study in the interactions of sorghum procyanidins tri-

mer with porcine pancreatic alpha-amylase. Food Chem. 2015; 174: 291–298. doi: 10.1016/j.

foodchem.2014.10.131 PMID: 25529683

55. Kosińska A, KaramaćM, Penkacik K, Urbalewicz A, Amarowicz R. Interactions between tannins and

proteins isolated from broad bean seeds (Vicia faba Major) yield soluble and non-soluble complexes.

Eur Food Res Technol. 2011; 233: 213–222.

56. Soares S, Mateus N, de Freitas V. Interaction of different polyphenols with bovine serum albumin (BSA)

and human salivary alpha-amylase (HSA) by fluorescence quenching. J Agric Food Chem. 2007; 55:

6726–6735. doi: 10.1021/jf070905x PMID: 17636939

57. Williams AR, Fryganas C, Reichwald K, Skov S, Mueller-Harvey I, Thamsborg SM. Polymerization-

dependent activation of porcine γδ T-cells by proanthocyanidins. Res Vet Sci. 2016; 105: 209–215. doi:

10.1016/j.rvsc.2016.02.021 PMID: 27033935

58. Takeshita M, Ishida Y, Akamatsu E, Ohmori Y, Sudoh M, Uto H, et al. Proanthocyanidin from blueberry

leaves suppresses expression of subgenomic hepatitis C virus RNA. J Biol Chem. 2009; 284: 21165–

21176. doi: 10.1074/jbc.M109.004945 PMID: 19531480

59. Hoste H, Torres-Acosta JFJ, Sandoval-Castro CA, Mueller-Harvey I, Sotiraki S, Louvandini H, et al.

Tannin containing legumes as a model for nutraceuticals against digestive parasites in livestock. Vet

Parasitol. 2015; 212: 5–17. doi: 10.1016/j.vetpar.2015.06.026 PMID: 26190131

CT Structural Features and Protein Aggregation

PLOS ONE | DOI:10.1371/journal.pone.0170768 January 26, 2017 23 / 23

http://dx.doi.org/10.1016/j.ab.2014.07.011
http://dx.doi.org/10.1016/j.ab.2014.07.011
http://www.ncbi.nlm.nih.gov/pubmed/25051254
http://www.ncbi.nlm.nih.gov/pubmed/5690710
http://dx.doi.org/10.1002/prot.20995
http://www.ncbi.nlm.nih.gov/pubmed/16705651
http://dx.doi.org/10.1021/jf0480290
http://www.ncbi.nlm.nih.gov/pubmed/15884865
http://dx.doi.org/10.1021/jf502174r
http://www.ncbi.nlm.nih.gov/pubmed/25162485
http://dx.doi.org/10.1021/jf500246m
http://www.ncbi.nlm.nih.gov/pubmed/24712545
http://dx.doi.org/10.1016/j.foodchem.2014.10.131
http://dx.doi.org/10.1016/j.foodchem.2014.10.131
http://www.ncbi.nlm.nih.gov/pubmed/25529683
http://dx.doi.org/10.1021/jf070905x
http://www.ncbi.nlm.nih.gov/pubmed/17636939
http://dx.doi.org/10.1016/j.rvsc.2016.02.021
http://www.ncbi.nlm.nih.gov/pubmed/27033935
http://dx.doi.org/10.1074/jbc.M109.004945
http://www.ncbi.nlm.nih.gov/pubmed/19531480
http://dx.doi.org/10.1016/j.vetpar.2015.06.026
http://www.ncbi.nlm.nih.gov/pubmed/26190131

